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RNA sequencing (RNA-seq) experiments now span hundreds to thousands of samples. Cur-
rent spliced alignment software is designed to analyze each sample separately. Consequently, no
information is gained from analyzing multiple samples together, and it is di�cult to reproduce
the exact analysis without access to original computing resources. We describe Rail-RNA, a
cloud-enabled spliced aligner that analyzes many samples at once. Rail-RNA eliminates redun-
dant work across samples, making it more e�cient as samples are added. For many samples,
Rail-RNA is more accurate than annotation-assisted aligners. We use Rail-RNA to align 667
RNA-seq samples from the GEUVADIS project on Amazon Web Services in under 16 hours
for US$0.91 per sample. Rail-RNA produces alignments and base-resolution bigWig coverage
files, ready for use with downstream packages for reproducible statistical analysis. We identify
expressed regions in the GEUVADIS samples and show that both annotated and unannotated
(novel) expressed regions exhibit consistent patterns of variation across populations and with re-
spect to known confounders. Rail-RNA is open-source software available at http://rail.bio .

1 Introduction

Sequencing throughput has improved rapidly in the last several years [1] while cost has continued
to drop [2]. RNA sequencing (RNA-seq) [3,4], a common use of sequencing, involves isolating and
sequencing mRNA from biological samples. RNA-seq has become a standard tool for studying gene
expression due to its ability to detect novel transcriptional activity in a largely unbiased manner
without relying on previously defined gene sequence. Indeed, the Sequence Read Archive contains
data for over 170,000 RNA-seq samples, including over 45,000 from human samples [5]. Large-scale
projects like GTEx [6] and TCGA [7] are generating RNA-seq data on thousands of samples across
normal and malignant tissues derived from hundreds to thousands of individuals.

The goal of an RNA-seq experiment is often to characterize expression across all samples and
identify features associated with outcomes of interest. The first step, read alignment, determines
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where sequencing reads originated with respect to the reference genome or annotated transcriptome.
Unlike read alignment for DNA sequencing reads, RNA-seq alignment should be splice-aware to
accommodate introns that have been spliced out of the mature mRNA transcripts, creating an
exon-exon junction. While RNA-seq data can be generated on hundreds or thousands of samples,
the alignment process has up to this point largely been performed on each sample separately [8–24].

We introduce Rail-RNA, a splice-aware, annotation-agnostic read aligner designed to analyze
many RNA-seq samples at once. Rail-RNA makes maximal use of data from many samples by
(a) borrowing strength across replicates to achieve accurate detection of exon-exon junctions, even
at low coverage, and (b) avoiding e↵ort spent aligning sequences that are redundant either within
or across samples. Furthermore, Rail-RNA can be run on a computer cluster at the user’s home
institution or on a cluster rented from a commercial cloud computing provider at a modest cost per
sample. Cloud services rent out standardized units of hardware and software, enabling other Rail-
RNA users to easily reproduce large-scale analyses performed in other labs. Rail-RNA’s output is
compatible with downstream tools for isoform assembly, quantitation, and count- and region-based
di↵erential expression.

We demonstrate Rail-RNA is more accurate than other tools and is increasingly accurate as
more samples are added. We show Rail-RNA is less susceptible to biases a↵ecting other tools;
specifically, (a) Rail-RNA has substantially higher recall of alignments across low-coverage exon-
exon junctions and (b) Rail-RNA is accurate without a gene annotation, avoiding annotation bias
resulting from potentially incomplete [25] or incorrect transcript annotations. We run Rail-RNA on
667 paired-end lymphoblastoid cell line (LCL) RNA-seq samples from the GEUVADIS study [26],
obtaining results in 15 hours and 47 minutes at a cost of US$0.911 per sample. This is a fraction of
per-sample sequencing costs, which are $20 or more [27]. We illustrate the usability of Rail-RNA’s
output by performing a region-based di↵erential expression analysis of the GEUVADIS dataset.
Our analysis identifies 285,695 expressed regions, including 19,649 that map to intergenic sequence.
We further show that intergenic and annotated regions show similar patterns of variation across
populations and with respect to known technical confounders.

Altogether, Rail-RNA is a significant step in the direction of usable software that quickly,
reproducibly, and accurately analyzes large numbers of RNA-seq samples at once.

2 Results

The GEUVADIS consortium performed mRNA sequencing of 465 lymphoblastoid cell line samples
derived from CEPH (CEU), Finnish (FIN), British (GBR), Toscani (TSI) and Yoruba (YRI) pop-
ulations of the 1000 Genomes Project [26], giving 667 paired-end samples. Per-sample sequencing
depth is summarized in Supplementary Material, Section 5.1. For information on reproducing all
our results, including software versions, see Supplementary Material, Section 5.2.

2.1 Design principles of Rail-RNA

Rail-RNA follows the MapReduce programming model, and is structured as an alternating sequence
of aggregate steps and compute steps. Aggregate steps group and order data in preparation for fu-
ture compute steps. Compute steps run concurrently on ordered groups of data. In this framework,
it is natural to aggregate data across samples, i.e. to bring together related data so decisions can

1Hereafter, we use the symbol $ to denote USD.
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be informed by all samples at once. This a↵ords greater accuracy and e�ciency than if samples
are analyzed separately. Rail-RNA aggregates across samples at multiple points in the pipeline to
increase accuracy (borrowing strength for junction calling) and scalability (through elimination of
redundant alignment work).

Rail-RNA can be run in elastic, parallel, or single-computer mode. In single-computer mode,
Rail-RNA runs on multiple processors on a single computer. In parallel mode, Rail-RNA runs on
any of the variety of cluster setups supported by IPython parallel [28]. These include Sun Grid
Engine (SGE), Message Passing Interface (MPI), and StarCluster.

Elastic mode uses Hadoop [29], an implementation of MapReduce [30]. In elastic mode, Rail-
RNA is run using the Amazon Web Services (AWS) Elastic MapReduce (EMR) service. EMR is
specifically for running Hadoop applications on computer clusters rented on demand from Amazon’s
Elastic Compute Cloud (EC2). Amazon Simple Storage Service (S3) stores intermediate data and
output. There are important advantages and disadvantages to commercial cloud computing services
like AWS [31,32]. One advantage is that it facilitates reproducibility: one researcher can reproduce
the same hardware and software setup used by another. Another advantage for Rail-RNA, which
stores all intermediate and final results in S3, is that there is no risk of exhausting the cluster’s
disk space even for datasets with many samples. Without these facilities, making scalable software
that runs easily on large numbers of RNA-seq samples in di↵erent laboratories is quite challenging.

Rail-RNA supports both paired-end and unpaired RNA-seq samples. It supports input data
consisting of reads of various lengths, and can detect exon-exon junctions involving exons as short
as 9 bp by default. Rail-RNA uses Bowtie 2 [33] to align reads, including reads spanning exon-exon
junctions, so it is naturally both indel-aware (with a�ne gap penalty) and base quality-aware.
Rail-RNA is also deterministic; the same input data and parameters will yield the same outputs
regardless of number of processors and computers used and regardless of whether it runs in elastic,
parallel, or single-computer mode.

2.2 Scalability

We randomly selected 112 paired-end samples from the GEUVADIS study, with 16 coming from
each of the 7 sequencing laboratories. We also randomly selected subsets of 28 and 56 samples from
the 112 to illustrate Rail-RNA’s scalability on EMR (Supplementary Material, Section 5.3).

We use the term “instance” to refer to a computer (or virtualized fraction of one) that can
be rented from EC2. An instance can have multiple processing cores. For experiments described
in this section: (1) we used c3.2xlarge EC2 spot instances, each with eight processing cores. See
Supplementary Material, Section 5.4 for details on this instance type and Supplementary Material,
Section 5.5 for details on spot instances; (2) we used Amazon’s Simple Storage Service (S3) to store
inputs, intermediate results, and final results; (3) we performed all experiments and stored all S3
data in the EU region (eu-west-1). See Supplementary Material, Section 5.6 for details on cost
measurements. For every experiment in this paper, we measure cost by totaling the bid price for
the EC2 spot instances (here, $0.11 per instance per hour using spot marketplace) and the Elastic
MapReduce surcharges (here, $0.105 per instance per hour). On the one hand, this estimate can
be low since it does not account for costs incurred by S3 and related services. On the other, the
estimate can be high since the actual price paid depends on the spot market price, which is lower
than the bid price.

The 112 selected GEUVADIS samples spanned 2.4 terabytes of compressed FASTQ data. We
preprocessed each subset of 28, 56, and 112 samples of the 112 using di↵erent Elastic MapRe-
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Figure 1: a) depicts scaling with respect to cluster size. Horizontal axis is the number of instances
in the cluster. Vertical axis is throughput measured as number of samples analyzed per hour. The
dashed line illustrates ideal linear scaling, extrapolated from the 10-instance result. b) is a table of
per-sample costs for each experiment in a). c) plots Rail-RNA’s running time on 28, 56, and 112
paired-end GEUVADIS samples. The dashed line represents linear scaling, extrapolating that it
takes twice as long to analyze approximately twice as much data. Rail-RNA achieves better-than-
linear scaling with respect to number of samples as reflected in the table of costs in d): cost per
sample decreases as number of samples analyzed increases. Per-sample costs in b) and d) reported
here do not include the cost of preprocessing, which depends on download speed. These costs are
reported in the main text. The master instance is also not included in the cluster sizes quoted here.

duce clusters, each spanning 21 c3.2xlarge instances. Each cluster downloaded source data from
a European Nucleotide Archive FTP server [34, 35]. Preprocessing 28 samples took 1 hour and 3
minutes, costing $9.03, preprocessing 56 samples took 1 hour and 14 minutes, costing $9.03, and
preprocessing 112 samples took 2 hours and 14 minutes, costing $13.54.

We ran Rail-RNA several times to assess scalability, which we measured with respect to both
the number of instances in the cluster and the number of input samples. To measure scalability with
respect to cluster size, Rail-RNA was run on a random subset of 28 of the 112 samples using EMR
clusters of 10, 20, and 40 c3.2xlarge core instances (Figure 1a). (Each EMR cluster has an extra
instance called the master instance that coordinates cluster activity; we exclude it from instance
counts here because it contributes no workers.) Each of the 10- and 20-instance experiments was
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run exactly once, while the 40-instance experiment was run three times to measure wall-clock time
variability. The orange dot representing the experiment on 40 instances is at the mean number of
samples analyzed per hour, while the horizontal lines above and below represent the minimum and
maximum values. The dashed blue line shows an ideal linear extrapolation from the 10-instance
data point. This illustrates how throughput would increase if doubling the number of instances
also doubled throughput. Rail-RNA’s scaling falls short of ideal linear scaling, but this is expected
due to various sources of overhead including communication and load imbalance. Importantly,
Rail-RNA’s throughput continues to grow as the number of instances increases to 40, indicating
Rail-RNA can make e↵ective use of hundreds of processors at once.

To measure scalability with respect to number of input samples, Rail-RNA was run on 28, 56,
and 112 samples using a cluster of 40 instances (Figure 1b). The 40-instance experiment with 28
samples (blue dot and lines) reports the same results as in 1a, but now in terms of running time.
The dashed blue line extrapolates linear scaling from the 28-sample data point, assuming doubling
the number of samples doubles running time. The 56- and 112-sample points fall well below the line,
indicating Rail-RNA achieves better-than-linear scaling of running time with respect to number of
samples analyzed. Rail-RNA gets more e�cient as more samples are analyzed in part because
it identifies and eliminates redundant alignment work within and across samples (Supplementary
Material, Section 5.8). Analyzing many samples together is particularly beneficial, with cost per
sample dropping from $1.89 for 28 samples to $1.02 for 112 samples (Figure 1d). In an experiment
described in Section 2.4, per-sample cost was reduced to $0.91 per sample.

A breakdown of the time taken by the steps in Rail-RNA’s pipeline is provided in Supplementary
Material, Section 5.7.

2.3 Accuracy

We simulated 112 RNA-seq samples with 40 million 76-bp paired-end reads each using Flux Sim-
ulator [36]. Typically, Flux assigns expression levels to transcripts according to a modified Zipf’s
law. Instead, we used FPKM expression levels from the set of 112 randomly selected paired-end
samples studied in Section 2.2; they are taken from the GEUVADIS study [26] and are available
at [37]. See Supplementary Material, Section 5.9 for simulation details.

We compared Rail-RNA’s accuracy to that of TopHat 2 v2.1.0 [10], Subjunc from v1.4.6p-v4 of
the Subread package [38], STAR v2.4.2a [11], and HISAT v0.1.6-beta [39]. We ran TopHat 2 with
(“Tophat 2 ann”) and without (“Tophat 2 no ann”) the Gencode v12 annotation [40] provided. We
ran Subjunc using the default values of its command-line parameters. We ran STAR in three ways:
in one pass (“STAR 1 pass”); in one pass with exon-exon junctions from Gencode v12 provided
(“STAR 1 pass ann”); and in two passes (“STAR 2 pass”). We similarly ran HISAT in three ways:
in one pass (“HISAT 1 pass”); in one pass with exon-exon junctions from Gencode v12 provided
(“HISAT 1 pass ann”); and in two passes (“HISAT 2 pass”). One-pass methods (“STAR 1 pass,”
“STAR 1 pass ann,” “HISAT 1 pass,” and “HISAT 1 pass ann”) align reads and call exon-exon
junctions in one step, whereas two-pass methods (all other protocols) additionally perform a second
step that realigns reads in light of exon-exon junction calls from the first. Supplementary Material,
Section 5.10 describes the protocols in detail.

When an alignment program is run with annotation (“Tophat 2 ann,” “STAR 1 pass ann,” and
“HISAT 1 pass ann”), we provide the same annotation from which Flux Simulator simulated the
reads. That is, the provided annotation consists of a superset of the actual transcripts present.
Consequently, protocols where the annotation is provided have an artificial advantage.
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Rail-RNA was run in three ways:

1. On a single sample (“Rail single”). Rail-RNA uses reads from the given sample to
identify exon-exon junctions. Like in two-pass protocols, reads are then realigned to transcript
fragments to handle the case where a read overlaps an exon-exon junction near its 5’ or 3’
end.

2. On 112 samples with exon-exon junction filter (“Rail all”). After initial alignment,
Rail-RNA compiles a list of exon-exon junctions found in any sample. The list is then filtered;
an exon-exon junction passes the filter if (a) it appears in at least 5% of the input samples,
or (b) it is overlapped by at least 5 reads in any sample. The filtered exon-exon junction list
is used to build the set of transcript fragments to which each sample is then realigned.

3. On 112 samples without exon-exon junction filter (“Rail all NF”). Identical to “Rail
all” but with no exon-exon junction filter. This is not a recommended protocol; we include
it only to show the filter’s e↵ect.

In none of the three modes does Rail-RNA use a gene annotation: Rail-RNA is consistently
annotation-agnostic.

We consider two accuracy measures in the main text: (1) overlap accuracy, measuring precision
and recall of overlap events. Each event is an instance where the primary alignment of a read
overlaps an exon-exon junction; (2) exon-exon junction accuracy, measuring precision of exon-
exon junctions called by a given aligner and recall of the set of exon-exon junctions within a
sample or across samples. We also compute F-score, the harmonic mean of precision and recall.
Supplementary Material, Section 5.11 formally defines these measures as well as a measure of overall
mapping accuracy.

The “Rail all” and “Rail all NF” protocols were run on all 112 simulations. Other protocols
were run on each of the 20 samples randomly selected from the 112. We emphasize that even though
protocols labeled “Rail all” analyze all 112 samples at once, we evaluate their output alignments
and calls only for the sample of 20. Figure 2 displays overlap and exon-exon junction accuracy
measurements. Figure 2a summarizes the accuracy of each tool across the 20 samples.

As illustrated in Figure 2a, Rail-RNA has the highest overlap F-score of the protocols tested,
including those using a gene annotation. Rail-RNA’s overlap precision is comparable to the most
precise protocol (“Subjunc” in this case) and its recall is comparable to the highest of any protocol
(“STAR 1 pass ann”). Further, analyzing many samples at once (“Rail all”) achieves greater F-
score compared to analyzing one (“Rail single”). This is more pronounced for exon-exon junction
accuracy than for overlap accuracy since borrowing strength across replicates is particularly e↵ec-
tive at detecting low-coverage junctions (Supplementary Material, Section 5.13). Mean exon-exon
junction recall increases from 0.880 to 0.939 (Supplementary Material, Section 5.12), which adds
about 10,000 true positives.

