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ABSTRACT 

Due to their relatively low-cost per sample and broad, gene-centric coverage of CpGs across the 

human genome, Illumina’s 450k arrays are widely used in large scale differential methylation studies. 

However, by their very nature, large studies are particularly susceptible to the effects of unwanted 

variation. The effects of unwanted variation have been extensively documented in gene expression 

array studies and numerous methods have been developed to mitigate these effects. However, there 

has been much less research focused on the appropriate methodology to use for accounting for 

unwanted variation in methylation array studies. Here we present a novel 2-stage approach using 

RUV-inverse in a differential methylation analysis of 450k data and show that it outperforms existing 

methods. 

INTRODUCTION  

DNA methylation, which is the addition of a methyl (CH3) group to the cytosine of a CpG dinucleotide, 

is the most widely studied epigenetic modification in human development (1) and disease (2–4). As 

interest in epigenetics has grown, Illumina’s Infinium HumanMethylation450 (450k) arrays have 

emerged as a popular platform for genome-wide methylation analysis, particularly for projects 

requiring large numbers of samples. Its broad coverage of the human genome (>450,000 CpGs) and 

relatively low cost per sample has resulted in the extensive use of 450k methylation arrays in several 

large studies such as The Cancer Genome Atlas (TCGA), Encyclopaedia of DNA Elements 

(ENCODE), and numerous Epigenome-Wide Association Studies (EWAS)(5–7).  

Unfortunately, large studies can be particularly susceptible to the effects of unwanted technical 

variation due to the large number of samples requiring processing. For example, processing may 

have to occur over several days or be performed by multiple researchers thus increasing the 

likelihood of technical differences between “batches”. Furthermore, unwanted technical variation is 

often present against a background of unwanted biological variation. For example, EWAS are often 

performed using blood as it is an easily accessible tissue; however, blood is a heterogeneous 

collection of various cell types, each with a distinct DNA methylation profile. Many recent studies have 

highlighted the need to account for cell composition when analysing DNA methylation (8–10) as it has 

been shown to influence differential methylation (DM) calls (6, 11–15).  

The impact of unwanted variation such as batch effects, has been extensively documented in the 

literature on gene expression microarrays (16, 17) and numerous methods have been developed for 

correcting for unwanted variation in expression array studies. When the sources of unwanted variation 

are “known”, it is common to incorporate an additional factor into a linear model to explicitly account 

for batch effects, or to apply a method such as ComBat, which uses an empirical Bayes (EB) 

framework to adjust for “known” batches (18). However, sometimes the source(s) of unwanted 

variation are unknown. For example, a sample of sorted cells may contain contaminating cells of 

another type and the level of contamination may vary between samples. This introduces unwanted 

variation into the data, however the source of the variation may not be obvious and is thus impossible 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2015. ; https://doi.org/10.1101/019042doi: bioRxiv preprint 

https://doi.org/10.1101/019042
http://creativecommons.org/licenses/by-nc-nd/4.0/


to model. In such cases, methods such as Surrogate Variable Analysis (SVA) (19, 20) and 

Independent Surrogate Variable Analysis (ISVA)(21) attempt to infer the unwanted variation from the 

data itself. Recently, Gagnon-Bartsch and Speed (22) published a new method, Remove Unwanted 

Variation, 2-Step (RUV-2), which introduced the concept of estimating the unwanted variation using 

negative control features that should not be associated with the factor of interest but are affected by 

the unwanted variation. More recently, the authors have extended their work on RUV-2 to develop 

RUV-inverse and several other variations (23).  

RUV-2 uses factor analysis of the negative control features to estimate the components of unwanted 

variation. A number, k, of the unwanted factors are then included in a linear model to perform the 

adjustment. The choice of k is critical to the performance of the algorithm but there is no 

straightforward way to select k (22). RUV-inverse removes the need to empirically determine the 

“best” k and, unlike RUV-2, is also relatively robust to the misspecification of negative control features 

(23).  

