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Abstract: 93 
Seedling establishment and seed nutritional quality require the sequestration of sufficient 94 
element nutrients. Identification of genes and alleles that modify element content in the grains of 95 
cereals, including Sorghum bicolor, is fundamental to developing breeding and selection 96 
methods aimed at increasing bioavailable element content and improving crop growth. We have 97 
developed a high throughput workflow for the simultaneous measurement of multiple elements 98 
in sorghum seeds. We measured seed element levels in the genotyped Sorghum Association 99 
Panel (SAP), representing all major cultivated sorghum races from diverse geographic and 100 
climatic regions, and mapped alleles contributing to seed element variation across three 101 
environments by genome-wide association. We observed significant phenotypic and genetic 102 
correlation between several elements across multiple years and diverse environments. The power 103 
of combining high-precision measurements with genome wide association was demonstrated by 104 
implementing rank transformation and a multilocus mixed model (MLMM) to map alleles 105 
controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence 106 
similarity to genes characterized in previous studies identified likely causative genes for the 107 
accumulation of zinc (Zn) manganese (Mn), nickel (Ni), calcium (Ca) and cadmium (Cd) in 108 
sorghum seed. In addition to strong candidates for these four elements, we provide a list of 109 
candidate loci for several other elements. Our approach enabled identification of SNPs in strong 110 
LD with causative polymorphisms that can be evaluated in targeted selection strategies for plant 111 
breeding and improvement.  112 
 113 
  114 
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Introduction: 115 
Sorghum bicolor is a globally cultivated source of food, feed, sugar and fiber. Classified 116 

as a bioenergy feedstock, sorghum biomass also has unique advantages for sustainable biofuel 117 
production (Kimber et al., 2013). The element composition of stems, leaves and reproductive 118 
organs all contribute significantly to biomass quality.  The seed bearing reproductive organs, or 119 
panicles, in sorghum represent up to 30% of the total dry matter yield (Amaducci et al., 2004).  120 
Inorganic elements, particularly alkali metals, influence the combustion process and can limit the 121 
effectiveness of biomass conversion (Obernberger et al., 1997; Monti et al., 2008).  Targeted 122 
reduction of specific elements and compositional traits via transgenic and breeding approaches 123 
can be implemented to improve biomass quality.   124 

Increasing the bioavailable elemental nutrient content in the edible portions of the crop 125 
has the potential to increase the value of sorghum for human and animal nutrition. Plant-based 126 
diets, in which grains compose the major food source, require the availability of essential 127 
elements in the plant seed. Iron (Fe) and Zn deficiencies affect over 2 billion people worldwide 128 
(Organization, 2002), and increases in the accumulation and bioavailability of these elements in 129 
cereal grains, including sorghum, could potentially make a significant impact towards 130 
ameliorating this nutritional crisis (Graham et al., 1999; Organization, 2002). Additional global 131 
health benefits could be achieved by increasing magnesium (Mg), selenium (Se), Ca and copper 132 
(Cu) (White and Broadley, 2005) and reducing the concentration of toxic elements, including 133 
arsenic (As) and Cd (Ma et al., 2008).  134 

Seed element content is determined by interconnected biological processes, including 135 
element uptake by the roots, translocation and remobilization within the plant, and ultimately 136 
import, deposition and assimilation/storage in the seeds. Element availability is further affected 137 
by the accumulation of metabolites in seeds (Vreugdenhil et al., 2004). High-throughput ionomic 138 
analysis, or concurrent measurement of multiple elements, allows for the quantitative and 139 
simultaneous measurement of an organism’s elemental composition, providing a snapshot into 140 
the functional state of an organism under different experimental conditions (Salt et al., 2008). 141 
Most studies of the plant ionome utilize inductively-coupled plasma mass spectroscopy (ICP-142 
MS). Briefly, the ICP functions to ionize the analyte into atoms, which are then detected by mass 143 
spectroscopy. Reference standards are utilized to quantify each element of interest in the sample 144 
analyte. ICP-MS analysis time is approximately 1-3 minutes per sample, which allows for a 145 
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high-throughput processing of hundreds of samples (Salt et al., 2008). Previous studies have 146 
demonstrated that several elements, including Fe, Mn, Zn, cobalt (Co) and Cd share mechanisms 147 
of accumulation (Yi and Guerinot, 1996; Vert et al., 2002; Connolly et al., 2003). Ionomics 148 
signatures derived from multiple elements have been shown to better predict plant physiological 149 
status than the measurements of the elements themselves, including the essential nutrients 150 
(Baxter et al., 2008). Holistically examining the ionome provides significant insights into the 151 
networks underlying ion homeostasis beyond single element studies (Baxter and Dilkes, 2012).  152 