Figure 2b demonstrates the e�cacy of the exon-exon junction filter in the “Rail all” protocol.
Precision/recall are defined similarly as for a single sample, but pooled across all samples. That is,
recall is the fraction of exon-exon junctions with at least one simulated spanning read in at least one
sample that Rail-RNA detects in at least one sample. The improvement in precision when moving
from the unfiltered (0.673) to the filtered (0.964) exon-exon junction list shows that the filter
removes a large fraction of incorrect exon-exon junction calls because they are supported in only a
few samples. Further, the distribution of filtered exon-exon junctions with certain donor/acceptor
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Figure 2: (a) Means and standard deviations of accuracy measures of various alignment protocols
across 20 simulated samples whose FPKMs mimic those of 20 GEUVADIS samples. “Rail all”
protocols involve running Rail-RNA on all 112 simulated samples. Overlap accuracy is shown in
red, exon-exon junction accuracy in blue. Some tools are run with (top) and without (bottom)
a provided gene annotation. Note that Rail-RNA never uses an annotation. For Rail-RNA vs.
unannotated protocols, the best two results in each column are in boldface, and for Rail-RNA vs.
annotated protocols, the best result in each column is in boldface. (b) Rail-RNA’s accuracy on
two sets of exon-exon junctions found across all 112 simulated samples: one before and one after
application of the exon-exon junction filter.

motifs matches the expected distribution (GT-AG: 96.5%, GC-AG: 2.6%, AT-AC: 1.0%) much
more closely than the same distribution for the unfiltered exon-exon junctions.

Rail-RNA’s protocols also tie “STAR 1 pass” in achieving the highest mean F-scores in an
accuracy comparison that considers all alignments, including those falling entirely within exons;
see Supplementary Material, Section 5.12.

To compare Rail-RNA’s speed on a single computer to that of other tools, we additionally
measured wall-clock times of all single-sample alignment protocols for the GEUVADIS sample
with SRA accession number ERR205018 on 8 and 16 processing cores in Supplementary Material,
Section 5.14.

2.4 Analysis of GEUVADIS RNA-seq samples

We demonstrate the utility of Rail-RNA’s outputs by performing a novel analysis of 667 paired-end
GEUVADIS RNA-seq samples from lymphoblastoid cell lines (LCLs) [26]. Starting from FASTQ
inputs, Rail-RNA produced bigWig files [41] encoding genomic coverage; per-sample BED files
recording exon-exon junctions, insertions and deletions; and sorted, indexed BAM [42] files record-
ing the alignments. We downloaded and preprocessed all the GEUVADIS data using a cluster of 21
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c3.2xlarge Amazon EC2 instances in 7 hours and 29 minutes, costing a total of $36.12. Rail-RNA
then ran on 61 c3.8xlarge Amazon EC2 instances (see 5.4) spanning 1,952 processors. The run com-
pleted in 15 hours and 47 minutes and cost $605.12 ($0.91 per sample). Including preprocessing,
the cost per sample was $0.96.

Figure 3: (a) Number of expressed regions (ERs) from the 667 GEUVADIS samples overlapping
known exons, introns, and intergenic sequence as determined from Ensembl v75. (b)-(e) Boxplots
of percentage variance in expression explained by assorted variables (population and 14 technical
variables) as well as residual “unexplained” variation restricted to (b) strictly exonic ERs, (c) ERs
overlapping known exons and introns, (d) strictly intronic ERs, and (e) strictly intergenic ERs.
Each expressed region corresponds to one point in each of the 15⇥ 4 boxplots.

We analyzed bigWig outputs using the derfinder Bioconductor package [43]. derfinder iden-
tified contiguous genomic stretches where average coverage across all samples was above a genome-
wide threshold (see Supplementary Material, Section 5.15). Adjacent bases above the threshold
were grouped into “expressed regions” (ERs). We identified 285,695 ERs in this way; median ER
length was 70 bp (interquartile range, IQR: 7-145). While gene annotation/structure is not used to
identify ERs, the regions can be overlapped with a gene annotation to assess novel transcriptional
activity, as shown in Figure 3a. Relative to Ensembl v75 [40], we found that 151,581 ERs (53.1%)
were within exons (median length: 93 bp, IQR: 21-155) and another 38,784 (13.9%) overlapped
both exonic and intronic sequence (median length: 132 bp, IQR: 76-269) perhaps representing
alternative ends to known exons. We also found 72,367 regions (25.3%) contained within intronic
sequence (median length: 9 bp, IQR: 2-37) and another 19,649 regions (6.9%) within intergenic
sequence (median length: 15 bp, IQR: 3-71). These intronic and intergenic ERs could represent
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novel (polyadenlyated, since the data was generated using polyA+ prep) non-coding RNA.
We also reproduced the variance component modeling illustrated in Figure 3 of Hoen et al 2013

[44]. At each of the 285,695 ERs, we modeled log
2

-adjusted expression levels as a function of many
largely technical variables related to the RNA (RIN value, RNA concentration, and RNA quantity),
the sequencing libraries (library preparation date, library primer index for each sample, method
then target and actual quantities of library concentrations, and library size) and the sequencing itself
(cluster kit, sequencing kit, cluster density and sequencing lane). We further included the ethnicity
of each sample as a variable because it appeared to explain moderate variability in expression
levels at many ERs. Lastly, we calculated the amount of residual variability not explained by any
of the variables we considered. Interestingly, we found little di↵erence in the amounts of variability
explained by each of the variables studied when we stratified the ERs by the annotation categories
described above (Figure 3b-e), suggesting that the technical factors a↵ect expression of previously
unannotated (i.e. intronic and intergenic) features in a similar manner as they do annotated gene
structures.

3 Methods

For each read, Rail-RNA seeks the (possibly spliced) alignment maximizing the alignment score,
which measures similarity between the read and reference. Bowtie 2’s local-mode [45] scoring
function is used: matched bases add a bonus while mismatched bases and gaps incur a penalty.
Gap penalties are a�ne. Ties for best alignment score are broken as follows. Each alignment i
among the highest-scoring alignments overlaps some number n(i) of exon-exon junctions, where
n(i) = 0 for an alignment wholly contained in a single exon. If the smallest n(i) among the
highest-scoring alignments is attained by exactly one alignment, that alignment is chosen. If the
smallest n(i) is attained by more than one alignment, the tie is broken in a weighted random fashion
where alignments overlapping high-coverage junctions are preferred to alignments overlapping low-
coverage junctions (Supplementary Material, Section 5.16).

Methods used in the statistical analysis of the GEUVADIS dataset are described in Supplemen-
tary Material, Section 5.15. Steps of the Rail-RNA pipeline are described in the following sections.
The term “workers” refers to computer processes under Rail-RNA’s control. Usually many workers
operate simultaneously, distributed across several computers. Each step writes either intermediate
or final output data. Depending on the outputs requested by the user, some steps may be omitted.
Details of how Rail-RNA is implemented in various distributed environments are given in Supple-
mentary Material, Section 5.17. Figure 4 illustrates how Rail-RNA eliminates redundant alignment
work.

3.1 Preprocess reads

Initially, the user provides a manifest file containing a URL pointer to each input FASTQ file. Two
URLs are specified for each paired-end sample, one for a single-end sample. URLs point to the
local filesystem, the web, or on Amazon’s Simple Storage Service (S3). In this step, input reads are
downloaded as necessary and preprocessed into a format that facilitates parallelism (Supplementary
Material, Section 5.18).
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3.2 Align reads to genome

Duplicate reads and readlets both within and across samples lead to redundant alignment work. To
eliminate redundant work, Rail-RNA groups duplicate reads so that a worker operates on all reads
having the same nucleotide sequence at once. Afterwards, two passes of alignment are performed
using Bowtie 2. In the first, each unique read sequence is aligned to the genome. If there is exactly
one highest-scoring alignment and it has no gaps, mismatches or soft-clipped bases, all reads with
the same nucleotide sequence are assigned that alignment. If the alignment is not perfect or if there
is more than one highest-scoring alignment, all reads with the same nucleotide sequence are run
through a second pass of Bowtie 2 to ensure that quality sequences are taken into consideration
when scoring alignments or ties are broken. Some read sequences with imperfect alignments are
divided into short overlapping substrings called readlets. These sequences are searched for whether
they overlap exon-exon junctions in a later step. See Supplementary Material, Section 5.19 for
further details.

3.3 Align readlets to genome

Rail-RNA groups duplicate readlets so that a worker operates on all readlets across samples with
the same nucleotide sequence at once. Each distinct readlet sequence is aligned to the genome eith
Bowtie [46] exactly once, eliminating redundant alignment work. Rail-RNA searches for several
possible alignments, up to 30 by default using command-line parameters -a -m 30.

3.4 Detect exon-exon junctions using readlet alignments

Rail-RNA uses correlation clustering and maximum clique finding to detect exon-exon junctions
spanned by each distinct read sequence, as detailed in Supplementary Material, Section 5.20. The
algorithm is reminiscent of the seed-and-vote strategy of Subread/subjunc [38], and we note similar-
ities and di↵erences in Supplementary Material, Section 5.21. The step outputs exon-exon junctions
and the number of reads covering each junction in each sample.

3.5 Filter exon-exon junctions violating confidence criteria

In simulations we observed that junctions detected in only a small fraction of samples tend to be
false positives (Figure 2b). Consequently, the global list of exon-exon junctions is quickly dominated
by false positives as the number of samples increases. To keep precision high, Rail-RNA borrows
strength across samples to remove junctions not meeting one of these criteria:

1. The exon-exon junction appears in at least K% of samples.

2. The exon-exon junction is covered by at least J reads in at least one sample.

K = J = 5 by default, but both are configurable.

3.6 Enumerate intron configurations

Rail-RNA enumerates the ways that multiple exon-exon junctions detected on the same strand in
the same sample can be overlapped by a read segment s(readlet config size) spanning readlet config size
bases. One possible way that a read or readlet can overlap multiple exon-exon junctions is called
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Figure 4: Rail-RNA eliminates redundant alignment work by first aggregating reads by nucleotide
sequence and, where appropriate, aligning only unique read sequences to the genome. Read se-
quences that do not align perfectly to the genome are divided into overlapping segments, and after
these segments are aggregated, each unique segment is aligned to the genome exactly once. Rail-
RNA then gathers all segment alignments belonging to a read sequence and searches for exon-exon
junctions within each unique read sequence.

an “intron configuration.” Intron configurations for readlets are obtained and output as described
in Supplementary Material, Section 5.23.

3.7 Retrieve and index isofrags

Each worker operates on an intron configuration at a time, concatenating the exonic bases sur-
rounding its introns to form a transcript fragment of size readlet config size. This is termed an
“isofrag.” Care is taken to avoid including intronic bases in isofrags (Supplementary Material,
Section 5.24). Subsequently, a single worker uses bowtie2-build to build a single Bowtie 2 index
for all enumerated isofrags. Later, Bowtie 2 uses the index to realign reads in the next step.

3.8 Finalize combinations of exon-exon junctions overlapped by read sequences

Read sequences that failed to align perfectly in the first step are aligned to isofrags using Bowtie
2 in local mode with a minimum score threshold of 48 by default. Local alignment is used since
indexed sequences are of length readlet config size, shorter than the read length. Rail-RNA runs
Bowtie 2 with the parameter -k 30 by default so that many alignments are reported per read
sequence. From these alignments Rail-RNA derives a list of exon-exon junctions the read could
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possibly overlap. A graph algorithm enumerates the combinations of exon-exon junctions the read
sequence might simultaneously overlap; see Supplementary Material, Section 5.25 for details.

3.9 Realign reads

Read sequences that failed to align perfectly in the first step are realigned to a set S of transcript
fragments. Each transcript fragment in S overlaps a di↵erent combination of exon-exon junctions
found in the previous step. All the exon-exon junction combinations found for the read’s nucleotide
sequence are spanned by a subset of S. Moreover, several distinct read sequences may overlap
transcript fragments in S. A given worker performs realignment as follows.

1. Transcript fragments in S are recorded and indexed with bowtie2-build.

2. Reads are realigned to the new index using Bowtie 2 in --local mode. These are reads that
are in the same index bin referenced in Supplementary Material, Section 5.19.

3.10 Collect and compare read alignments

Bowtie 2 alignments of reads accumulated in previous steps, except for those that aligned perfectly
in the “Align reads to genome” step (Section 3.2), are collected here and partitioned by read name.
A worker operates on all alignments of a given read at once. For each read, if there is exactly
one highest-scoring alignment for that read, it is chosen as the primary alignment. Otherwise,
Rail-RNA attempts to break the tie by selecting the alignment spanning the fewest exon-exon
junctions. If there is still a tie, it is broken by a random draw weighted by the number of uniquely
aligned reads supporting each exon-exon junction, as described by (3) in Supplementary Material,
Section 5.16.

3.11 Write BAMs recording alignments

By default, all primary alignments, including perfect alignments from the “Align reads to genome”
step, are output here. The user may disable this output or instead specify the -k X parameter to
ask Rail-RNA to output up to X highest-scoring alignments per read. Alignments are written as
sorted, indexed BAM files. By default, one BAM file is output per sample per chromosome. In
elastic mode, all BAM files and their indexes are uploaded to S3. Tools such as the UCSC genome
browser [47] allow users to visualize portions of BAM files without having to download them first.

3.12 Compile coverage vectors and write bigWigs

By default, Rail-RNA records vectors encoding depth of coverage at each position in the reference
genome. The user may disable this output. Two bigWig files are produced per sample: one records
coverage of the genome by reads for which each has exactly one highest-scoring alignment, and
the other records coverage of the genome by primary alignments. bigWig files encoding mean and
median coverage of the genome across samples are also written. The contributions of each sample
to the mean and median are normalized by the number of mapped reads in the sample. In elastic
mode, bigWig files are uploaded to S3. For example, the analysis in Section 2.4 was performed on
bigWig files on S3. Further, tools such as the UCSC genome browser [47] allow users to visualize
portions of bigWig files without having to download them first. These methods are detailed in
Supplementary Material, Section 5.26.
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3.13 Write exon-exon junctions and indels

Rail-RNA writes a set of TSV files. Each file contains a table with rows corresponding to samples
and columns to distinct features. The (i, j)th element is the number of reads in the ith sample
containing the jth feature. Three TSVs are written per sample, one where features are insertions,
one for deletions, and one for exon-exon junctions. Also, three BED files are written per sample:
one with exon-exon junctions, one with insertions, and one with deletions. These are formatted
identically to TopHat’s analogous output [48]. In elastic mode, these files are uploaded to S3, where
they can be analyzed as soon as Rail-RNA completes. The user may disable any outputs of this
step.

4 Discussion

Designing software that is both usable and able to run on many samples at a time is technically
challenging. Rail-RNA demonstrates that this comes with unique and substantial advantages. Rail-
RNA achieves better-than-linear growth in throughput (and consequently reduction in cost) per
sample as the number of samples grows. By using information from all samples when analyzing data
from a given sample, Rail-RNA achieves superior accuracy, with its accuracy advantage growing
as samples are added. Rail-RNA also substantially resolves two biases a↵ecting other tools: bias
against low-coverage junctions and annotation bias. Rail-RNA results obtained by one investigator
can be reliably reproduced by another since Rail-RNA computer clusters rented from commercial
cloud services have standardized hardware and software.

We demonstrated Rail-RNA by re-analyzing a 667-sample dataset in 15 hours and 40 minutes
at a per-sample cost of $0.91, far lower than sequencing cost [27]. We analyzed region-level dif-
ferential expression by simply passing Rail-RNA’s bigWig outputs to standard downstream tools
(e.g. the derfinder Bioconductor packages) for further analysis. Users can reproduce this analysis
using resources rented form a commercial cloud provider, without having to downloading any large
datasets. Altogether, this as an important step in the direction of usable software that quickly,
reproducibly, and accurately analyzes large numbers of RNA-seq samples at once.