RUV-2 has been successfully applied to metabolomics, gene expression and 450k methylation array 

data (8, 22, 24). Compared to RUV-2, RUV-inverse has shown improved performance on gene 

expression data (23). Given that RUV-inverse offers both usability and performance improvements 

over RUV-2 (23) it could prove useful in mitigating the effects of unwanted variation in 450k array 

studies. However, as different data types have different properties, it is not obvious how to apply the 

method to 450k data to obtain the best results. For example, 450k arrays contain over 450,000 

features as opposed to the ~20,000 present on gene expression arrays and there is no direct 

analogue of house-keeping genes in the methylation context. As such we have developed a novel, 2-

stage approach specific to using RUV-inverse with 450k methylation data (Figure 1).  

The ability to robustly correct for unwanted variation in 450k methylation array data would not only aid 

in improving the results of individual studies, it would also enable the effective integration of data on 

the same samples from different studies/sources, resulting in increased statistical power to detect true 

DM. Linear regression with adjustment, ComBat (18), SVA (19, 20) and ISVA (21) have all been 

applied to different types of methylation array data in various contexts (21, 25–29), however there has 

not been a comprehensive assessment of the relative performance of all these methods in a single 

study, focused on 450k data. Here we present our 2-stage approach, RUVm, for the application of 

RUV-inverse to 450k methylation data and evaluate it against the methods previously outlined. We 

show that our approach is robust and consistent and often outperforms other methods in a differential 

analysis of 450k data. We make the method for 450k analysis freely available in the missMethyl 

Bioconductor package. 

MATERIAL AND METHODS 

Data processing and analysis 

All 450k data was imported into the R statistical computing environment (3.1.0) (30) using the 

Bioconductor (3.0) package minfi (1.12.0) (31). Data was filtered based on the following criteria: poor 
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quality samples (mean detection P-value > 0.01) were discarded; probes with a detection p-value > 

0.01 in at least 1 sample within a dataset were also discarded, as were X and Y chromosome probes, 

probes with SNPs at the CpG or single base extension site and the cross-reactive probes identified by 

Chen et al. (32).  

All DM analyses were performed on M-values (M = log2(methylated/unmethylated)) as recommended 

by Du et al. (33). Regression analysis was performed using the empirical Bayes methodology 

available in limma (3.22.1) (34, 35). We used the reference implementations of the ComBat (36) and 

SVA (19, 20) methods in the sva package (3.12.0) (37). Known batches were passed as a variable to 

the ComBat function and we allowed SVA to estimate all the surrogate variables. Both methods were 

used in conjunction with limma. We also used the reference implementation of ISVA (21) from the 

isva CRAN package. As with SVA, we allowed ISVA to estimate all the surrogate variables. RUVm 

analysis was performed using Bioconductor missMethyl (1.1.1) package implementation, with method 

= “inv”. Unless otherwise stated, all p-values reported were adjusted for false discovery rate using the 

Benjamini-Hochberg method (38). The R code for all the analyses is available in Additional Files 2-6. 

RUV-inverse 

With RUV-inverse, differential methylation is estimated using a generalized least squares (GLS) 

regression. The covariance matrix that is used is the empirical covariance matrix of the negative 

controls. Some difficulty arises in the calculation of the standard errors. The "traditional" GLS standard 

errors end up being the same for every CpG; however, this is undesirable, as we believe that some 

CpGs are more variable than others. To solve this problem, and allow different CpGs to have different 

standard errors, we calculate the standard errors using the "inverse method," described in detail in 

Gagnon-Bartsch et al. (23), and also summarized briefly in Additional File 1.   

The basic idea of the inverse method is to re-fit the model, but including an extra, randomly-generated 

column in the design matrix. The estimated regression coefficient for this random column should be 

about zero, because there is no "true effect" associated with this random column. The extent to which 

the estimated regression coefficient is not precisely equal to zero for any particular CpG gives us 

information about the variability of that CpG. This information can be used (after repeating the 

procedure many times) to calculate a standard error for the CpG.    

Ageing data 

Test set. The birth versus 1.5 years (Study 1) methylation data was published by Martino et al. (39) 

(GSE42700). Briefly, buccal cells were collected from 30 individuals at birth and 1.5 years. The cohort 

included 10 monozygotic twin pairs and 5 dizygotic twin pairs.   

The birth versus 1 year (Study 2) methylation data was published by Martino et al. (40) (GSE34639). 