With over 45,000 catalogued sorghum germplasm lines (USDA), there is significant 153 
genetic variation (Das et al., 1997) with undiscovered impact on seed element composition. 154 
Mapping quantitative trait loci (QTL) for seed element concentration has been successful in a 155 
number of species including Arabidopsis (Vreugdenhil et al., 2004; Waters and Grusak, 2008; 156 
Buescher et al., 2010), rice (Norton et al., 2010; Zhang et al., 2014), wheat (Shi et al., 2008; 157 
Peleg et al., 2009) and maize (Šimić et al., 2012; Baxter et al., 2013; Baxter et al., 2014). 158 
Genome-wide association (GWA) mapping is well suited for uncovering the genetic basis for 159 
complex traits, including seed element accumulation. One of the key strengths of association 160 
mapping is that a priori knowledge is not necessary to identify new loci associated with the trait 161 
of interest. Further, a GWA mapping population is comprised of lines that have undergone 162 
numerous recombination events, allowing for a narrower mapping interval. Previous GWA 163 
studies in maize (Tian et al., 2011), rice (Huang et al., 2010) and sorghum (Morris et al., 2013) 164 
have been successful in identifying the genetic basis for various agronomic traits. Here, we 165 
analyzed the seed ionome from a community-generated association panel to identify potential 166 
loci underlying seed element accumulation in sorghum.  167 

 168 
Results: 169 
Phenotypic diversity for seed element concentrations in the sorghum association panel 170 

We grew 407 lines from the publicly available sorghum association panel (SAP) selected 171 
for genotypic diversity and phenotypic variation (Casa et al., 2008) (Supplemental table 1). 172 
These lines were previously genotyped by sequencing (GBS) (Morris et al., 2013). The SAP 173 
lines were grown in three experiments: Lubbock, Texas in 2008 (SAP 2008), Puerto Vallarta, 174 
Mexico in 2012 (SAP 2012), and two field replicates produced in Florence, SC in 2013 (SAP 175 
2013-1 and SAP2013-2). 287 of the 407 SAP lines were present in all 4 growouts.  176 
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Seed samples were taken from each replicate and weighed before analysis. A simple 177 
weight normalization and established methods to estimate weight from the elemental content 178 
were attempted (Lahner et al., 2003). However, both methods created artifacts, particularly in 179 
elements with concentrations near the level of detection (Supplemental figure 1). To address this 180 
concern, we included weight as a cofactor in a linear model that included other sources of 181 
technical error and utilized the residuals of the model as the trait of interest for genetic mapping. 182 
The residuals from this transformation were used for all further analyses and outperformed any 183 
other method (data not shown).  184 