We used the simple “5 reads or 5% of samples” filter for calling exon-exon junctions to avoid
overfitting to our simulations. Further investigation is needed to find how the filter should be
adjusted to optimize accuracy, and how to account for other factors like sequencing depth or
variability in junction profiles between samples. The filter also contributes to an “N +1” problem:
if Rail-RNA is used to analyze N replicates, but an N + 1th replicate arrives later, it is di�cult to
analyze just the N + 1th and produce the same output as if all N + 1 had been analyzed together.
These are areas for future work, discussed further in Supplementary Material, Section 5.22 and
Supplementary Material, Section 5.27.
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5 Supplementary material

5.1 GEUVADIS samples

Figure 5 depicts the distribution of counts of reads (counting ends of paired-end reads separately)
across the 667 paired-end GEUVADIS RNA-seq samples. The median number of reads in a sample
is 52, 609, 404 with median absolute deviation 12, 553, 184. Details on experimental and sequencing
protocols are provided in the supplementary note of [44]. Each GEUVADIS sample has either 75-
or 76-bp reads.

Figure 5: Histogram of counts of reads (not read pairs) in all 667 paired-end GEUVADIS samples.

5.2 Reproducing results

All scripts used to obtain the results in this paper are available at https://github.com/nellore/
rail/tree/master/eval. Instructions on how to reproduce our results may be found at https:
//github.com/nellore/rail/blob/master/eval/README.md.

Rail-RNA v0.1.9b reproduces results in this paper and has several dependencies. In the ex-
periments we conducted, Rail-RNA wrapped Bowtie 1 v1.1.1, Bowtie 2 v2.2.5, PyPy v2.5, and
SAMTools v1.2. Version 2.1.0 of TopHat 2 was used and, like Rail-RNA, it wrapped Bowtie 2
v2.2.5. Version 2.4.2a of STAR was used, and version 0.1.6-beta of HISAT was used. Subjunc is a
tool in the Subread package, and version 1.4.6-p4 of the Subread package was used. Flux Simulator
1.2.1 was used to obtain simulated samples.
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5.3 GEUVADIS subsets

The 28 samples spanned 1,638,479,586 reads, the 56 samples spanned 3,127,479,220 reads, and the
112 samples spanned 6,402,672,808 reads. When we discuss Rail-RNA’s scaling with respect to
number of samples, we implicitly assume that doubling the number of samples roughly doubles the
number of reads. This is approximately true for the GEUVADIS subsets we consider.

5.4 Amazon Elastic Compute Cloud instance specifications

All experiments in this paper were conducted on either c3.2xlarge instances or c3.8xlarge instances.
A c3.2xlarge instance is a virtualized computer powered by Intel Xeon E5-2680 v2 (Ivy Bridge)
64-bit processors that provides 15 GB of RAM, 320 GB of solid-state storage, and 8 2.8-Ghz
processing cores. A c3.8xlarge instance is a virtualized computer powered by Intel Xeon E5-2680
v2 (Ivy Bridge) processors that provides 60 GB of RAM, 640 GB of solid-state storage, and 32
2.8-Ghz processing cores [49].

5.5 Spot instances

Spot instances permit bidding for EC2 computing capacity. If a bid exceeds the market price,
which varies continuously according to supply and demand, requested computing capacity is made
available to the user. A risk of using spot instances is that the computing capacity may be lost if
market price rises to exceed the original bid price. Market prices vary from region (with an Amazon
Web Services data center) to region. In July 2015, when our experiments were run, the market
price in the EU region was under $0.09 per hour per c3.2xlarge instance. By contrast, reserving a
c3.2xlarge instance in July 2015 in the EU region on demand, which ensures no job failure due to
fluctuations in market price, cost $0.42 per hour in July 2015.

5.6 Measuring Amazon Web Services costs

For every experiment in this paper, we measure cost by totaling the bid price for the EC2 spot
instances ($0.11 per c3.2xlarge instance per hour and $0.35 per c3.8xlarge instance using the spot
marketplace) and the Elastic MapReduce surcharges ($0.105 per c3.2xlarge instance per hour and
$0.27 per c3.8xlarge instance per hour). On the one hand, this estimate can be low since it does
not account for costs incurred by S3 and related services. On the other, the estimate can be high
since the actual price paid depends on the spot market price, which is lower than the bid price.

There are no onetime costs associated with setting up an Amazon Web Services account or with
launching an Elastic MapReduce job.

The Rail-RNA “Preprocess reads” step (Section 3.1) is a necessary first step to any analysis
of data with Rail-RNA. To calculate end-to-end time and cost of an experiment, i.e. the time and
cost of the experiment starting from raw data situated in an archive, one must sum the time and
cost of the preprocessing step and the rest of the Rail-RNA pipelines. These costs are all reported
in the main text.
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5.7 Breakdown of step times for scaling experiments

Table 1: Breakdown of step times for scaling experiments. Each row is a step, each column is an
experiment. Experiments are labeled as the ordered pair (number of GEUVADIS samples analyzed,
number of c3.2xlarge instances used), except that 28-DUP refers to the experiment labeled as 28-
DUP in Section 5.8. WCT is wall-clock time including provisioning, bootstrapping, and Hadoop
setup, while WCT-B is wall-clock time excluding provisioning, bootstrapping, and Hadoop setup.
Units are minutes except where marked “s” for seconds.

(28, 10) (28, 20) (28-DUP, 40) (28, 40) (28, 40) (28, 40) (56, 40) (112, 40)
Provisioning, bootstrapping,

and Hadoop setup
40 54 38 48 56 50 45 44

Align reads and segment
them into readlets

207 124 86 74 75 75 117 223

Align readlets
to genome

34 18 6 9 9 9 14 24

Detect junctions
using readlet alignments

87 52 12 23 23 22 40 70

Filter junctions that
violate confidence criteria

1 58 s 56 s 56 s 54 s 56 s 58 s 1

Enumerate possible junction
overlaps on readlets

1 58 s 56 s 56 s 54 s 56 s 58 s 1

Get isofrags for
index construction

54 s 54 s 54 s 52 s 52 s 54 s 54 s 54 s

Build isofrag index 1 1 1 2 1 1 1 1
Finalize junction overlap
combinations on reads

92 50 14 27 27 28 29 52

Get transcriptome elements
for read realignment

14 10 3 4 4 4 4 7

Align reads to
isofrags

260 133 62 70 68 69 117 162

Collect and compare
read alignments

76 39 23 19 19 19 34 67

Associate spliced alignments
with junction coverages

8 4 2 2 2 3 4 7

Finalize primary alignments
of spliced reads

6 3 2 2 2 2 2 4

Write BAMs with alignments
by sample

41 23 13 12 12 12 22 41

Write mapped read counts 40 s 36 s 38 s 36 s 36 s 38 s 36 s 38 s
Merge exon di↵erentials

at same genomic positions
16 9 5 5 5 5 8 17

Compile sample coverages
from exon di↵erentials

9 5 3 3 3 2 4 9

Write bigWigs with
exome coverage by sample

15 10 9 8 8 7 10 16

Aggregate junctions/indels 5 3 2 2 2 2 3 5
Write normalization

factors/junctions/indels
1 1 1 1 1 1 1 56 s

Write BEDs with
junctions/indels by sample

1 1 1 1 56 s 1 56 s 1

WCT 917 543 287 315 321 315 459 754
WCT-B 877 489 249 267 265 265 414 710
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5.8 Measuring the e↵ect of eliminating redundant alignment work

Wall-clock times in Figure 1 include time taken to provision Elastic MapReduce clusters, install
required software and Bowtie indexes on the clusters using bootstrap scripts, and set up Hadoop.
This extra time is largely independent of cluster size across experiments and should properly be sub-
tracted from wall-clock times (WCT) when studying the scaling of strictly the Rail-RNA pipeline.
The row WCT-B of Table 1 excludes the time taken to set up clusters from the wall-clock time.
Rail-RNA’s mean WCT-B value for 28 samples on 41 c3.2xlarge instances is about 266 minutes.
Extrapolating this value linearly to 56 and 112 samples gives 532 minutes and 1,064 minutes,
respectively, exceeding the actual WCT-B values of, respectively, 489 and 877 minutes. So Rail-
RNA exhibits better-than-linear scaling with respect to number of samples when the time cost of
provisioning and setting up clusters is excluded.

That said, it is di�cult to attribute better-than-linear scaling directly (or mostly) to elimination
of redundant alignment work. There may be other di�cult-to-measure sources of overhead that
lead to better-than linear scaling. For example, any source of overhead that takes constant time
with respect to the number of input samples (e.g. Java Virtual Machine startup time) could have
a similar e↵ect.

Nevertheless, we can provide strong evidence that Rail-RNA invests less time in aligning datasets
composed of more “similar” samples, i.e. samples with greater sequence redundancy. We selected 14
of the 28 GEUVADIS samples on which we ran our experiments measuring Rail-RNA’s scalability
with respect to cluster size in Section 2.2 and duplicated each sample, giving it a new sample
name. In the resulting set of 28 samples—call it 28-DUP—each read in one sample was guaranteed
to have at least one exactly identical read in another sample, increasing redundant sequence in the
dataset. 28-DUP spanned 1,725,465,520 reads (not read pairs) in total, while the original set of 28
GEUVADIS samples (28-ORIG) spanned 1,638,479,586 reads. The WCT for running Rail-RNA on
28-DUP on 41 c3.2xlarge instances was 287 minutes, while the WCT-B was 249 minutes (Table 1).
Contrast these values with the mean WCT and WCT-B for 28-ORIG on 41 c3.2xlarge instances:
317 minutes and 266 minutes, respectively. So despite including 86,985,934 more reads (about 1.5
GEUVADIS samples’ worth) than 28-ORIG, 28-DUP took 17 fewer minutes than the mean WCT-B
for 28-ORIG to complete its run. Note that the range of variation in WCT-B when analyzing 28-
ORIG on 41 c3.2xlarge instances—2 minutes (see Table 1)—indicates that such variation is unlikely
to account for the di↵erence in analysis time between 28-ORIG and 28-DUP.

5.9 Simulated data

The 112 GEUVADIS samples on whose coverage distributions our simulated samples are based are
the same as those studied in Section 2.2: all seven labs that pursued the study are represented, with
sixteen samples from each lab. FPKMs were previously computed in the GEUVADIS study [26]
with Flux Capacitor [50] for transcripts from Gencode v12 [51] after an initial mapping to the
GRCh37 (hg19) reference genome using GEM v1.349 [23]. For each sample, we interrupted the
Flux Simulator pipeline after it had generated an expression profile and overwrote the appropriate
intermediate file with the computed expression profile. More specifically, the final column of this
intermediate file gives the number of molecules of each transcript to be simulated. We replaced the
value for each transcript with 20 times its FPKM from Flux Capacitor. This gave a mean number
of 15.5 million RNA molecules per simulation, ensuring adequate library yield in the remainder
of the pipeline. After we resumed the pipeline, Flux Simulator simulated fragmentation, reverse
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Figure 6: Histogram of the number of simulated samples out of 112 in which each exon-exon
junction appears.

transcription, and sequencing; for each sample, this yielded a FASTQ file with raw reads and a BED
file specifying each read’s location in the genome. Flux Simulator’s built-in 76-base error model
was used in the sequencing step. This model is biased towards generating more base substitutions
near the low-quality (3’) ends of reads. Across 76-bp reads in all simulated samples, the mean
rate of substitution errors is 2.50%. Define a read with a low-quality tail as a read for which each
of the ten bases at its 3’ end has Phred score less than or equal to 15. 8.59% of all 76-bp reads
across simulated samples have low-quality tails. Across 76-bp reads without low-quality tails in all
simulated samples, the mean rate of substitution errors is 0.82%.

While the simulated samples were all generated from the same gene annotation, because each
is designed to have a distinct coverage distribution, the exon-exon junction content of each sample
is also distinct. Some junctions occur in many samples, while others occur in few. In particular,
of 279, 681 distinct exon-exon junctions sampled across the 112 simulated samples, 5.86% occur
in exactly one sample, and 15.28% occur in five or fewer samples. A core of 31.3% of exon-exon
junctions occur in all 112 samples. Figure 6 illustrates that the distribution of the number of
samples in which each exon-exon junction occurs is bimodal with peaks at tails.

The 112 simulated samples may be regenerated using the script
https://github.com/buci/rail/tree/master/eval/generate_bioreps.py . Table 2 gives the
URLs of the FASTQ files for the GEUVADIS sample on which each simulation was based. A
sample number is given for a line if the corresponding simulated sample was one of the twenty
randomly selected for alignment using all protocols considered in this paper and detailed in Section
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5.10. The sample number coincides with the sample numbers referenced in the accuracy tables of
Section 5.12.

Table 2: GEUVADIS samples on whose coverage distributions the 112 simulated RNA-seq samples
from this paper are based. The 20 simulated samples referenced at the beginning of the table
were randomly selected from the 112 for comparing Rail’s alignment protocols with alternative
alignment protocols; their sample numbers correspond to the sample numbers from the accuracy
tables in Section 5.12. Sample names are the names Rail-RNA used when aligning samples; they
are in the format
[Coriell sample ID] [sex] [HapMap population] [GEUVADIS lab designator] [lab ID

(redundant)]-[biorep ID]-[techrep ID].

sample number sample name SRA run ID sample name SRA run ID
1 HG00115 male GBR UU 6-1-1 ERR188186 NA07048 male CEU UU 6-1-2 ERR188481
2 NA06984 male CEU UNIGE 1-1-1 ERR188325 NA07346 female CEU CNAG CRG 2-1-1 ERR188135
3 HG00313 female FIN UNIGE 1-1-1 ERR204865 NA07347 male CEU LUMC 7-1-1 ERR188324
4 NA19095 female YRI LUMC 7-1-3 ERR204891 NA11829 male CEU UU 6-1-1 ERR188433
5 HG00117 male GBR LUMC 7-1-1 ERR204950 NA11992 male CEU UU 6-1-1 ERR188062
6 NA20768 female TSI HMGU 5-1-1 ERR188105 NA11995 female CEU LUMC 7-1-1 ERR188348
7 NA20582 female TSI ICMB 4-1-1 ERR188259 NA12144 male CEU ICMB 4-1-1 ERR188039
8 NA19130 male YRI HMGU 5-1-1 ERR188471 NA12155 male CEU ICMB 4-1-1 ERR188331
9 HG00139 male GBR LUMC 7-1-1 ERR188144 NA12156 female CEU UNIGE 1-1-1 ERR205022
10 NA18486 male YRI LUMC 7-1-1 ERR188214 NA12272 male CEU MPIMG 3-1-1 ERR188438
11 HG01790 female GBR MPIMG 3-1-1 ERR188407 NA12340 male CEU HMGU 5-1-1 ERR188277
12 NA12287 female CEU UNIGE 1-1-1 ERR204946 NA12400 female CEU CNAG CRG 2-1-1 ERR188220
13 NA12287 female CEU MPIMG 3-1-2 ERR188142 NA12716 male CEU UNIGE 1-1-1 ERR204899
14 HG00096 male GBR UNIGE 1-1-1 ERR188040 NA12717 female CEU UNIGE 1-1-1 ERR188196
15 NA11831 male CEU LUMC 7-1-1 ERR188067 NA12760 male CEU MPIMG 3-1-2 ERR188308
16 NA12874 male CEU UNIGE 1-1-1 ERR204976 NA12760 male CEU UNIGE 1-1-1 ERR204819
17 HG00154 female GBR HMGU 5-1-1 ERR188468 NA12761 female CEU UU 6-1-1 ERR188061
18 NA07051 male CEU HMGU 5-1-1 ERR188474 NA12813 female CEU CNAG CRG 2-1-1 ERR188291
19 NA12776 female CEU UU 6-1-1 ERR188279 NA12827 male CEU MPIMG 3-1-1 ERR188134
20 NA20813 female TSI HMGU 5-1-1 ERR188394 NA12872 male CEU CNAG CRG 2-1-1 ERR188157