We calculated broad-sense heritability for each trait to determine the proportion of the 185 
phenotypic variation explained by the genetic variation present in the SAP across the three 186 
environments (Table 1). Heritability estimates ranged from 1% (sodium, Na) to 45% (Cu). We 187 
obtained moderate heritability (> 30%) for several elements including: Mg, P, sulfur (S), 188 
potassium (K), Ca, Mn, Fe, Co, Zn, strontium (Sr) and molybdenum (Mo). Low heritabilities 189 
were reported previously for seed accumulation of Al and As (Norton et al., 2010) as well as for 190 
Se, Na, Al, and Rb in a similarly designed study in maize seed kernels (Baxter et al., 2014). The 191 
relatively lower heritabilities for these elements, including boron (B), Cd and Se could be 192 
explained by environmental differences between the experiments, element accumulation near the 193 
limits of detection via ICP-MS, or the absence of genetic variation affecting these element’s 194 
concentrations. Consistent with the hypothesis that field environment was masking genetic 195 
variation, we calculated the heritability for two field replicates of the SAP in 2013, and found 196 
higher heritabilities for 12 elements (Table 1).   197 
 We detected significant effects of both genotype and environment on most of the 198 
elements (Figure 1 and Supplemental table 2). The measured element concentrations of the 199 
present study corroborate the broad range observed in the sorghum element literature (Mengesha, 200 
1966; Neucere and Sumrell, 1980; Lestienne et al., 2005; Ragaee et al., 2006). Similar to a study 201 
carried out in wild emmer wheat (Gomez-Becerra et al., 2010), grain Na and Ca showed large 202 
variation (5 and 4 fold, respectively). Compared to micronutrients, the remaining macronutrients 203 
(P, K, S and Mg) measured in the study exhibited less phenotypic variation overall (Table 1 and 204 
Supplemental table 3) ranging between 1.6 and 1.8 fold across the SAP. Of the micronutrients, 205 
high variation was detected for Al and Ni (8 and 6 fold, respectively). With the exception of 206 
these two elements, seed micronutrient concentration showed phenotypic variation ranging 207 
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between 2.4 to 5.6 fold.  High variation in Ni and Al may indicate strong environmental effects 208 
on grain Ni and Al concentration or contamination during handling and analysis of the seeds, as 209 
previously suggested (Baxter et al., 2014). The element traits were well distributed across the 210 
sorghum subpopulations, with no specific subpopulations accumulating disproportionate levels 211 
of any element (Supplemental figure 2).    212 
 We used two different approaches to identify the shared regulation of elemental 213 
accumulation. Pairwise correlations were calculated and graphed (Supplemental table 4 and 214 
Figure 2a), and principal component analysis (PCA) was carried out (Figure 2b).  Highly 215 
correlated element pairs in our data included Mg-P, Mg-Mn, P-S and Mg-S. Divalent cations 216 
Ca2+ and Sr2+ are chemical analogs and strong correlation was observed between these two 217 
elements, consistent with previous reports in other species (Queen et al., 1963; Hutchin and 218 
Vaughan, 1968; Ozgen et al., 2011; Broadley and White, 2012). In the SAP, the first two 219 
principal components accounted for a large fraction of the phenotypic covariance (36%). 220 
Clustering of elements reflected known elemental relationships, including the covariation of Ca 221 
and Sr (Figure 2). A cluster of the essential metal micronutrients, Fe, Zn and Cu is 222 
distinguishable suggesting that their accumulation can be affected by a shared mechanism. 223 
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Similarly clustering of Mg and P is consistent with previous studies in wheat (Peleg et al., 2009). 224 
Seed P is predominately stored as the Mg2+ salt of phytic acid (inositol-hexaphosphate; IP6), 225 
which may explain the significant positive correlation of these elements (Maathuis, 2009; 226 
Marschner and Marschner, 2012).  227 
 228 
Genome-wide association mapping of seed element traits 229 

To dissect the genetic basis of natural variation for seed element concentration in 230 
sorghum seed, GWA mapping was performed using both an optimal model obtained from the 231 
multi-locus mixed model (MLMM) algorithm and a compressed mix linear model (CMLM) that 232 
accounts for population structure. For the MLMM analysis we considered several models to 233 
account for population structure as well as two different models to determine how many 234 
cofactors to add into the analysis (see Methods and Supplemental figure 5).  We decided to use 235 
the kinship model to account for population structure and the most conservative mBonf model 236 
for selecting cofactors. We also used the conservative, Bonferroni-corrected threshold (P = 0.05) 237 
for CMLM, and identified overlapping SNPs significantly associated with seed element 238 
concentration using both approaches (Supplemental tables 5 and 6). Compared to traditional 239 
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single-locus approaches (e.g. CMLM), MLMM utilizes multiple loci in the model, which 240 
contribute to a higher detection power and lower potential of false discoveries (Segura et al., 241 
2012). MLMM also identified additional associations of interest. Significant SNPs identified 242 
with the MLMM approach were prioritized for further analysis (Supplemental table 5).   243 

In an effort to comprehensively identify significant SNPs associated with element 244 
concentration, we created several datasets for GWA analysis. After averaging the two SAP 2013 245 
growouts, each location was treated as an individual experiment. To link SAP experiments 246 
across environments, we ranked the individual lines of each experiment by element 247 
concentration and derived a robust statistic describing element accumulation for GWAS by using 248 
the average of ranks across the four SAP environments. By utilizing rank-order, we eliminated 249 
skewness and large variation in element concentration due to environmental differences 250 
(Conover and Iman, 1981).  GWA scans across individual experiments identified 270, 228, and 251 
207 significant SNPs for all twenty element traits in the SAP2008, SAP2012 and SAP2013 252 
panels, respectively. In total we identified 255 significant loci in the ranked dataset for the 253 
twenty element traits (Supplemental table 5). The number of significant SNPs per element trait 254 
ranged from two (B) to 33 (Ca) and roughly reflected their heritabilities.   255 
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We identified several SNPs common to multiple environments (Supplemental table 8). 256 
For example, GWA for Ca concentration in all three of our SAP experiments identified 257 
significant SNPs within 5kb of locus Sobic.001G094200 on chromosome 1. Sobic.001G094200 258 
is a putative calcium homeostasis regulator (CHoR1) (Zhang et al., 2012). We also identified 259 
several significant SNPs that colocalized for multiple element traits (Figure 3 and Supplemental 260 
table 9). Several of these SNPs were detected as significantly associated with multiple elements 261 
that are known to be coordinately regulated (Yi and Guerinot, 1996; Vert et al., 2002; Connolly 262 
et al., 2003; Lahner et al., 2003), and implicate candidate genes involved in regulation of 263 
multiple elements. For example, a SNP on chromosome 1 (S1_18898717) was a significant peak 264 
in both Mg and Mn GWA analysis (Figure 3). This SNP peak is in LD with the Arabidopsis 265 
homolog of AT3G15480. AT3G15480 is a protein of unknown function, however T-DNA 266 
knockout lines display mutant phenotypes in both Mg and Mn accumulation 267 
(www.ionomicshub.org, SALK_129213, Tray 449).  T-DNA knockout lines in Arabidopsis also 268 
validated the significant peak for Co accumulation in the present study (S2_8464347).  This SNP 269 
is linked to the homolog of AT5G63790, a NAC domain containing protein that imparts a 270 
significantly decreased Co phenotype in the T-DNA knockout line (www.ionomicshub.org, 271 
SALK_030702, Tray 1137).  272 

We focused our interpretation efforts on the GWA results from the SAP ranked dataset, 273 
as these are the most likely to provide the tools to manipulate seed element content across 274 
multiple environments. The GWA results for each element trait obtained at the optimal step of 275 
the MLMM model were compiled. The data for Cd using the SAP ranked dataset is presented in 276 
Figure 4 as an example of the analysis procedure. GWA across multiple environments identified 277 
one significant SNP (S2_8883293) associated with Cd levels. (Figure 4A).  The distribution of 278 
expected vs. observed P values, QQ-plots (Figure 4B and Supplemental figure 5), suggests that 279 
population structure was well controlled and false positive association signals were minimized 280 
using the kinship matrix plus cofactors.  281 

 The optimal MLMM model (mBonf) included one SNP on chromosome 2, S2_8883293, 282 
that explained 18% of the phenotypic variation in cadmium (Figure 4C), and the allelic effects of 283 
each genotype were estimated (Figure 4D). The major-effect locus on chromosome 2 is in LD 284 
with a homolog of a well-characterized cadmium transporter in plants, heavy metal ATPase 2 285 
(HMA2).  286 
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 287 
Discussion: 288 
Ionome profiling for improved sorghum seed quality 289 

Increasing the concentration of elements essential for human and animal nutrition (e.g. Fe 290 
and Zn) while simultaneously minimizing and increasing tolerance to anti-nutrients and toxic 291 
elements (e.g. As, Cd and Al) is a significant goal of fundamental research directed towards 292 
global crop improvement (Schroeder et al., 2013). Element homeostasis in plants, is affected by 293 
genotype, environment, soil properties, and nutrient interactions (Gregorio et al., 2000).  294 
While determining strategies to enhance or reduce element content for food or fuel, several 295 
components of seed element traits must be considered. These include: the heritability of the 296 
various element traits, genotype by environment interactions, and the availability of high-297 
throughput element content screening tools (Ortiz-Monasterio et al., 2007). Differences in seed 298 
organic composition can also have large effects on the element composition of seeds, as different 299 
seed compartments will contain elements in different proportions. Variation in seed composition 300 
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together with variation in sorghum seed sizes, violate the assumption of a uniform elemental 301 
concentration inherent in simple weight normalizations. Our data were not well modeled by a 302 
simple weight normalization (Supplemental figure 1), and we subsequently employed a rank 303 
transformation of the phenotypic data and linear model in the analysis (Ayana and Bekele, 2000; 304 
Baxter et al., 2014).  305 