HG00099 female GBR HMGU 5-1-1 ERR188428 NA18868 male YRI UNIGE 1-1-1 ERR204963
HG00100 female GBR CNAG CRG 2-1-1 ERR188206 NA18923 male YRI UNIGE 1-1-1 ERR204889
HG00111 female GBR CNAG CRG 2-1-1 ERR188342 NA18934 male YRI MPIMG 3-1-1 ERR188447
HG00114 male GBR UU 6-1-1 ERR188071 NA19093 female YRI LUMC 7-1-2 ERR188476
HG00122 female GBR UU 6-1-1 ERR188285 NA19093 female YRI UNIGE 1-1-1 ERR204825
HG00124 female GBR MPIMG 3-1-1 ERR188310 NA19095 female YRI CNAG CRG 2-1-1 ERR188268
HG00130 female GBR HMGU 5-1-1 ERR188443 NA19095 female YRI ICMB 4-1-2 ERR204930
HG00136 male GBR ICMB 4-1-1 ERR188383 NA19102 female YRI UNIGE 1-1-1 ERR188367
HG00141 male GBR HMGU 5-1-1 ERR188401 NA19107 male YRI CNAG CRG 2-1-1 ERR188423
HG00145 male GBR UU 6-1-1 ERR188073 NA19116 female YRI CNAG CRG 2-1-1 ERR188234
HG00151 male GBR MPIMG 3-1-1 ERR188116 NA19118 female YRI LUMC 7-1-1 ERR188066
HG00152 male GBR LUMC 7-1-1 ERR188084 NA19129 female YRI UU 6-1-1 ERR188444
HG00173 female FIN MPIMG 3-1-1 ERR188445 NA19131 female YRI CNAG CRG 2-1-1 ERR188170
HG00176 female FIN ICMB 4-1-1 ERR188187 NA19146 male YRI HMGU 5-1-1 ERR188104
HG00232 female GBR LUMC 7-1-1 ERR188289 NA19159 female YRI MPIMG 3-1-1 ERR188427
HG00234 male GBR LUMC 7-1-1 ERR188237 NA19185 female YRI UU 6-1-1 ERR188183
HG00249 female GBR MPIMG 3-1-1 ERR188456 NA19189 male YRI HMGU 5-1-1 ERR188292
HG00256 male GBR CNAG CRG 2-1-1 ERR188091 NA19206 female YRI CNAG CRG 2-1-1 ERR188363
HG00264 male GBR UU 6-1-1 ERR188366 NA19207 male YRI ICMB 4-1-1 ERR188454
HG00266 female FIN UU 6-1-1 ERR188267 NA19223 male YRI LUMC 7-1-1 ERR188284
HG00275 female FIN ICMB 4-1-1 ERR188326 NA19236 male YRI ICMB 4-1-1 ERR188037
HG00325 male FIN UNIGE 1-1-1 ERR205015 NA20516 male TSI HMGU 5-1-1 ERR188458
HG00344 female FIN ICMB 4-1-1 ERR188473 NA20528 male TSI CNAG CRG 2-1-1 ERR188224
HG00355 female FIN MPIMG 3-1-1 ERR204972 NA20537 male TSI MPIMG 3-1-1 ERR188359
HG00355 female FIN UU 6-1-2 ERR204831 NA20752 male TSI HMGU 5-1-1 ERR188054
HG00366 male FIN ICMB 4-1-1 ERR188150 NA20757 female TSI UNIGE 1-1-1 ERR188295
HG00369 male FIN HMGU 5-1-1 ERR188260 NA20759 male TSI ICMB 4-1-1 ERR188068
HG00375 male FIN ICMB 4-1-1 ERR188462 NA20774 female TSI LUMC 7-1-1 ERR188179
HG00380 female FIN MPIMG 3-1-1 ERR188314 NA20785 male TSI ICMB 4-1-1 ERR188173
HG01334 male GBR LUMC 7-1-1 ERR188469 NA20795 female TSI HMGU 5-1-1 ERR188384
NA06986 male CEU HMGU 5-1-2 ERR204863 NA20797 female TSI CNAG CRG 2-1-1 ERR188132
NA06986 male CEU ICMB 4-1-3 ERR205005 NA20804 female TSI ICMB 4-1-1 ERR188147
NA06986 male CEU LUMC 7-1-4 ERR204855 NA20806 male TSI MPIMG 3-1-1 ERR188094
NA06986 male CEU MPIMG 3-1-1 ERR204929 NA20809 male TSI UU 6-1-1 ERR188282
NA06986 male CEU UU 6-1-5 ERR204968 NA20812 male TSI CNAG CRG 2-1-1 ERR188137
NA07048 male CEU UNIGE 1-1-1 ERR204960 NA20828 female TSI CNAG CRG 2-1-1 ERR188406
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5.10 Alignment protocols

Commands executed for di↵erent alignment protocols may be generated by the script
https://github.com/buci/rail/tree/master/eval/create_commands_for_all_sample_sims.

py . Default command-line parameters were used for all protocols unless otherwise specified. In the
“STAR 1 pass” protocol, STAR searches for exon-exon junctions in each individual read and does
not realign reads. The “STAR 2 pass” protocol does not build a new index; rather, the protocol
involves a single invocation of the STAR command with the parameters
--twopass1readsN -1 --sjdbOverhang 75 --twopassMode Basic , conforming to the protocol
from the STAR manual [52]. We found empirically that an older two-pass protocol where

1. an index with the exonic bases surrounding exon-exon junctions compiled from the STAR 1
pass run is built. This index includes not just such transcript fragments, but also indepen-
dently the full genome;

2. STAR is rerun to realign all reads to this index;

gives almost exactly the same results. The older protocol is published in the supplement of the
RGASP paper [53], which compares the accuracies of several spliced alignment protocols. Other-
wise, the STAR protocols used here mirror those used for the RGASP paper.

In the “HISAT 1 pass” protocol, HISAT searches for exon-exon junctions in each read while
also accumulating a list of exon-exon junctions on the fly for which to additionally search in reads.
In “HISAT 2 pass” protocol,

1. HISAT was run in a mode where novel splice sites were output to a file using its
--novel-splicesite-outfile parameter.

2. HISAT was rerun on all reads with as extra input the novel splice sites found in 1. using the
--novel-splicesite-infile parameter.

5.11 Accuracy metrics

Overlap accuracy. Define a true overlap as the event that a read’s true alignment from simulation
overlaps an exon-exon junction. Define a positive overlap as the event that a read’s primary
alignment as reported by a given spliced alignment program overlaps an exon-exon junction. A
true positive is a case where an exon-exon junction overlapped by the true alignment of a read is
also overlapped by the reported primary alignment of the read. Precision is

precision =
# true positives

# positive overlaps
.

Recall is

recall =
# true positives

# true overlaps
.

Exon-exon junction accuracy. Let R be the set of exon-exon junctions overlapped by at least
one primary alignment reported by the aligner. Let T be the set of exon-exon junctions overlapped
by at least one simulated read. Precision is

precision =
|R \ T |
|R|
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and recall is

recall =
|R \ T |
|T | .

Mapping accuracy. Define a true match as the event that a given base of a read’s true
alignment from simulation is aligned to a given genome position. A simulated read spanning K
bases thus contributes K true matches and can be written as the ordered triple (r, i, j), where r is
a read label, i is a position along the read, and j is the genome position to which i truly aligns.
Define a positive match as the event that a given read base of a primary alignment reported by
a given spliced alignment program is aligned to a given genome position. A positive match can
similarly be represented as (r, i, j), where j is now the genome position to which the aligner aligned
the read base. A true positive is a case where a true match equals a positive match.

Precision is

precision =
# true positives

# positive matches
.

Recall is

recall =
# true positives

# true matches
.

Note that this is a base-level measure of mapping accuracy that accounts for the fact that some
aligners (i.e. Rail-RNA, STAR, and Subjunc) will produce a soft-clip alignment rather than leave
a read unmapped. Since credit is given only for matched bases (and not soft-clipped bases), the
contribution of soft-clipped alignments is not unduly inflated.

In this paper, the F-score is always the harmonic mean of precision and recall:

F-score = 2 · precision · recall
precision + recall

.

5.12 Accuracy tables

We present full tables corresponding to the accuracy results summarized in the main text. In each
table, rows correspond to alignment protocols and columns to simulated samples—except for the
last two columns; the next-to-last column records mean values across samples, and the final column
records standard deviations across samples. Each element in each table has three numbers separated
by commas: in order, they are always a precision, a recall, and an F-score. See Supplementary
Material, Section 5.11 for descriptions of how precisions, recalls, and F-scores were computed for
each table.
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Table 3: Exon-exon junction accuracy for various alignment protocols described in Sections 2.3
and 5.10. Each table item is a tuple in the format “precision, recall, F-score”; these quantities are
defined in Section 5.11. Sample numbers correspond to 20 randomly selected samples of the 112
samples we simulated, and they also appear in Table 2. Summary statistics are computed across
the 20 samples. Note that the “Rail all” and “Rail all NF” protocols were each run on all 112
simulated samples to augment exon-exon junction calling.

sample numbers 1 2 3 4 5
HISAT 1 pass 0.934,0.940,0.937 0.934,0.937,0.936 0.933,0.944,0.938 0.935,0.941,0.938 0.934,0.939,0.936
STAR 1 pass 0.968,0.925,0.946 0.968,0.922,0.944 0.967,0.929,0.947 0.968,0.927,0.947 0.967,0.925,0.945
HISAT 2 pass 0.945,0.941,0.943 0.945,0.938,0.941 0.945,0.945,0.945 0.946,0.942,0.944 0.944,0.940,0.942
Rail single 0.984,0.880,0.929 0.984,0.875,0.926 0.983,0.883,0.930 0.984,0.882,0.930 0.984,0.878,0.928
STAR 2 pass 0.969,0.928,0.948 0.968,0.924,0.946 0.968,0.931,0.949 0.969,0.929,0.949 0.967,0.927,0.947
Subjunc 0.992,0.839,0.909 0.993,0.835,0.907 0.992,0.845,0.913 0.993,0.843,0.912 0.992,0.839,0.909
TopHat 2 0.957,0.825,0.886 0.957,0.821,0.884 0.957,0.834,0.891 0.959,0.830,0.890 0.956,0.826,0.886
HISAT 1 pass ann 0.924,0.983,0.952 0.921,0.981,0.950 0.920,0.984,0.951 0.923,0.983,0.952 0.923,0.982,0.952
STAR 1 pass ann 0.977,0.980,0.979 0.977,0.979,0.978 0.977,0.981,0.979 0.977,0.981,0.979 0.977,0.980,0.978
TopHat 2 ann 0.947,0.981,0.964 0.946,0.980,0.963 0.945,0.983,0.964 0.946,0.982,0.963 0.948,0.982,0.964
Rail all 0.976,0.940,0.958 0.976,0.928,0.952 0.976,0.938,0.957 0.976,0.942,0.959 0.976,0.938,0.957
Rail all NF 0.845,0.956,0.897 0.850,0.954,0.899 0.848,0.957,0.899 0.843,0.958,0.897 0.847,0.955,0.898
sample numbers 6 7 8 9 10
HISAT 1 pass 0.934,0.939,0.937 0.935,0.939,0.937 0.933,0.937,0.935 0.934,0.939,0.937 0.934,0.938,0.936
STAR 1 pass 0.968,0.925,0.946 0.967,0.924,0.945 0.966,0.921,0.943 0.967,0.924,0.945 0.967,0.924,0.945
HISAT 2 pass 0.945,0.940,0.943 0.945,0.940,0.943 0.944,0.938,0.941 0.946,0.939,0.943 0.946,0.939,0.943
Rail single 0.984,0.878,0.928 0.984,0.878,0.928 0.984,0.875,0.926 0.984,0.879,0.928 0.984,0.877,0.928
STAR 2 pass 0.968,0.927,0.947 0.968,0.926,0.947 0.967,0.924,0.945 0.969,0.926,0.947 0.968,0.926,0.947
Subjunc 0.992,0.838,0.909 0.993,0.838,0.909 0.993,0.835,0.907 0.992,0.837,0.908 0.993,0.837,0.908
TopHat 2 0.958,0.824,0.886 0.960,0.822,0.886 0.959,0.819,0.883 0.957,0.826,0.886 0.957,0.825,0.886
HISAT 1 pass ann 0.924,0.982,0.952 0.924,0.982,0.952 0.922,0.981,0.951 0.925,0.982,0.953 0.925,0.982,0.953
STAR 1 pass ann 0.978,0.980,0.979 0.977,0.980,0.979 0.976,0.979,0.978 0.978,0.980,0.979 0.978,0.980,0.979
TopHat 2 ann 0.948,0.982,0.965 0.949,0.980,0.964 0.948,0.980,0.964 0.950,0.982,0.965 0.950,0.982,0.965
Rail all 0.976,0.940,0.957 0.976,0.943,0.959 0.976,0.942,0.958 0.977,0.938,0.957 0.977,0.937,0.957
Rail all NF 0.847,0.956,0.898 0.844,0.958,0.897 0.843,0.957,0.896 0.850,0.955,0.900 0.850,0.955,0.900
sample numbers 11 12 13 14 15
HISAT 1 pass 0.935,0.945,0.940 0.934,0.946,0.940 0.934,0.943,0.938 0.934,0.941,0.937 0.934,0.939,0.936
STAR 1 pass 0.968,0.932,0.949 0.967,0.933,0.950 0.967,0.929,0.947 0.967,0.926,0.946 0.967,0.925,0.946
HISAT 2 pass 0.946,0.946,0.946 0.945,0.947,0.946 0.945,0.944,0.944 0.945,0.942,0.943 0.945,0.940,0.942
Rail single 0.984,0.887,0.933 0.984,0.889,0.934 0.984,0.883,0.931 0.984,0.881,0.929 0.984,0.878,0.928
STAR 2 pass 0.969,0.934,0.951 0.968,0.935,0.951 0.968,0.931,0.949 0.968,0.929,0.948 0.969,0.927,0.947
Subjunc 0.993,0.849,0.915 0.993,0.851,0.917 0.992,0.845,0.913 0.992,0.841,0.910 0.993,0.840,0.910
TopHat 2 0.959,0.837,0.894 0.958,0.841,0.896 0.958,0.832,0.891 0.957,0.829,0.888 0.959,0.826,0.888
HISAT 1 pass ann 0.920,0.984,0.951 0.919,0.985,0.951 0.921,0.983,0.951 0.922,0.982,0.951 0.924,0.983,0.952
STAR 1 pass ann 0.976,0.982,0.979 0.976,0.983,0.979 0.976,0.981,0.979 0.977,0.980,0.979 0.977,0.980,0.978
TopHat 2 ann 0.943,0.983,0.963 0.942,0.984,0.963 0.945,0.983,0.964 0.947,0.982,0.964 0.949,0.981,0.965
Rail all 0.975,0.942,0.959 0.976,0.942,0.959 0.976,0.940,0.958 0.976,0.940,0.958 0.977,0.942,0.959
Rail all NF 0.844,0.959,0.898 0.847,0.959,0.899 0.847,0.957,0.898 0.846,0.956,0.898 0.848,0.957,0.899
sample numbers 16 17 18 19 20
HISAT 1 pass 0.934,0.946,0.940 0.934,0.938,0.936 0.936,0.937,0.936 0.934,0.937,0.935 0.933,0.937,0.935
STAR 1 pass 0.967,0.933,0.950 0.968,0.923,0.945 0.968,0.922,0.944 0.967,0.921,0.943 0.968,0.923,0.945
HISAT 2 pass 0.944,0.947,0.946 0.944,0.939,0.941 0.946,0.937,0.942 0.945,0.938,0.941 0.944,0.938,0.941
Rail single 0.984,0.888,0.934 0.984,0.877,0.927 0.985,0.876,0.927 0.984,0.874,0.926 0.983,0.877,0.927
STAR 2 pass 0.968,0.935,0.951 0.969,0.925,0.946 0.969,0.924,0.946 0.968,0.923,0.945 0.969,0.925,0.947
Subjunc 0.993,0.852,0.917 0.992,0.838,0.909 0.993,0.836,0.908 0.993,0.833,0.906 0.992,0.838,0.909
TopHat 2 0.959,0.841,0.896 0.958,0.821,0.884 0.961,0.820,0.885 0.958,0.817,0.882 0.958,0.823,0.885
HISAT 1 pass ann 0.916,0.985,0.949 0.923,0.981,0.951 0.923,0.981,0.951 0.923,0.981,0.951 0.923,0.981,0.951
STAR 1 pass ann 0.975,0.982,0.979 0.978,0.979,0.978 0.977,0.979,0.978 0.977,0.979,0.978 0.977,0.979,0.978
TopHat 2 ann 0.940,0.984,0.961 0.949,0.980,0.964 0.947,0.980,0.963 0.949,0.980,0.964 0.948,0.980,0.964
Rail all 0.975,0.940,0.957 0.976,0.940,0.958 0.976,0.939,0.957 0.976,0.936,0.956 0.976,0.942,0.958
Rail all NF 0.845,0.959,0.898 0.847,0.956,0.898 0.848,0.956,0.899 0.847,0.955,0.898 0.844,0.957,0.897
summary statistics means stdevs
HISAT 1 pass 0.934,0.940,0.937 0.001,0.003,0.002
STAR 1 pass 0.967,0.926,0.946 0.001,0.004,0.002
HISAT 2 pass 0.945,0.941,0.943 0.001,0.003,0.002
Rail single 0.984,0.880,0.929 0.000,0.004,0.002
STAR 2 pass 0.968,0.928,0.948 0.000,0.004,0.002
Subjunc 0.993,0.840,0.910 0.000,0.005,0.003
TopHat 2 0.958,0.827,0.888 0.001,0.007,0.004
HISAT 1 pass ann 0.922,0.982,0.951 0.002,0.001,0.001
STAR 1 pass ann 0.977,0.980,0.979 0.001,0.001,0.000
TopHat 2 ann 0.947,0.982,0.964 0.003,0.001,0.001
Rail all 0.976,0.939,0.957 0.000,0.003,0.002
Rail all NF 0.846,0.957,0.898 0.002,0.001,0.001
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Table 4: Overlap accuracy for various alignment protocols described in Sections 2.3 and 5.10.
Each table item is a tuple in the format “precision, recall, F-score”; these quantities are defined
in Section 5.11. Sample numbers correspond to 20 randomly selected samples of the 112 samples
we simulated, and they also appear in Table 2. Summary statistics are computed across the 20
samples. Note that the “Rail all” and “Rail all NF” protocols were each run on all 112 simulated
samples to augment exon-exon junction calling.

sample numbers 1 2 3 4 5
HISAT 1 pass 0.857,0.709,0.776 0.854,0.709,0.775 0.876,0.707,0.782 0.875,0.709,0.783 0.862,0.706,0.776
STAR 1 pass 0.974,0.604,0.746 0.974,0.606,0.747 0.976,0.610,0.751 0.976,0.610,0.750 0.974,0.607,0.748
HISAT 2 pass 0.890,0.845,0.867 0.886,0.845,0.865 0.905,0.848,0.876 0.902,0.848,0.874 0.892,0.845,0.868
Rail single 0.973,0.849,0.907 0.970,0.849,0.905 0.974,0.857,0.912 0.976,0.857,0.913 0.973,0.853,0.909
STAR 2 pass 0.855,0.855,0.855 0.855,0.855,0.855 0.878,0.857,0.867 0.878,0.857,0.867 0.866,0.856,0.861
Subjunc 0.977,0.777,0.866 0.976,0.778,0.866 0.978,0.794,0.876 0.979,0.791,0.875 0.977,0.786,0.871
TopHat 2 0.958,0.687,0.800 0.949,0.687,0.797 0.957,0.703,0.811 0.958,0.700,0.809 0.955,0.694,0.804
HISAT 1 pass ann 0.893,0.857,0.875 0.889,0.856,0.872 0.908,0.859,0.882 0.908,0.860,0.883 0.897,0.857,0.876
STAR 1 pass ann 0.875,0.874,0.875 0.873,0.873,0.873 0.896,0.874,0.885 0.900,0.875,0.887 0.890,0.873,0.881
TopHat 2 ann 0.806,0.838,0.822 0.802,0.837,0.819 0.833,0.838,0.836 0.839,0.840,0.839 0.824,0.837,0.831
Rail all 0.969,0.856,0.909 0.966,0.857,0.908 0.970,0.864,0.914 0.972,0.864,0.915 0.968,0.860,0.911
Rail all NF 0.940,0.857,0.897 0.937,0.858,0.896 0.944,0.866,0.903 0.947,0.865,0.904 0.940,0.861,0.899
sample numbers 6 7 8 9 10
HISAT 1 pass 0.856,0.707,0.774 0.840,0.711,0.770 0.840,0.710,0.770 0.889,0.707,0.788 0.873,0.706,0.781
STAR 1 pass 0.974,0.603,0.745 0.974,0.600,0.742 0.974,0.602,0.744 0.977,0.610,0.751 0.975,0.610,0.750
HISAT 2 pass 0.889,0.844,0.866 0.877,0.844,0.860 0.874,0.842,0.858 0.915,0.850,0.881 0.902,0.848,0.874
Rail single 0.973,0.848,0.906 0.972,0.843,0.903 0.972,0.845,0.904 0.975,0.858,0.913 0.975,0.856,0.912
STAR 2 pass 0.859,0.855,0.857 0.836,0.856,0.846 0.847,0.855,0.851 0.888,0.858,0.873 0.877,0.857,0.867
Subjunc 0.977,0.778,0.866 0.976,0.764,0.857 0.975,0.772,0.862 0.978,0.795,0.877 0.978,0.793,0.876
TopHat 2 0.957,0.688,0.800 0.955,0.674,0.790 0.945,0.679,0.790 0.960,0.704,0.812 0.958,0.702,0.810
HISAT 1 pass ann 0.894,0.856,0.874 0.881,0.856,0.868 0.882,0.856,0.869 0.917,0.860,0.888 0.906,0.858,0.882
STAR 1 pass ann 0.879,0.874,0.877 0.861,0.875,0.868 0.870,0.875,0.873 0.904,0.874,0.889 0.897,0.875,0.886
TopHat 2 ann 0.811,0.839,0.825 0.788,0.840,0.813 0.798,0.839,0.818 0.846,0.838,0.842 0.834,0.839,0.836
Rail all 0.968,0.855,0.908 0.967,0.851,0.905 0.968,0.853,0.907 0.971,0.866,0.916 0.971,0.864,0.914
Rail all NF 0.939,0.857,0.896 0.936,0.852,0.892 0.936,0.854,0.893 0.949,0.867,0.906 0.945,0.865,0.903
sample numbers 11 12 13 14 15
HISAT 1 pass 0.859,0.711,0.778 0.873,0.707,0.782 0.859,0.707,0.776 0.869,0.709,0.781 0.858,0.711,0.777
STAR 1 pass 0.975,0.606,0.747 0.976,0.610,0.751 0.974,0.603,0.745 0.976,0.607,0.748 0.974,0.603,0.745
HISAT 2 pass 0.892,0.846,0.868 0.901,0.848,0.874 0.893,0.845,0.868 0.898,0.847,0.872 0.890,0.844,0.866
Rail single 0.975,0.851,0.909 0.974,0.858,0.912 0.973,0.849,0.907 0.973,0.852,0.909 0.973,0.847,0.906
STAR 2 pass 0.860,0.857,0.858 0.876,0.858,0.867 0.858,0.855,0.857 0.865,0.857,0.861 0.863,0.856,0.859
Subjunc 0.977,0.783,0.869 0.977,0.793,0.876 0.977,0.779,0.867 0.978,0.783,0.869 0.977,0.775,0.864
TopHat 2 0.958,0.691,0.803 0.961,0.702,0.812 0.958,0.688,0.801 0.960,0.691,0.804 0.954,0.685,0.798
HISAT 1 pass ann 0.895,0.857,0.876 0.904,0.859,0.881 0.896,0.857,0.876 0.902,0.857,0.879 0.895,0.855,0.875
STAR 1 pass ann 0.879,0.875,0.877 0.894,0.874,0.884 0.880,0.874,0.877 0.883,0.874,0.878 0.883,0.875,0.879
TopHat 2 ann 0.813,0.840,0.826 0.834,0.838,0.836 0.814,0.839,0.826 0.818,0.838,0.828 0.817,0.839,0.828
Rail all 0.970,0.858,0.911 0.970,0.865,0.915 0.968,0.856,0.909 0.969,0.860,0.911 0.969,0.854,0.908
Rail all NF 0.942,0.859,0.899 0.945,0.866,0.904 0.942,0.857,0.898 0.942,0.861,0.899 0.940,0.856,0.896
sample numbers 16 17 18 19 20
HISAT 1 pass 0.864,0.708,0.778 0.839,0.707,0.767 0.839,0.706,0.767 0.842,0.709,0.770 0.842,0.711,0.771
STAR 1 pass 0.976,0.605,0.747 0.973,0.599,0.742 0.973,0.599,0.742 0.973,0.603,0.744 0.975,0.606,0.748
HISAT 2 pass 0.894,0.847,0.870 0.876,0.841,0.859 0.878,0.842,0.860 0.879,0.843,0.860 0.877,0.846,0.861
Rail single 0.976,0.852,0.909 0.971,0.844,0.903 0.972,0.844,0.903 0.971,0.846,0.904 0.973,0.853,0.909
STAR 2 pass 0.867,0.858,0.862 0.841,0.853,0.847 0.838,0.855,0.846 0.842,0.854,0.848 0.858,0.856,0.857
Subjunc 0.979,0.784,0.871 0.976,0.770,0.861 0.978,0.770,0.862 0.977,0.772,0.862 0.977,0.780,0.868
TopHat 2 0.955,0.692,0.802 0.952,0.678,0.792 0.952,0.679,0.793 0.951,0.683,0.795 0.952,0.687,0.798
HISAT 1 pass ann 0.900,0.858,0.879 0.881,0.855,0.868 0.883,0.855,0.869 0.884,0.856,0.869 0.881,0.857,0.869
STAR 1 pass ann 0.886,0.875,0.880 0.865,0.874,0.869 0.863,0.875,0.869 0.864,0.873,0.869 0.889,0.875,0.882
TopHat 2 ann 0.823,0.840,0.831 0.793,0.838,0.815 0.791,0.840,0.815 0.791,0.838,0.814 0.817,0.839,0.828
Rail all 0.972,0.859,0.912 0.967,0.851,0.905 0.968,0.851,0.905 0.966,0.853,0.906 0.969,0.860,0.911
Rail all NF 0.944,0.860,0.900 0.935,0.852,0.892 0.933,0.852,0.891 0.934,0.854,0.893 0.941,0.861,0.899
summary statistics means stdevs
HISAT 1 pass 0.858,0.708,0.776 0.015,0.002,0.006
STAR 1 pass 0.975,0.605,0.747 0.001,0.004,0.003
HISAT 2 pass 0.891,0.845,0.867 0.011,0.002,0.007
Rail single 0.973,0.850,0.908 0.002,0.005,0.003
STAR 2 pass 0.860,0.856,0.858 0.015,0.001,0.008
Subjunc 0.977,0.781,0.868 0.001,0.009,0.006
TopHat 2 0.955,0.690,0.801 0.004,0.009,0.007
HISAT 1 pass ann 0.895,0.857,0.875 0.011,0.002,0.006
STAR 1 pass ann 0.882,0.874,0.878 0.013,0.001,0.006
TopHat 2 ann 0.815,0.839,0.826 0.017,0.001,0.009
Rail all 0.969,0.858,0.910 0.002,0.005,0.003
Rail all NF 0.941,0.859,0.898 0.004,0.005,0.005
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Table 5: Mapping accuracy for various alignment protocols described in Sections 2.3 and 5.10.
Each table item is a tuple in the format “precision, recall, F-score”; these quantities are defined
in Section 5.11. Sample numbers correspond to 20 randomly selected samples of the 112 samples
we simulated, and they also appear in Table 2. Summary statistics are computed across the 20
samples. Note that the “Rail all” and “Rail all NF” protocols were each run on all 112 simulated
samples to augment exon-exon junction calling.

sample numbers 1 2 3 4 5
HISAT 1 pass 0.936,0.816,0.872 0.935,0.816,0.871 0.942,0.821,0.877 0.944,0.823,0.879 0.939,0.819,0.875
STAR 1 pass 0.953,0.909,0.930 0.953,0.909,0.931 0.957,0.913,0.935 0.958,0.914,0.935 0.955,0.910,0.932
HISAT 2 pass 0.942,0.830,0.882 0.942,0.830,0.882 0.948,0.835,0.888 0.950,0.837,0.890 0.945,0.833,0.886
Rail single 0.944,0.917,0.930 0.943,0.917,0.930 0.949,0.922,0.935 0.950,0.923,0.936 0.946,0.919,0.932
STAR 2 pass 0.941,0.901,0.921 0.941,0.901,0.921 0.949,0.909,0.928 0.950,0.909,0.929 0.945,0.905,0.925
Subjunc 0.928,0.867,0.896 0.928,0.867,0.896 0.935,0.874,0.903 0.936,0.874,0.904 0.932,0.871,0.901
TopHat 2 0.905,0.768,0.831 0.904,0.768,0.830 0.914,0.776,0.840 0.915,0.778,0.841 0.910,0.773,0.836
HISAT 1 pass ann 0.942,0.830,0.882 0.942,0.830,0.882 0.948,0.835,0.888 0.950,0.837,0.890 0.945,0.833,0.885
STAR 1 pass ann 0.943,0.904,0.923 0.943,0.904,0.923 0.950,0.911,0.930 0.952,0.913,0.932 0.947,0.908,0.927
TopHat 2 ann 0.905,0.775,0.835 0.904,0.774,0.834 0.915,0.784,0.844 0.919,0.787,0.848 0.912,0.781,0.842
Rail all 0.944,0.917,0.930 0.944,0.917,0.930 0.949,0.922,0.935 0.950,0.923,0.937 0.946,0.920,0.933
Rail all NF 0.943,0.917,0.930 0.943,0.917,0.930 0.948,0.922,0.935 0.950,0.923,0.936 0.945,0.919,0.932
sample numbers 6 7 8 9 10
HISAT 1 pass 0.936,0.816,0.872 0.930,0.812,0.867 0.932,0.813,0.869 0.946,0.824,0.880 0.942,0.821,0.877
STAR 1 pass 0.952,0.908,0.930 0.949,0.905,0.926 0.951,0.907,0.928 0.959,0.914,0.936 0.957,0.912,0.934
HISAT 2 pass 0.942,0.830,0.882 0.937,0.826,0.878 0.939,0.827,0.880 0.952,0.838,0.892 0.948,0.835,0.888
Rail single 0.943,0.916,0.929 0.939,0.912,0.925 0.941,0.914,0.927 0.951,0.923,0.937 0.948,0.921,0.935
STAR 2 pass 0.942,0.902,0.921 0.936,0.896,0.916 0.938,0.899,0.918 0.951,0.911,0.931 0.948,0.908,0.927
Subjunc 0.927,0.866,0.896 0.921,0.860,0.890 0.925,0.864,0.893 0.936,0.874,0.904 0.934,0.873,0.902
TopHat 2 0.904,0.768,0.831 0.896,0.761,0.823 0.900,0.764,0.826 0.917,0.779,0.842 0.914,0.776,0.839
HISAT 1 pass ann 0.941,0.830,0.882 0.937,0.826,0.878 0.939,0.828,0.880 0.951,0.838,0.891 0.948,0.835,0.888
STAR 1 pass ann 0.944,0.905,0.924 0.938,0.900,0.919 0.941,0.902,0.921 0.953,0.913,0.933 0.950,0.910,0.930
TopHat 2 ann 0.905,0.775,0.835 0.896,0.767,0.827 0.901,0.771,0.831 0.921,0.788,0.849 0.916,0.784,0.845
Rail all 0.943,0.917,0.930 0.939,0.913,0.926 0.941,0.915,0.928 0.951,0.924,0.937 0.949,0.922,0.935
Rail all NF 0.942,0.916,0.929 0.938,0.912,0.925 0.940,0.914,0.927 0.950,0.924,0.937 0.948,0.922,0.935
sample numbers 11 12 13 14 15
HISAT 1 pass 0.936,0.816,0.872 0.943,0.821,0.878 0.936,0.816,0.872 0.939,0.818,0.874 0.937,0.817,0.873
STAR 1 pass 0.953,0.909,0.931 0.958,0.913,0.935 0.953,0.909,0.930 0.954,0.910,0.932 0.952,0.908,0.930
HISAT 2 pass 0.942,0.831,0.883 0.948,0.835,0.888 0.943,0.831,0.883 0.944,0.832,0.885 0.943,0.831,0.883
Rail single 0.944,0.917,0.930 0.949,0.922,0.935 0.944,0.917,0.930 0.945,0.918,0.932 0.943,0.916,0.930
STAR 2 pass 0.942,0.902,0.922 0.948,0.908,0.928 0.942,0.902,0.922 0.944,0.904,0.924 0.943,0.903,0.922
Subjunc 0.929,0.868,0.897 0.934,0.873,0.903 0.927,0.866,0.896 0.930,0.868,0.898 0.927,0.866,0.896
TopHat 2 0.905,0.769,0.832 0.914,0.777,0.840 0.905,0.769,0.831 0.908,0.771,0.834 0.904,0.768,0.830
HISAT 1 pass ann 0.942,0.831,0.883 0.948,0.836,0.888 0.943,0.831,0.883 0.944,0.832,0.885 0.943,0.831,0.883
STAR 1 pass ann 0.944,0.905,0.924 0.950,0.911,0.930 0.944,0.905,0.925 0.946,0.906,0.926 0.945,0.906,0.925
TopHat 2 ann 0.906,0.776,0.836 0.916,0.784,0.845 0.907,0.777,0.837 0.910,0.779,0.839 0.907,0.777,0.837
Rail all 0.944,0.918,0.931 0.949,0.923,0.936 0.944,0.917,0.930 0.945,0.919,0.932 0.943,0.917,0.930
Rail all NF 0.943,0.917,0.930 0.949,0.922,0.935 0.943,0.917,0.930 0.945,0.918,0.931 0.943,0.916,0.929
sample numbers 16 17 18 19 20
HISAT 1 pass 0.939,0.818,0.875 0.931,0.812,0.867 0.932,0.813,0.868 0.930,0.812,0.867 0.936,0.816,0.872
STAR 1 pass 0.954,0.910,0.932 0.950,0.906,0.927 0.950,0.906,0.928 0.950,0.907,0.928 0.953,0.909,0.930
HISAT 2 pass 0.945,0.832,0.885 0.938,0.826,0.879 0.938,0.827,0.879 0.936,0.825,0.877 0.942,0.830,0.882
Rail single 0.945,0.919,0.932 0.940,0.913,0.926 0.940,0.914,0.927 0.940,0.914,0.927 0.944,0.917,0.930
STAR 2 pass 0.945,0.905,0.925 0.937,0.897,0.917 0.938,0.898,0.917 0.937,0.897,0.916 0.943,0.902,0.922
Subjunc 0.931,0.870,0.899 0.924,0.863,0.892 0.925,0.864,0.893 0.925,0.864,0.893 0.929,0.868,0.897
TopHat 2 0.907,0.771,0.833 0.898,0.763,0.825 0.899,0.764,0.826 0.898,0.763,0.825 0.906,0.769,0.832
HISAT 1 pass ann 0.945,0.833,0.885 0.937,0.826,0.878 0.938,0.827,0.879 0.936,0.825,0.877 0.942,0.830,0.882
STAR 1 pass ann 0.947,0.908,0.927 0.939,0.901,0.920 0.940,0.901,0.920 0.939,0.900,0.919 0.946,0.907,0.926
TopHat 2 ann 0.910,0.779,0.840 0.898,0.769,0.829 0.899,0.770,0.830 0.897,0.768,0.827 0.909,0.778,0.838
Rail all 0.946,0.919,0.932 0.940,0.914,0.927 0.940,0.914,0.927 0.940,0.914,0.927 0.944,0.918,0.931
Rail all NF 0.945,0.919,0.932 0.939,0.913,0.926 0.940,0.914,0.926 0.939,0.913,0.926 0.943,0.917,0.930
summary statistics means stdevs
HISAT 1 pass 0.937,0.817,0.873 0.005,0.004,0.004
STAR 1 pass 0.954,0.909,0.931 0.003,0.003,0.003
HISAT 2 pass 0.943,0.831,0.884 0.004,0.004,0.004
Rail single 0.944,0.918,0.931 0.004,0.003,0.003
STAR 2 pass 0.943,0.903,0.923 0.005,0.004,0.004
Subjunc 0.929,0.868,0.897 0.004,0.004,0.004
TopHat 2 0.906,0.770,0.832 0.006,0.005,0.006
HISAT 1 pass ann 0.943,0.831,0.884 0.004,0.004,0.004
STAR 1 pass ann 0.945,0.906,0.925 0.004,0.004,0.004
TopHat 2 ann 0.908,0.777,0.837 0.007,0.006,0.007
Rail all 0.945,0.918,0.931 0.004,0.003,0.003
Rail all NF 0.944,0.918,0.931 0.004,0.003,0.004
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5.13 Exon-exon junction coverage bias