Our results demonstrate environmental effects on the range and means of element 306 
concentrations are largely element specific. In general, seed element concentrations did not 307 
exhibit large variation due to environmental effects. This contributed to high heritabilities for 308 
several elements and homeostasis of individual element concentration across very diverse 309 
environments (Figure 1 and Table 1). The high heritabilities for these traits demonstrate the 310 
feasibility of breeding strategies for the improvement of sorghum for seed element accumulation. 311 
Further, due to the known genetic contributors to trait covariation, selection strategies can 312 
include alteration of multiple traits, phenotypic correlations between traits or counter selection 313 
for undesirable traits (e.g. As accumulation). The high heritability and the relationships we report 314 
between important element elements, including Fe and Zn are encouraging for the development 315 
of breeding schema for improved element profiles for the alleviation of human malnutrition. 316 
Observed correlations of several elements indicate that changes in one or more elements can 317 
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simultaneously affect the concentration of other elements present in the seed (Figure 2A). 318 
However, the individual effects of particular alleles can deviate from this pattern.  319 

Trait correlations and covariation were used to uncover genetic associations for multiple 320 
elements. Even without more complicated analyses, we detected colocalized effects on several 321 
element traits (Supplemental table 4 and Supplemental table 8). For example, several significant 322 
SNPs colocalized for the strongly correlated element pairs of Ca and Sr (r= 0.79) as well as Mg 323 
and P (r= 0.71).  Shared SNPs and colocalization of significant loci across multiple element traits 324 
suggest the possibility of tightly-linked genes or genes with pleiotropic effects and has been 325 
documented in recent GWA studies, including experiments in tomato (Sauvage et al., 2014) and 326 
rice (Zhao et al., 2011). In the present analysis, we applied a conservative threshold in our 327 
MLMM implementation and identified SNPs from the most complex model in which the P 328 
values of cofactors were below a defined threshold of 0.05. We implemented stringent 329 
parameters to eliminate false positives, but also risked the elimination of true positives. To 330 
identify additional candidate SNPs for further investigation, these stringent parameters can be 331 
relaxed to include association signals below the threshold. 332 
 333 
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Candidate genes  334 
One of the primary goals of this study was to utilize GWA analyses to identify candidate 335 

genes and novel loci implicated in the genetic regulation of sorghum seed element traits. We 336 
identified numerous significant SNPs for all twenty element traits that currently do not associate 337 
with known elemental accumulation genes. Although it is likely that a small fraction of these 338 
SNPs are false positives, many more may be novel associations with as-yet undiscovered causal 339 
genes and merit further investigation. We did, however, identify several significant SNPs that 340 
fall directly within a characterized candidate gene or are in close proximity, or LD, with putative 341 
candidates.  342 
Zinc 343 
 Zinc deficiency is a critical challenge for food crop production that results in decreased 344 
yields and nutritional quality. Zinc-enriched seeds result in better seedling vigor and higher stress 345 
tolerance on Zn-deficient soils (Cakmak, 2008). Here we identify a strong candidate for genetic 346 
improvement of zinc concentration in the in sorghum seed, Sobic.007G064900, an ortholog of 347 
Arabidopsis ZIP5, zinc transporter precursor (AT1G05300) (Table 2). AT1G05300 is a member 348 
of the ZIP family of metal transporter genes, and overexpression lines of this gene display 349 
increased Zn accumulation in Arabidopsis (www.ionomicshub.org, 35SZip5_2 _Tray 700). 350 
Manganese 351 
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Associated with amino acid, lipid and carbohydrate metabolism, Mn is one of the 352 
essential elements critical to human and animal nutritional requirements (Aschner and Aschner, 353 
2005). We identified significant GWAS associations in the putative sorghum homolog for 354 
member of the metal transporter encoding cation diffusion facilitator gene family MTP11 355 
(Sobic.003G349200) (Table 2). The Arabidopsis ortholog, AtMTP11, confers Mn tolerance and 356 
transports Mn2+ via a proton-antiport mechanism in Saccharomyces cerevisiae (Delhaize et al., 357 
2007). 358 
Cadmium 359 