Figure 7: Recall of exon-exon junction overlap instances for unannotated protocols run on the
simulated sample “NA20768 female TSI HMGU 5-1-1.” The “Rail all” protocol (yellow line at
the top) achieves high recall without succumbing significantly to coverage bias where exon-exon
junctions are covered by few reads (red dotted box), unlike 2-pass single-sample protocols “STAR
2 pass,” “HISAT 2 pass,” Subjunc, TopHat 2, and “Rail single.” 1-pass protocols are not subject
to this exon-exon junction coverage bias but do not achieve high recall.

Let c(r) denote the true coverage of the minimally covered exon-exon junction overlapped by
a read r in a sample s. Here, “true coverage” refers to the number of reads truly derived from
loci overlapping a given exon-exon junction. For example, if r overlaps two exon-exon junctions i

1

and i
2

, and i
1

is truly covered by 10 reads in S from s while i
2

is truly covered by 25 reads in S,
c(r) = 10. Figure 7 plots recall for various protocols that do not use annotation run on a randomly
selected simulated sample (“NA20768 female TSI HMGU 5-1-1”) at various thresholds t of c(r); a
given point on any curve accounts for every read r for which c(r)  t. This plot reveals a bias
present in certain spliced alignment protocols that involve realignment (i.e., the 2 pass protocols):
the correct alignments of reads that overlap exon-exon junctions whose true coverage is low are
recalled less often. This exon-exon junction coverage bias has a simple explanation: if there are
more reads covering a given exon-exon junction, it is likelier that exon-exon junction is detected
initially (on the first pass) by an alignment protocol. So during realignment, it is likelier that
splice junctions are detected successfully for reads overlapping highly covered exon-exon junctions
than it is for poorly covered exon-exon junctions. By contrast, if no realignment is performed,
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Figure 8: Recall of exon-exon junction overlap instances annotated protocols run on the simulated
sample “NA20768 female TSI HMGU 5-1-1.” The “Rail all” protocol (red curved line) does not
appear to correct for exon-exon junction coverage bias as well as annotated protocols, but annotated
protocols have an artificial advantage: they are given as additional input every true exon-exon
junction sampled in simulation.

recall should be independent of c(r): the probability a splice junction is detected for a given read is
independent of the probabilities splice junctions are detected in other reads. Neither “STAR 1 pass”
nor “HISAT 1 pass” perform realignment, so their recalls are more or less horizontal lines across the
plot. However, recall is diminished compared to protocols that do perform realignment. (HISAT
achieves higher recall than STAR on one pass because it accumulates an exon-exon junction list as
it aligns a sample, searching for a larger number of exon-exon junctions as more reads are aligned.
But the aligner does not have a large list of exon-exon junctions at its disposal when it is working
through the first reads, so one pass still cannot match the recall of two passes.) Figure 8 plots recall
for various protocols that use annotation as well as the “Rail all” protocol at various thresholds t
of c(r). “STAR 1-pass ann,” “HISAT 1-pass ann,” and “TopHat 2 ann” do indeed provide high
recall while minimizing exon-exon junction coverage bias; an annotation can reveal the locations
of poorly covered exon-exon junctions. However, annotation-based protocols are themselves subject
to a bias: it is likelier that exon-exon junctions listed in the annotation are found than it is that
novel exon-exon junctions are. This bias is not discernible in Figure 8. Moreover, because the
annotated protocols tested here are given the artificial advantage of foreknowledge of the entire
space of exon-exon junctions sampled by the simulated samples, Figure 8 exaggerates the positive
e↵ect of annotation. “Rail all” achieves significant exon-exon junction coverage bias mitigation,
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however, faring nearly as well as even the annotated protocols: note that recall on the y-axis never
drops below 0.79.

The “Rail all” protocol corrects for annotation bias while minimizing exon-exon
junction coverage bias and simultaneously providing high recall through realignment.
The protocol benefits from how there is a higher probability any given exon-exon junction—even
one that is poorly covered across samples—is detected. When many samples are analyzed together,
the exon-exon junction coverage bias is greatly diminished.
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5.14 Wall-clock times of alignment protocols on a single computer and a single

sample

We measured wall-clock times of the various alignment protocols studied in the main text on a single
computer using 8 and 16 2.4-GHz Intel Xeon E5-2665 processors. We invoked the Linux command-
line utility taskset to confine processor use to exactly 8 or 16 cores and ran each alignment
protocol on the randomly selected paired-end GEUVADIS sample whose SRA accession number
is ERR205018, which has 44,703,518 75-bp reads (counting ends of paired-end reads separately).
The “STAR 1 pass ann” and “TopHat 2 ann” protocols require construction of indexes from gene
annotation. We used the Gencode v12 annotation [40] and timed index construction separately.
Rail-RNA can suppress some outputs, saving end-to-end computation time. We measured Rail-
RNA’s performance writing both all its default outputs (alignment BAMs, coverage bigWigs, indel
and junction BEDs, and cross-sample TSVs) as well as writing only alignment BAMs. Our results
are in Table 6. Note that the operating configurations tested here are not the preferred way to run
Rail-RNA, which is designed to take advantage of hundreds of processing cores in a distributed
environment and eliminate redundant alignment work across many samples.

Table 6: Wall-clock times of various alignment protocols for GEUVADIS sample ERR205018 run
on 8 and 16 2.4-GHz Intel Xeon E5-2665 processing cores. The annotated protocols “STAR 1
pass ann” and “TopHat 2 ann” require onetime index construction from gene annotation, and we
report wall-clock times with and without index construction using the Gencode v12 annotation.
Rail-RNA’s wall-clock time was measured with default outputs and with only BAM outputs.

8 cores 16 cores
HISAT 1 pass ann 4m26s 3m1s
HISAT 1 pass 4m33s 3m13s
HISAT 2 pass 8m57s 6m20s
Rail-RNA (BAM only) 103m55s 59m25s
Rail-RNA (all default outputs) 118m46s 64m40s
STAR 1 pass ann (with index time) 46m48s 37m22s
STAR 1 pass ann (no index time) 5m38s 3m59s
STAR 1 pass 4m6s 2m24s
STAR 2 pass 10m14s 7m35s
Subjunc 19m54s 14m44s
TopHat 2 ann (with index time) 239m34s 224m54s
Topat 2 ann (no index time) 132m54s 98m53s
TopHat 2 110m38s 84m27s

33

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2015. ; https://doi.org/10.1101/019067doi: bioRxiv preprint 

https://doi.org/10.1101/019067
http://creativecommons.org/licenses/by-nc/4.0/


5.15 Expressed Regions analysis

For each sample, base level coverage is imported from the bigWig files and then adjusted by
the total number of mapped reads to represent the coverage from a library size of 80 million
reads. This adjustment could have been left out, and we performed it only to make base-level
coverage take intuitively manageable values. Expressed regions (ERs) are then determined by the
regionMatrix() function from derfinder (version 1.0.10) [43] applied to the adjusted coverage
with a mean cuto↵ of 5 reads. ERs are identified for each chromosome separately and then merged
with a custom script. Overlap with Ensembl v75 [40] known exons, exon-exon junctions, and inter-
genic regions is determined with the corresponding genomic state object via makeGenomicState()

and annotateRegions() from derfinder.
regionMatrix() also generates the corresponding adjusted coverage matrix for library size of

80 million reads assuming a read length of 75 base pairs. This matrix is log
2

transformed using
an o↵set of 1 and is available via Figshare [54]. A linear regression is then fitted with the 15
technical variables available: population, RIN value, RNA extraction batch, RNA concentration,
RNA quantity used, library preparation date, primer index, method concentration measure, library
concentration, library size, library concentration used, cluster kit, sequencing kit, cluster density,
and sequencing lane. The percent of variance explained is determined by the residual sum of squares
for the given variable divided by the total sum of squares from all variables as well as the residual
variation.

The GEUVADIS expressed regions are available in supplementaryExpressedRegions.csv.
This CSV file has the following columns:

1. seqnames: chromosome where the ER is located.

2. start: extreme left position of the ER.

3. end: extreme right position of the ER.

4. width: width of the ER in base pairs.

5. strand: strand of the ER.

6. value: mean adjusted coverage for the ER across all samples.

7. area: sum of adjusted coverage for the ER across all samples.

8. indexStart: internal index start position.

9. indexEnd: internal index end position.

10. cluster: cluster ID for the ER where ERs belong to the same cluster if they are at most 3000
base pairs apart. IDs are unique by chromosome only.

11. clusterL: cluster length in base pairs.
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5.16 Rail-RNA’s objective function

Rail-RNA seeks the best alignment for each input read as follows. Let [n] denote {1, . . . , n} for
some positive integer n. Say Rail-RNA finds a number N of possible alignments of a given read
r. Let i 2 [N ] index these alignments. Each has an alignment score s(i) and a number n(i) of
exon-exon junctions overlapped by the alignment. s(i) is determined by Bowtie 2’s local alignment
parameters [33], which assign penalties to gaps and mismatches in a user-configurable fashion.
Consider the set of reads in the same sample as r such that each has exactly one highest-scoring
alignment. Call these the uniquely aligned reads. Let c(i, j) be the number of uniquely aligned
reads covering the jth junction overlapped by alignment i, and suppose

c(i) := min
j2[n(i)]

c(i, j) . (1)

If n(i) = 0, set c(i) = 1. Let
P := argmin

k2argmaxi2[N ] s(i)
n(k) . (2)

P will often have one element. When there is more than one, Rail-RNA draws the primary align-
ment of r at random weighted by c(i):

p(i) =
c(i)P

k2P c(k)
, i 2 P . (3)

5.17 Implementation details

Rail-RNA is built on the MapReduce programming model [30], which uses an economy of funda-
mental abstractions to promote scalable cluster computing. A problem is divided into a sequence
of computation and aggregation steps. Each step consumes a set of key-value pairs and outputs a
set of key-value pairs. A step is itself divided into a collection of embarrassingly parallel tasks to be
executed concurrently by workers under the aegis of a scheduler. An aggregation step places pairs
with the same key in the same partition and sorts each partition by value. A computation step is
either a reduce step or a map step; a reduce step involves prior aggregation, while a map step does
not. Each worker may be assigned several tasks. A worker in a reduce step operates on a sorted
partition at a time, where a given task may be comprised of several such partitions. A worker in
a map step, on the other hand, operates on key-value pairs in no particular order. Each map or
reduce step consumes a set of key-value pairs and outputs a set of unordered key-value pairs.

All three of Rail-RNA’s modes—elastic, parallel, and single-computer—run the same set of
Python scripts using PyPy [55], a fast Python interpreter. In parallel and single-computer modes:

• A master Python script runs as an independent process and operates as a task scheduler;
that is, it assigns tasks to worker processes on the same computer (in single-computer mode)
or on other computers (in parallel mode) and ensures that all of a step’s tasks are complete
before moving on to the next step.

• A computation step is performed by having each worker stream a (possibly sorted) group of
input files into a PyPy process running a Python script.

• In general, the result of either a map step or a reduce step is a set of output files, each
containing key-value pairs and each the result of a di↵erent worker. If the next step is a
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map step, each worker streams a di↵erent output file into a PyPy process running the step’s
Python script. If the next step is a reduce step, the output files require prior aggregation.
This is achieved as follows. Each of the previous step’s output files is streamed into a di↵erent
worker, which hashes on each key of a given key-value pair in the stream to assign the pair to
a di↵erent task (file). Each worker thus outputs several files, one for each task, and there are
typically as many tasks as there are workers. Moreover, after all workers are done hashing
on keys, there may be many files corresponding to the same task. Each of these files is next
assigned to a di↵erent worker, which calls GNU Coreutils sort (the standard command-line
sort utility that comes with most UNIX-based operating systems) to sort the key-value pairs
in the file so that pairs in the same partition are adjacent and sorted by value in the order
required by the reduce step. Finally, groups of sorted files corresponding to the same task
are assigned to the same worker, which merges them in sorted order and streams the result
into a PyPy process running the reduce step’s Python script.

Elastic mode uses Hadoop [29] via Amazon Elastic MapReduce [56] to manage task scheduling
and aggregation. We use Hadoop Streaming, a tool that comes with Hadoop, to run our external
Python scripts spanning all computation steps using PyPy. The elastic-mode implementation of
Rail-RNA is largely managed by Elastic MapReduce: it requires that we specify

• the number and type of EC2 instances to provision for assembling a Hadoop computer cluster.

• a job flow encoding the order of map and reduce steps as well as where on S3 they can find
their inputs and write their outputs.

5.18 Detail: Preprocess reads

In local and parallel modes, workers divide the reads for each sample (typically stored in one FASTQ
or a pair of FASTQs) among several gzip-compressed files. Splitting a sample’s reads up in this
manner enables their distribution among workers in the next step of the pipeline. In elastic mode,
the reads for each sample are written to a single LZO-compressed file that may subsequently be
indexed for the same purpose as file-splitting in local and parallel modes: this also permits fast
distribution of file splits among workers in the next step. The distribution is facilitated by Twitter’s
Elephant Bird library [57] for Hadoop.

In local and parallel modes, if all input reads are on a locally accessible filesystem, the preprocess
map step described in the main text is preceded by two load-balancing steps. In the first—itself a
map step—each worker operates on a sample at a time, counting the number of reads. Only one
worker is active in a step that follows, collecting read counts across samples and deciding how many
and which reads should be processed by a given worker at a time in the preprocess map step. This
ensures that load is distributed evenly across workers during preprocessing. In elastic mode or if
some samples must be downloaded from the Internet, a worker operates on a sample at a time in
the preprocess map step. This permits deletion of a given downloaded set of reads by a worker as
soon as it is preprocessed, saving storage space.

Importantly, if a read is from a paired-end sample, its mate’s nucleotide sequence is encoded in
the read’s name. This way, if the read is found to have more than one highest-scoring alignment
in the next step, the mate sequence can easily be retrieved to help resolve the tie.
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5.19 Detail: Align reads to genome

Reads are partitioned by nucleotide sequence so that each worker can operate on a set of reads that
share the same sequence at once. A task is composed of several such sets; to reduce redundancy in
analysis, a worker nominates from each set a read with the highest mean quality score in that set
for alignment using Bowtie 2 [33] in its “local” mode. (To avoid redundancy between sequences and
reversed complements, a read’s nucleotide sequence is taken to be either the original or its reversed
complement, whichever is first in lexicographic order.) Call the set of these nominated reads A

1

.
If a read in A

1

has exactly one perfect alignment, we assume it does not overlap any exon-exon
junctions and place it and all other reads with the same nucleotide sequence in set F ; that is, the
alignment found is assigned to all reads that share the same nucleotide sequence. If a read is from
a single-end sample and has more than one perfect alignment, we also assume the read does not
overlap any exon-exon junctions and place all it in set F ; however, we place other reads with the
same nucleotide sequence in set A

2

. If a read in A
1

is from a paired-end sample and has more
than one alignment, whether or not the alignment is perfect, we place the read and all other reads
with the same nucleotide sequence in set A

2

. Reads in A
2

are aligned on a second run of Bowtie 2
performed in-step by the same worker. This lets Bowtie 2 break ties in their alignment scores to
select primary alignments, now with paired-end data where available. Alignments of reads in F are
final and appear in Rail-RNA’s terminal output; they attain the highest possible alignment score
and overlap no exon-exon junctions.

Bowtie 2’s local mode soft-clips the ends of alignments if doing so improves local alignment
score. We exploit this feature to determine which read sequences should be probed for overlapped
exon-exon junctions. If the primary alignment of any read in A

1

has at least one edit or is soft-
clipped, we add the read to a set C, place its associated nucleotide sequence in set S, and add
all other reads with the same nucleotide sequence to A

2

. Note that S is composed of unique
read sequences, while A

1

, A
2

, and F may contain reads with the same sequence. Any read whose
nucleotide sequence is in S is realigned in a later step. Set S is further divided into subset Ssearch
and its complement Sno search. If the primary alignment of a read in A

1

lacks a soft-clipped
end spanning at least some user-specified number of bases (by default 1), its nucleotide sequence
is added to Sno search. Otherwise, the sequence is added to Ssearch. In subsequent steps, read
sequences from Ssearch are searched for exon-exon junctions and realigned to references containing
transcript fragments—contiguous exonic base sequences from the genome. Reads whose nucleotide
sequences are in Sno search are never searched for exon-exon junctions but are also realigned to
transcript fragments.

Primary alignments of reads in A
2

are found on a second run of Bowtie 2 in local mode. If a
primary alignment is perfect, its associated read is promoted to F ; if it contains at least one edit,
the read is placed in C. Alignments of reads in C are saved for comparison with realignments of
these reads to transcript fragments in later steps.

Every unique read sequence in S is hashed to place it one of P⇥Ns “index” bins, where Ns is the
number of samples under analysis in the Rail-RNA run and P is the number of FM indexes that will
be built per sample in a future realignment step. More specifically, all reads whose sequences are in
the same bin are aligned to the same index in the step described in Section 3.9. Every unique read
sequence in S is also “readletized”: it is divided into short overlapping segments, called readlets.
In the next step, readlets are aligned to the genome so any introns that appear between alignments
of successive nonoverlapping readlets to the same contig can be inferred. Information about in
which samples each read sequence occurs is passed on to subsequent steps.
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Figure 9: Rail-RNA’s scheme for readletizing (segmenting) a read sequence into short subsequences
for alignment to the genome to infer exon-exon junction positions. In this example, min readlet size
is 15, max readlet size is 25, cap size multiplier is 1.1, and readlet interval is 4.

The readletizing scheme is detailed in Figure 9. There is always a readlet at each end of the read
spanning max readlet size bases. Intervening readlets spanning max readlet size bases are spaced
readlet interval bases apart. There are also smaller readlets (“capping readlets”) at each end of
the read. Their sizes are spanned by the set

�
s : 9n 2 N0 (s = bmin readlet size ⇥ (cap size multiplier)nc ^ s < max readlet size)

 
.

Parameters from the previous paragraph are positive integers constrained as follows.

min readlet size � 4

max readlet size � min readlet size

cap size multiplier > 1

readlet interval � 1 .

Their default values of, respectively, 15, 25, 1.1, and 4 may be toggled by the user.

5.20 Detail: Detect exon-exon junctions using readlet alignments

To explain Rail-RNA’s algorithm for searching for exon-exon junctions, we restrict our attention
to a single read r and its readlets.2 To be precise in our discussion, we use the (slightly redundant)
notation (d, pr, s, ps, `, k) to denote the kth exact match to the reference of a readlet d spanning l
bases that is displaced pr bases away from the left end of r; the alignment is to a position displaced
ps bases away from the left end of strand s of the reference assembly. When two readlet alignments
(d

1

, pr,1, s1, ps1,1, `1, k1) , (d2

, pr, s2, ps2,2, `2, k2) are compatible:

2Here, a read is really a unique read sequence. In this discussion, we take the “left end of a read” to mean the left
end of either the sequence or its reversed complement, whichever is first in lexicographic order.
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1. d
1

6= d
2

; the alignments are not of the same readlet.

2. s
1

= s
2

= s for some strand s; the two readlets align to the same strand.

3. pr,1 < pr,2 () ps,1 < ps,2; if their positions along the read are di↵erent, the readlets are
ordered in the same way along the read as their alignments along s.

4. pr,1 = pr,2 () ps,1 = ps,2; if their positions along the read are the same, the readlets align
to the same position along s.

Figure 10: a) Ideally, every readlet of a read aligns uniquely to the same strand of a contig (e.g.,
the forward strand of chr1). b) Often, the ideal case depicted in a) is not realized and one or more
of the following occurs: readlets do not align in the order in which they appear along the read
(top); readlets align to multiple strand (the readlets that are underlined and overlined with arrows
pointing to their alignments); and readlets align in the right order along the same contig but to
di↵erent strands. (Note that the readlet mapping at the bottom left of the figure illustrates the
reversed complement of a readlet aligning to the forward strand.)

Ideally, the readlet alignments derived from r are mutually compatible, as depicted in the top
half of Figure 10: all of read 1’s mapped readlets align uniquely to the same strand (here, the forward
strand of chr1 ) in the order in which they appear along the read; and further, if two readlets begin
at the same position along the read, they align to the same position along the reference. Suppose
i 2 [N ] indexes a set R = {(di, pr,i, s, ps,i, `i, ki)} of mutually compatible readlet alignments. Note
that each alignment in R corresponds to a distinct readlet. Let S(i) = {j : 9j 2 [N ] pr,i = pr,j};
that is, S(i) indexes the set of readlets in R whose displacements from the left end of r are the same
as di’s. When two readlet alignments (dm, pr,m, s, ps,1, `m) , (dq, pr,q, s, ps,q, `2) 2 R are consecutive:
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1. pr,m 6= pr,q; the readlets do not occur at the same position along the read.

2.
⇣
`m 2 argmaxj2S(m)

`j
⌘
^
⇣
`q 2 argmaxj2S(q) `j

⌘
holds; each readlet is the longest mapped

readlet occurring at its respective position along the read.

3. (pr,m < pr,q =) {i : 9i 2 [N ] pr,m < pr,i < pr,q} = ?)
^ (pr,q < pr,m =) {i : 9i 2 [N ] pr,q < pr,i < pr,m} = ?) holds; there is no mapped readlet
between dm and dq exclusive.

An example of two consecutive readlet alignments is provided by the subsequences overlined and
underlined in green and brown in the top half of Figure 10. These alignments also illustrate one
way an exon-exon junction overlapped by a read is recovered by Rail-RNA: when two readlets align
consecutively to the reference on either side of exactly one intron, the presence of an exon-exon
junction is inferred by searching for characteristic two-base motifs denoting its donor and acceptor
sites. In order of descending prevalence in mammalian genomes according to a survey of GenBank
annotated genes [58], the (donor, acceptor) site pairs Rail-RNA recognizes are (GT, AG), (GC,
AG), and (AT, AC). Such sites are reproduced in the reference sequence if the sense strand is the
forward strand; the (GT, AG) combination appears in Figure 10. If the sense strand is the reverse
strand, the (acceptor, donor) signals may still be read o↵ the reference from left to right as (CT,
AC), (CT, GC), and (GT, AT).

Figure 11: Rail-RNA searches for a match to the read cap that overlaps no aligned readlets if the
cap spans at least min exon size bases, where min exon size is by default 9.

Figure 11 displays a case where a read has an unmapped 9-base “cap” to the left of a readlet
aligned by Bowtie in R: the nine bases do not belong to any mapped readlet. In this event, Rail-
RNA searches the reference search window size bases upstream of the leftmost readlet alignment
for maximum matching prefixes of the cap. By default, search window size is 1000. If a prefix found
spans fewer than min exon size bases, it is ignored. by default, min exon size is 9. Otherwise, Rail-
RNA treats the maximum matching prefix closest to the leftmost readlet alignment as a readlet
alignment itself. This procedure is mirrored if there is a cap at the right end of the read, where
the search is then downstream of the rightmost aligning readlet. So the set of mutually compatible
readlet alignments R may be augmented by up to two caps.

Assuming a pair of consecutive readlet alignments is correct and that only one intron lies
between them, they uniquely determine the length L of the intron along the reference in the
absence of intervening indels whose net length is nonzero: for consecutive readlets
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(dm, pr,m, s, ps,m, `m) , (dq, pr,q, s, ps,q, `q) 2 R,

L = |ps,q � ps,m|� `m .

If more than one intron lies between two consecutive readlet alignments, L as defined above is the
sum of the lengths of the introns. For every pair of consecutive readlet alignments in R, Rail-
RNA searches for up to two intervening introns with valid (donor, acceptor) motifs that satisfy
the constraint on L. When searching for two introns, Rail-RNA requires that the size of the
exon between them is above an adjustable parameter min exon size. Denote as F the region
of the reference framed by the two consecutive readlets. Search windows are confined to the
search window size bases at either end of F . Several candidate introns or intron pairs may be
uncovered within F and in the vicinity of its ends. Each candidate is placed in one of three
preference classes according to (donor, acceptor) signal: (GT, AG) is preferred to (GC, AG), which
is preferred to (AT, AC). Rail-RNA also ranks each candidate within its respective class: its score
is determined from global alignment of the read subsequence overlapped by the two consecutive
readlet alignments to the exonic bases surrounding the candidate intron or intron pair. Here, we
assign +1 for each matched base and -1 for each single-base gap and mismatched base. Rail-RNA
selects candidate introns and intron pairs with the highest score in the most-preferred class with
at least one alignment. For every intron, a (key, value) pair is written for each sample in which r
occurs. More specifically, the output of this step is:
key: strand of origin of intron, intron start position, intron end position
value: a list of tuples [(i,�i)], where i indexes a sample and �i is the number of reads in the sample
with the searched read sequence in which the intron was found.

The discussion in this section is so far predicated on how all the readlet alignments derived
from a read r are mutually compatible, forming a valid set R. This ideal situation is not always
realized. The bottom half of Figure 10 displays how readlet alignments may be incompatible:
readlets may not align to the same strand in the same order in which they appear along the read,
or a readlet may have more than one alignment. In such cases, Rail-RNA selects a “consensus”
set of mutually compatible alignments from all the readlet alignments as follows. Consider the set
V = {(di, pr,i, s, ps,i, `i, ki)} of all alignments of all readlets reported by Bowtie. Form a complete
signed graph G = (V,E) whose vertices correspond to readlet alignments:

1. Start with the vertices disconnected.

2. Place a “+” edge between every pair of alignments that are the closest compatible alignments
of their corresponding readlets. Here, “closest” means “having the smallest number of bases
between their start positions along the reference.”

3. Complete the graph with “�” edges.

Correlation clustering finds the clustering of vertices that maximizes the number of agreements—
that is, the sum of the number of “+” edges within clusters and the number of “�” edges between
clusters. A consensus set of compatible alignments may be derived from the largest such cluster.
However, correlation clustering is an NP-hard problem [59], so we use a randomized 3-approximation
algorithm introduced in [60]. Its pseudocode is given in Algorithm 1. After this procedure, the
pivot alignment in each cluster Ci is compatible with every other alignment in that cluster. However,
it is not guaranteed that all the alignments in a given Ci are mutually compatible. So Rail-RNA
sorts the clusters in order of descending size and loops through it: it first forms a unweighted graph
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Algorithm 1: KwikCluster

Input : a signed graph G = (V,E) whose vertices represent readlet alignments
Output: a set of clusters {Ci} of readlet alignments

V 0  V ;
i 0;
while V 0 6= ? do

Ci  ?;
dp  randomly selected pivot alignment from V 0;
Move dp from V 0 to Ci;
Move all alignments from V 0 that share a “+” edge with dp on G to Ci;
i i+ 1 ;

Gi for a given Ci, placing an edge between two alignments if and only if they are compatible. An
e�cient variant of the Bron-Kerbosch algorithm [61] is then used to obtain a maximum clique Ci
for Ci. This algorithm enumerates all maximal cliques, which includes all maximum cliques. If the
algorithm finds more than one maximum clique for a given cluster, the maximum clique is chosen
at random. A good explanation of the algorithm is provided in the following direct quote from [62].

A recursive call to the Bron–Kerbosch algorithm provides three disjoint sets of vertices
R, P , and X as arguments, where R is a (possibly non-maximal) clique and P [X =
�(R) are the vertices that are adjacent to every vertex in R. The vertices in P will be
considered to be added to clique R, while those in X must be excluded from the clique;
thus, within the recursive call, the algorithm lists all cliques in P [R that are maximal
within the subgraph induced by P [ R [ X. The algorithm chooses a candidate v in
P to add to the clique R, and makes a recursive call in which v has been moved from
R to P ; in this recursive call, it restricts X to the neighbors of v, since non-neighbors
cannot a↵ect the maximality of the resulting cliques. When the recursive call returns,
v is moved to X to eliminate redundant work by further calls to the algorithm. When
the recursion reaches a level at which P and X are empty, R is a maximal clique and is
reported . . . . To list all maximal cliques in the graph, this recursive algorithm is called
with P equal to the set of all vertices in the graph and with R and X empty.