The seeds are a major source of essential nutrients, but can also be a source of toxic 360 
heavy metals, including cadmium. Contamination of ground water and subsequent uptake and 361 
absorption by the plant can result in high levels of Cd contamination in the seed (Arao and Ae, 362 
2003).  GWA analysis identified significant SNPs associated with a paralogous set of cation-363 
transporting ATPases (Figure 4), Sobic.002G083000 and Sobic.002G083100. These are sorghum 364 
orthologs of Arabidopsis HMA genes in the heavy metal–transporting subfamily of the P-type 365 
ATPases. AtHMA3 participates in the vacuolar storage of Cd in Arabidopsis, and a recent study 366 
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revealed that HMA3 is a major-effect locus controlling natural variation in leaf cadmium (Morel 367 
et al., 2009; Chao et al., 2012). The SNP alleles could be used immediately to potentially 368 
produce sorghum seed with lowered Cd2+ accumulation.  369 
Nickel 370 

Ni is an essential nutrient required for plant growth. However, similar to Cd, high Ni 371 
concentrations in soil can be toxic to the plant, resulting in reduced biomass and crop yield. The 372 
most significant SNP for Ni concentration in the SAP 2008 environment (and present in SAP 373 
2012 and the ranked dataset) was S6_53175238. This SNP is in LD with the candidate gene 374 
Sobic.006G164300, a homolog of the Yellow Stripe-Like 3 (YSL) family of proteins (Table 2). 375 
Originally identified in maize, the YSL proteins are a subfamily of oligopeptide transporters 376 
involved in metal uptake, homeostasis and long-distance transport (Curie et al., 2009). YSL3 is 377 
suggested to transport metals bound to nicotianamine (NA)(Curie et al., 2001) and in the metal 378 
hyperaccumulator Thlaspi caerulescens YSL3 functions as Ni–NA influx transporter (Gendre et 379 
al., 2007). 380 
 381 
Summary/Conclusion: 382 

In the present study, we utilized GWA mapping and rank transformation of the 383 
phenotypic data to scale GxE interactions and identify a number of genetic loci and candidate 384 
gene associations for immediate study and application to breeding strategies. The use of a multi-385 
element, or ionomic approach, to the analysis allows for the identification of SNPs that confer 386 
multiple advantageous traits that can be selected for in breeding programs. We identify co-387 
localization of significant SNPs for different elements, indicating potential coregulation through 388 
physiological processes of elemental uptake, transport, traffic and sequestration. Our results 389 
suggest that combining elemental profiling with GWA approaches can be useful for 390 
understanding the genetic loci underlying elemental accumulation and for improving nutritional 391 
content of sorghum. The data and analysis scripts used for this publication can be found at 392 
www.ionomicshub.org.  393 
 394 
Materials and Methods: 395 
Plant material 396 
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The Sorghum Association Panel has been previously described (Casa et al., 2008). Seeds 397 
harvested from 407 lines that comprise the Sorghum Association Panel (SAP) were utilized for 398 
this study. The SAP 2008 seeds were obtained from Germplasm Resources Information Network 399 
(GRIN) and were produced in Lubbock, Texas by the USDA-ARS Cropping Systems Research 400 
Laboratory in 2008. The SAP 2012 seeds were produced in Puerto Vallarta, Mexico in 2012. The 401 
SAP 2013 seeds were produced in Florence, SC in 2013. 402 
 403 
Phenotypic Elemental Analysis  404 
Four seeds per replicate were weighed from each individual and a minimum of two replicates 405 
from each line of the SAP 2008 and SAP 2013 panels were analyzed by ICP-MS. Each sample 406 
was digested with 2.5 mL of concentrated nitric acid at 95°C for 3 hours.  Elemental analysis 407 
was performed with an ICP-MS for B, Na, Mg, Al, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se, 408 
Rb, Sr, Mo and Cd following established protocols (Baxter et al., 2010). A reference sample 409 
derived from a pool of sorghum seed samples was generated and run after every 9th sample to 410 
correct for ICP-MS run-to-run variation and within-run drift.  411 
 412 
Data Processing and Analysis 413 
Phenotype data were generated for 407 SAP lines. GBS SNP markers for the SAP lines used in 414 
this study have been previously described (Morris et al., 2013). After removing SNPs with more 415 
than 20% missing data and minor allele frequencies below 0.05, genotype data for 78,012 SNPs 416 
remained. Broad sense heritability was calculated using the lmer function in the lme4 package to 417 
perform an analysis of variance with the experimental replicates of the SAP using previously 418 
described methods (Van Poecke et al., 2007; Bates et al., 2014). To ensure normality in the data 419 
distribution of the phenotype, the Box-Cox procedure was carried out on the phenotype scores to 420 
identify the best transformation method (Box and Cox, 1964). The ‘boxcox’ function in the 421 
MASS package in R was utilized to carry out the transformations (R Development Core Team, 422 
2014; Ripley et al., 2014). In order to address potential confounding factors in the GWA 423 
analysis, specifically ICP run-to-run variation and the weight correction calculation, we used 424 
linear regression to compute residuals adjusted for ICP run and sample weight. These residuals 425 
were used to test for association with qualifying SNPs in the GWA analysis. 426 
 427 
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GWAS 428 
GWAS was executed in R using Genomic Association and Prediction Integrated Tool 429 

(GAPIT) using CMLM (Zhang et al., 2010; Lipka et al., 2012).  Significant associations were 430 
determined by estimates of false discovery rate (FDR) (P = 0.05) (Benjamini and Hochberg, 431 
1995). The CMLM uses a VanRaden kinship matrix and the first three principal components as 432 
covariates to account for population structure. MLMM is based on EMMA (Kang et al., 2008) 433 
and relies on the iterative use of a simple K, or Q+K, mixed-model algorithm. The kinship term, 434 
K, provides a fine-grained estimate of familial relatedness between lines. In addition, GWAS 435 
models often include a more granular measurement of population membership for each line, Q. 436 
To determine the necessity of using the more complex Q+K model to control for spurious allele 437 
associations, we analyzed QQ-plots generated from MLMM GWAS using a simple K model plus 438 
cofactors (Supplemental figure 5) and phenotypic distributions across known subpopulations 439 
(Supplemental figure 2). Phenotypic distributions across subpopulations were similar, indicating 440 
that population structure does not play a strong role in elemental accumulation. The QQ-plots 441 
indicate that after the addition of major effect loci to the model as cofactors, the p value 442 
distribution does not deviate drastically from the expected uniform distribution. These results 443 
indicate that for MLMM the mixed model containing only the kinship matrix, K, plus cofactors 444 
is sufficient to control for spurious allele associations due to population structure and cryptic 445 
relatedness. 446 

At each step of the MLMM, the phenotypic variance is divided into genetic, random and 447 
explained variance. The most significant marker is included as a cofactor, and the variance 448 
components of the model are recalculated. With each successive iteration, the remaining genetic 449 
variance approaches zero, and an optimal model including cofactors that explains the genetic 450 
fraction of the phenotypic variance is determined. The MLMM method selects two models using 451 
stop criteria determined by two test statistics termed the multiple-Bonferroni criterion (mBonf) 452 
and the extended Bayesian information criterion (extBIC). The mBonf criteria selects a model 453 
wherein all cofactors have a p value below a Bonferroni-corrected threshold (Segura et al., 2012) 454 
and, in our experiments, this was the more stringent of the two model selection criteria (i.e. it 455 
favored less complex models) and was used for all further analyses. In addition, the genetic 456 
variance partition, described above, provides an estimate of heritability, termed 457 
pseudoheritability (Kang et al., 2010; Segura et al., 2012), explained by the model at each step. 458 
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The missing heritability can be calculated from the model at the optimal step (mBonf). The 459 
percent variance explained by the model is the difference between the genetic variance at step 0 460 
and the optimal step (Supplemental table 7). 461 

The MLMM method utilized the multiple-Bonferroni criterion (mBonf) which selects a 462 
model wherein all cofactors have a p value below a Bonferroni-corrected threshold (Segura et al., 463 
2012). We utilized a genome-wide significance threshold of p < 0.05 for the Bonferroni 464 
correction. A kinship matrix was constructed to correct for population structure and cryptic 465 
relatedness (Supplemental table 10).  The kinship matrix was estimated from all of the SNPs in 466 
the dataset using the VanRaden method (VanRaden, 2008) in GAPIT (Lipka et al., 2012).  467 
Kinship was included as a random effect in the MLMM model.   468 
 469 
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Table 1  Mean, standard deviation, and broad sense heritability of seed element 545 concentrations from the Sorghum Association Panel averaged across 3 environments. 546 Element concentration values are presented as mg kg-1 and broad sense heritability (H2) 547 was calculated as described in the methods section.  Data represents an average of 548 individual samples (n=287) analyzed in 4 separate experiments.  *Element concentration 549 presented in µg kg-1. 550 