If Ci spans more vertices than Ci+1

—the next cluster from the sorted list—or if Ci is the last
cluster from the list, and if there are no cliques of the same size among those computed so far,
Rail-RNA selects Ci as the set of mutually compatible readlet alignments from which it infers
exon-exon junctions. If there are multiple cliques of the same size, the software does not search
the read sequence for exon-exon junctions. So when there are no such ties, Rail-RNA selects the
largest clique from among the {Ci}. While the time complexity of the Bron-Kerbosch algorithm
is exponential in the number of graph vertices, it executes quickly in practice: 1) it is run only on
each cluster of readlet alignments where at least one alignment is compatible with other alignments
from the cluster, so there are few vertices; and 2) the number of possible of alignments Rail-RNA
studies for a given readlet is limited by Bowtie’s -m parameter; as mentioned above, no readlet
alignments are reported when more than by default 30 alignments are uncovered.
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5.21 Spliced alignment using substrings and seed-and-extend

Rail-RNA’s strategy of performing spliced alignment by first extracting substrings from reads and
searching for where they occur in the reference genome using an index, is very well studied. It
was used in early spliced alignment tools including QPALMA [16] and TopHat [9]. Rail-RNA’s
strategy, including its us of overlapping substrings, is perhaps most similar to the seed-and-vote
strategy of Subjunc [38]. In seed-and-vote, equally spaced, overlapping 16-bp segments of reads
called subreads (synonymous with readlets) are mapped to the reference genome with a hash index,
which requires no mismatched bases between reference and read sequence. Each alignment of a
subread is counted as a vote for its location in the reference. A single subread may thus vote for
up to as many locations in the genome as it has alignments. If the two mapping locations with
the most votes are on the same strand, their intervening sequence is then searched for the (donor,
receptor) signal (GT, AG) to identify an exon-exon junction. Some salient di↵erences between
Rail-RNA’s algorithm and Subjunc’s seed-and-vote follow.

• Rail-RNA’s algorithm never defines boundaries of mapping locations of groups of readlet
alignments when resolving the alignments of multimapping readlets. Rather, it obtains clus-
ters of mutually compatible readlet alignments, where compatibility is illustrated in Figure
10. The largest cluster of mutually compatible readlet alignments is nominated for a search
for exon-exon junctions.

• Seed-and-vote searches for (donor, acceptor) signals between the top two mapping locations,
while the largest cluster of readlet alignments found by Rail-RNA may include groups of
alignments to the same strand in more than two disconnected regions. Such a cluster may
thus capture more than two distinct mapping locations, each contained in a di↵erent exon,
and a read may be found to overlap two or more exon-exon junctions on first pass.

• Rail-RNA searches for (donor, receptor) signals (GT, AG), (GC, AG), and (AT, AC), while
Subjunc searches for (GT, AG) only (when it is not also searching for fusion events). Searching
for more (donor, receptor) signals increases recall at the expense of precision.

The crux of the di↵erence between Rail-RNA’s strategy and seed-and-vote is that the largest
cluster of readlet alignments found by Rail-RNA—the “nominated” cluster—may include several
mapping locations whose number is not specified a priori, while Subjunc searches explicitly for the
top two mapping locations.

5.22 Stringency of the junction filter

As described in the main text, Rail-RNA applies a junction filter to remove poorly supported exon-
exon junctions from consideration prior to realignment. By default, a junction survives the filter
if it is (a) covered by 5 or more reads in one sample, or (b) covered by at least 1 read in 5% of
samples. So a read covered by exactly 1 read in 6 out of 100 samples will survive the filter, but a
read covered by exactly 4 reads in 4 out of 100 samples (and not covered in any other sample) will
be removed.

The filter’s behavior depends on the exon-exon junction profile across samples, but it is instruc-
tive to consider it in relation to simpler filters. We use the name “coverage-1” to describe a filter
that keeps any junction covered by at least one read in any sample. We use “coverage-5” to describe
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a filter that keeps any junction covered by at least 5 reads in any sample. The “coverage-5” filter
is more stringent than the “coverage-1” filter.

The Rail-RNA filter, which we call “borrow-5-5,” has a stringency that is intermediate between
“coverage-1” and “coverage-5.” In the case where no junction is covered in 5% of samples, the
“borrow-5-5” filter is the same as the “coverage-5 filter.” In the case where every junction covered
in one sample is also covered in at least 5% of samples, the “borrow-5-5” filter is the same as the
“coverage-1” filter.

Real RNA-seq datasets are between these extremes. If the samples are replicates of the same
condition, we expect gene expression profiles and junction profiles to be fairly consistent across
samples, similarly to the scenario where “borrow-5-5” acts like the less stringent “coverage-1”
filter. If the samples are very di↵erent, then “borrow-5-5” acts like the more stringent “coverage-5”
filter.

5.23 Detail: Enumerate intron configurations along read segments

Intron configurations are obtained as follows. A directed acyclic graph (DAG) is constructed for
every combination of sample and strand for which introns were detected. Each vertex of the DAG
represents a unique intron ki = (si, ei), where si is the coordinate of the first base of the intron, and
ei is the coordinate of the first base that follows the intron. An edge occurs between two introns
k
1

and k
2

if and only if they do not overlap—that is, the coordinates spanned by the introns are
mutually exclusive—and no intron k

3

occurs between k
1

and k
2

such that k
1

, k
2

, and k
3

do not
overlap. An edge always extends from an intron with smaller coordinates to an intron with larger
coordinates. Each edge is weighted by the number of exonic bases between the introns it connects.
Figure 12 depicts a portion of an example DAG.

Figure 12: An example DAG. Vertices correspond to introns and are labeled by their start and end
positions. An edge extends from one intron to another that comes after it along the strand. Every
edge is weighted by the number of exonic bases between the introns it connects.

The paths through the DAG span all possible combinations of nonoverlapping introns along
the strand for a given sample. Finding all subpaths (sequences of introns), each of whose weights
is less than readlet config size, enumerates all possible combinations of exon-exon junctions a read
segment s(readlet config size) can overlap. In fact, the parameter readlet config size could theoret-
ically be set to equal the maximum length of all reads across samples. Then, after concatenating
and indexing the exonic sequences surrounding intron configurations to form transcript fragments
(isofrags) and indexing, Bowtie 2 could realign entire reads to isofrags end-to-end to immediately
obtain candidate spliced alignments. Unfortunately, finding intron combinations in “hot spots,”
where there are many alternative splicings and short exons, can become computationally intractable
for large readlet config size. Even taking readlet config size = 50 can become challenging in later
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steps, substantially increasing the time it takes to build a Bowtie 2 index of transcript fragments.
This explains our choice readlet config size = 35: it’s large enough so Bowtie 2 can successfully iden-
tify which read sequences are derived from which transcript fragments, soft-clipping as necessary,
but also small enough to make intron configuration enumeration and subsequent index construction
manageable.

A worker handles one given strand for a given sample at a time. Enumerating combinations of
exon-exon junctions that could be overlapped by read segments proceeds for each (sample, strand)
combination. Rail-RNA uses a streaming algorithm that alternates between construction and
consumption of the DAG. Only a portion of the DAG is in memory at a time. Call this portion
the mDAG. For a given worker, the input to the construction-consumption algorithm is a sorted list
of introns detected by Rail-RNA in a given sample along a given strand, where the sort key is intron
start position. The construction operation reads a chunk of this list and augments the mDAG. A
subsequent consumption operation erases a part of the mDAG after the intron combinations for
that part have been enumerated. Construction and consumption operations are described in detail
below.

Construction: The edges of the DAG are output for consumption in an order consistent with
a topological ordering of its vertices. In other words, an edge is not generated until every edge
for which its source vertex is a sink vertex has already been generated. As mentioned above, the
construction subroutine operates on a streamed list of intron positions [{(si, ei)}] sorted in order
of ascending si, as provided by a previous aggregation step. Two data structures are needed to
encode the DAG as it is constructed: the set U , containing intron vertices that do not yet have any
children, and L, a dictionary that, where possible, maps each intron (the key) to its corresponding
successive nonoverlapping intron with the smallest end position read so far (the value). For each
new intron ki = (si, ei) read:

1. The vertices in U and L are checked for whether ki is their child—that is, whether vertices
previously read are connected to ki—and corresponding edges are yielded. As edges are
yielded, vertices from U may be promoted to L.

2. Each “value” vertex kj in L is replaced with ki if ei < ej .

3. Every vertex kj in L is checked for whether its corresponding value is itself a key. If this
condition is satisfied, an edge can never connect kj with any introns streamed later, and kj
is removed from L.

Rail-RNA generates the DAG 10, 000, 000 bases at a time. After a portion of the DAG is pro-
duced, all possible exon-exon junction combinations that can be overlapped by a read segment
s(readlet config size) are output for processing in the next steps. Rail-RNA accomplishes
this by considering each vertex separately and finding the ways its associated exon-exon junction
can be the first along s; that is, it walks every path starting from that vertex edge by edge until
its weight exceeds readlet config size.

Consumption: The mDAG is dynamic: edges and vertices may have previously been consumed
so that there are new source vertices and sink vertices. A source vertex k is removed from the
mDAG when all paths originating at every child vertex ki of k have been reviewed to find intron
configurations that correspond to exon-exon junctions spanned by readlet config size exonic bases.
k can be removed at this time because it is no longer needed to find by how many exonic bases
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to the left of ki an isofrag can possibly extend before running into an intron. More specifically, an
edge from k to ki is removed if and only if:

1. All edges with ki as the source have been generated. By construction, this occurs if ki has at
least one grandchild.

2. Every path of maximal length originating at ki = (si, ei) whose weight is less than
(readlet config size � 1) can be constructed. Suppose {(sj , ej)} are the children of ki, and
let {s, e} be the as-yet-unconsumed vertex with the largest s from the dynamic DAG. This
occurs if for every j, s� ej � readlet config size � 1� (si � ej).

The alternation continues until the end of the strand is reached. At this point, the edges connecting
remaining vertices in U and their new sinks are yielded, and remaining intron configurations
are output.

5.24 Detail: Retrieve and index transcript fragments that overlap exon-exon

junctions

Consider the key-value pair ((t, {(si, ei)}), (lj , rj)), where i 2 [N ] and j indexes samples. The key
is an intron configuration composed of N introns, where the variable t stores the strand of the
intron. The value is an ordered pair (lj , rj). The variable lj stores the number of bases that must
be traversed upstream of s

1

before another complete intron is found along s in some sample; the
variable rj stores the number of bases that must be traversed downstream of eN before another
complete intron is found along s in some sample. If no intron precedes (s

1

, e
1

), l is recorded as
“not available,” and if no intron succeeds (sN , eN ), r is recorded as “not available.”

In the first step referenced in the main text, each worker operates on an intron configuration at
a time. In general, an intron configuration will have appeared in several samples, but the {(lj , rj)}
could vary from sample to sample because the introns identified in each sample are di↵erent.
During the step, a given transcript fragment is assembled from reference exonic bases surrounding
the intron configuration (s, {(si, ei)}); the fragment starts at coordinate s

1

�minj lj and terminates
at coordinate e

1

+ minj rj . Because we use the minima of lj and rj , there is no chance a given
transcript fragment overlaps exons besides those demarcated by the introns (t, {(si, ei)}). Each
transcript fragment is associated with a new reference name encoding its start and end coordinates
and which junctions are overlapped.

5.25 Detail: Finalize combinations of exon-exon junctions overlapped by read

sequences

Local alignment of a given read sequence to isofrags with Bowtie 2 in general outputs alignments
of several (possibly overlapping) read segments. The positions of the alignments along the isofrags
gives precise information about where and which exon-exon junctions could possibly be overlapped
by the read sequence. An undirected graph is constructed from this list of exon-exon junctions,
each of which corresponds to a distinct intron. Each vertex is a di↵erent intron (t, s, e), where t
denotes strand, s the start coordinate on the reference, and e the end coordinate. An edge is placed
between two vertices (ti, si, ei) and (tj , sj , ej) if and only if

1. ti = tj ; the introns are on the same strand.
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2. There are no more than L� 1 exonic bases between introns i and j.

3. min(ei, ej)�max(si, sj) � 0; the introns do not overlap.

The Bron-Kerbosch algorithm is executed on this graph to determine all its maximal cliques. This
algorithm is described toward the end of Section 5.20. Maximal cliques are considered candidate
combinations of exon-exon junctions that may be overlapped by the read sequence.

5.26 Detail: Compile coverage vectors and write bigWigs

We describe how we write bigWigs encoding coverage of the genome by the reads in each sample
here. Previous steps that have decided primary alignments (Sections 3.2 and 3.10) have output
exon di↵erentials associated with each read. The exon di↵erentials of a read are assigned according
to the following rules.

1. Divide each contig of a reference genome up into partitions, each spanning
genome partition length bases. Rail-RNA takes
genome partition length = 5000 by default.

2. Associate a +1 with the start coordinate of every exonic chunk of the read’s primary align-
ment. Here, exonic chunks are separated by exon-exon junctions or, optionally, deletions from
the reference.

3. Associate a �1 with the end position of every exonic chunk of the read’s primary alignment.

4. Associate a +1 with the beginning of every genome partition spanned by the read.

These rules permit the reconstruction of the coverage of every base in a given genome partition
solely from the exon di↵erentials within that partition. This is conceptually simpler and requires less
computational e↵ort than compiling coverage from intervals representing the spliced alignments.

Figure 13 illustrates how coverage can be reconstructed from di↵erentials. Initialize a variable
v recording coverage at a given base to 0, and walk across a given partition base by base from left
to right. Add the exon di↵erentials at a given base to v to obtain the coverage at that base. Note
that one exonic chunk lies across the border between partitions 2 and 3 and thus contributes an
extra exon di↵erential +1 to the beginning of partition 3. This special case illustrates the necessity
of Rule 4: the extra +1 is necessary to obtain the correct coverage value of 1 at the beginning of
the partition.

In the initial reduce step R
1

, each worker operates on all of the exon di↵erentials for a given
sample and genome partition. The worker computes that sample’s coverage at each base in the
partition, a task made easier because the di↵erentials are pre-sorted along the length of the partition.
The output is compacted using run-length encoding: coverage is only written at a given position if
it has changed from the previous position.

A challenge in this step is load balance. The number of exon di↵erentials to be tallied can
vary drastically across genome partitions. Therefore, an additional reduce step R

1a precedes R
1

.
R

1a simply sums exon di↵erentials at a given position in the genome for a given sample. The way
key/value pairs are paritioned in preparation for R

1a, a given task will process a random subset
of genome positions. So for R

1a, the distribution of load across workers is close to uniform in
practice. With the di↵erentials pre-summed in this way, the number of key-value pairs processed in
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Figure 13: An illustration of how exon di↵erentials are summed along a partition to give appropriate
coverage values. Note that there is an extra +1 at the beginning of partition 3 so a worker operating
on only partition 3 can obtain the right initial coverage value.

a given partition in step R
1

is upper-bounded by the number of positions in the partition, greatly
improving load balance in that step.

An extra complexity of our discussion above is that some reads have “unique” primary alignments—
that is, each of these reads has exactly one highest-scoring alignment—while other reads have several
highest-scoring alignments, and the primary alignment is chosen by breaking the tie. We classify
exon di↵erentials according to whether they are derived from uniquely aligning reads and in R

1a,
obtain the exon di↵erential sum at a given base position for each of primarily alignments and
uniquely aligning reads.

The coverage output of R
1

is partitioned by sample and sorted by genome coordinate. In
another reduce step R

2

, each worker can thus operate on all the coverage output of a given sample
at once. Coverage for primary alignments and uniquely aligning reads are each written to a file
in bedGraph format [63], which is converted to a compressed bigWig using the command-line tool
bedGraphToBigWig [41]. In elastic mode, the bigWigs for each sample are uploaded to S3, where
it is subsequently accessible on the Internet. During the step R

2

, Rail-RNA also computes the
upper-quartile normalization factor [64] associated with each sample.

5.27 Analyzing in batches

In some settings, not all samples comprising the dataset of interest are available at the same time.
They might become available in “batches” due to study design or to the timing of consortium data
releases. In these cases, the user would like to be able to analyze each batch separately without the
final results being dependent on the order in which the samples were analyzed. This is sometimes
called the N + 1 problem.

Rail-RNA allows the user to analyze a set of related samples in batches such that the output
depends only on which batch is analyzed first, and not on any other aspect of batch order. By
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default, Rail-RNA outputs the “isofrag” index for a given run—that is, a Bowtie 2 index of tran-
script fragments spanning exon-exon junctions. These are inferred from all the samples given to
Rail-RNA (see Section 3.7). For a batch of N samples where N is large, and given filter parameters
K and J (see Sections 3.5 and 5.22), junction content will change only slightly when one additional
sample is added.

Rail-RNA permits reuse of the isofrag index from the first run to align subsequent batches. In a
Rail-RNA run that reuses the isofrag index, Rail-RNA does not search for exon-exon junctions. This
mode of running Rail-RNA is analogous to modes of running alternative alignment software that
use a gene annotation, where only junctions from the annotation rather than novel junctions are
found. We are currently exploring what appropriate values of N are for obtaining stable exon-exon
junction indexes for reuse.
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