Trait       Sorghum Association Panel 
All SAP Replicates 

H2 H2  

       
Mean Standard Deviation 

All SAP
Reps 

2013 Field  
Reps 

 

B 
Na 
Mg 
Al 
P 
S 
K 
Ca 
Mn 
Fe 
Co 
Ni 
Cu 
Zn 
As 
Se 
Rb 
Sr 

Mo 
Cd 

      12.8 
0.572 
1580 
0.277 
3350 
890 
3850 
25.3 
13.5 
24.9 
6.11* 
0.18 
2.54 
19.9 

0.0796 
1.32 
1.76 
0.573 
0.603 
0.0683 

5.88 
0.316 
246 

0.269 
623 
127 
795 
18.8 
3.33 
5.7 

4.48* 
0.187 
1.21 
5.71 

0.0361 
0.454 
0.848 
0.586 
0.306 
0.0739 

0.02 
0.01 
0.42 
0.06 
0.38 
0.36 
0.36 
0.41 
0.36 
0.40 
0.32 
0.22 
0.45 
0.35 
0.08 
0.03 
0.10 
0.32 
0.33 
0.16 

0.05 
0.00 
0.38 
0.17 
0.35 
0.33 
0.46 
0.57 
0.43 
0.46 
0.28 
0.10 
0.47 
0.38 
0.19 
0.00 
0.12 
0.27 
0.37 
0.23 
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Phenotype SNP Locus Name Chromosome   P value  Soybean Defline Annotation  Arabidopsis thaliana Homolog 

 
Cd 

 

S2_8883293 
 

Sobic.002G083000 
 

2 
 

9.67E-10 
 

Cation-transporting ATPase 
 

AtHMA2; Heavy Metal ATPase2 
 

Mo 
 

S3_64823106 
 

Sobic.003G320600 
 

3 
 

1.65E-08 
 

Membrane protein-like 
 

Sulfite exporter TauE/SafE family 
protein 

Ni 
 

S6_53175238 
 

Sobic.006G164300 
 

6 
 

1.84E-07 
 

Iron transport protein 2 
 

AtYSL3; YELLOW STRIPE like 3 
 

Mg 
 

S1_64935466 
 

Sobic.001G443900 
 

1 
 

3.20E-07 
 

Peptide transporter PTR2, 
putative, expressed 

AtPTR2; Peptide transporter 2 
 

Fe 
 

S1_19766414 
 

Sobic.001G213400 
 

1 
 

4.92E-07 
 

HD domain containing protein, 
expressed 

Metal-dependent phosphohydrolase 
 

K 
 

S6_45971634 
 

Sobic.006G082200 
 

6 
 

4.25E-06 
 

OSIGBa0160I14.4 protein 
 

MGT4, MRS2-3; Magnesium 
transporter 4 

B 
 

S4_52068874 
 

Sobic.004G174600 
 

4 
 

5.45E-06 
 

Putative multidrug resistance 
protein 

ABC transporter family protein 
 

Rb 
 

S8_6186108 
 

Sobic.008G058700 
 

8 
 

7.06E-06 
 

Putative uncharacterized 
protein OSJNBa0065C11.1 

ZIP metal ion transporter family 
 

P 
 

S1_64935466 
 

Sobic.001G443900 
 

1 
 

7.14E-06 
 

Peptide transporter PTR2, 
putative, expressed 

AtPTR2; Peptide transporter 2 
 

Zn 
 

S7_6880986 
 

Sobic.007G064900 
 

7 
 

8.11E-06 
 

Zinc transporter 
 

ZIP5; Zinc transporter 5 precursor 
 

Sr 
 

S4_5986126 
 

Sobic.004G073500 
 

4 
 

8.96E-06 
 

Putative multidrug resistance 
protein 

ABC transporter family protein 
 

Mn 
 

S3_66960028 
 

Sobic.003G349200 
 

3 
 

6.37E-05 
 

Cation efflux family protein 
 

MTP11; ABC transporter family 
protein 
  551  552 

Table II  Detailed information for selected significant associations detected within the 20 element traits analyzed using the MLMM.  553  554  555 
 556 
 557 
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