Blood samples were collected from 48 individuals at birth and again at 1 year of age. Half of the 

samples from each time point were cultured in either standard media or media containing anti-CD3 

antibody; CD4+ T-cells were then isolated by positive selection. DNA from 2 individuals was pooled 
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into a single sample at each time point, resulting in 12 conventional and 12 anti-CD3 birth samples 

and 12 conventional and 12 anti-CD3 1 year samples. As the authors did not find any significant 

methylation differences between the conventional and anti-CD3 treated samples we elected to only 

utilise the conventional samples in this study, leaving 12 birth and 12 1 year samples. 

The birth versus 100 year (Study 3) methylation data was published by Heyn et al. (41) (GSE30870). 

Peripheral blood was taken from 20 healthy centenarian donors and umbilical cord blood was taken 

from 20 newborns. For 19 of the newborn and centenarian samples, DNA was extracted from either 

CBMCs or PBMCs, respectively. DNA was extracted from CD4+ T cells purified from the remaining 

birth and 100 year sample. We only used data from the 38 unsorted samples in this study. 

The 30 Study 1 samples, 24 Study 2 samples and 38 Study 3 samples were then combined into a 

single dataset and filtered as previously described, leaving 401,057 probes. The combined dataset 

was also pre-processed using 2 methods: SWAN (42) and Stratified Quantile Normalisation (SQN) 

(43), producing 2 different datasets. The sample identifiers and descriptions can be found in 

Supplementary Table 1. 

Truth set. The birth versus 18 years data was published by Cruickshank et al. (44) (GSE51180). The 

study was comprised of 24 subjects; 12 who were born prematurely and 12 who were born at term. 

DNA was extracted for each subject at birth from a neonatal Guthrie card and at 18 years of age from 

a dried blood spot; resulting in a total of 48 DNA samples. One of the term birth samples was 

excluded by the authors as it failed quality control, leaving 47 samples.  

The data was pre-processed using SWAN (42) and filtered as previously described, leaving 395,173 

CpGs. Blood cell type proportions were estimated using the ‘estimateCellCounts’ minfi function, which 

implements the method described by Jaffe and Irizarry (8). The regression analysis for detecting DM 

between birth and 18 years was performed using limma; to adjust for differences in cell type 

composition between the ages, the cell type proportions previously estimated using 

‘estimateCellCounts’ were included as covariates in the linear model.          

Smoking data 

Test set. The smoking methylation data was originally published by Liu et al. (6)(GSE42861) as part 

of their study examining the association between methylation and rheumatoid arthritis. We used the 

200 current smoker and 193 never smoker samples in our analysis (Supplementary Table 2). These 

included a mix of rheumatoid arthritis patients and controls of both sexes and a range of ages. The 

DNA was extracted from EDTA-treated blood.   

An additional 656 methylation samples with unknown smoking status were obtained from the dataset 

originally published by Hannum et al. (45) (GSE40279). DNA was extracted from whole blood 

samples collected from both male and female individuals, of two different ethnicities and a range of 

ages. In this study, we used 70 randomly selected samples from the Hannum data and combined 

them with a random sample of 80 current smokers and 50 never smokers from the Liu data to create 
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a dataset with significant unwanted variation (Supplementary Table 3). We generated another two 

datasets using the same approach but with different combinations of randomly selected samples 

(Supplementary Table 4, 5).         

Truth set. We used the 187 CpGs smoking-associated CpGs published by Zeilinger et al. (46) as the 

“truth” set for our analysis (Supplementary Table 6). These CpGs were originally identified by the 

authors in a discovery cohort of 262 current smokers and 749 never smokers and were subsequently 

replicated in a second cohort of 236 current smokers and 232 never smokers (46). The DNA was 

extracted from whole blood. 

Cancer data 

Test set. The Lung Adenocarcinoma (LUAD) data, which is comprised of 427 tumour and 31 normal 

samples, was obtained from TCGA. All data was downloaded from the TCGA Data Portal as 

unprocessed IDAT files. In our analysis, we used all 31 normal samples and 75 tumour samples that 

were on the same BeadChips as the normal samples (Supplementary Table 7). The data was pre-

processed using both SWAN (42) and minfi functional normalisation (FNORM) (47), producing 2 

different datasets. Each of the pre-processed datasets was filtered as described previously, leaving 

411,735 CpGs.    

Truth set. The LUAD bisulfite sequencing data was published by Zheng et al. (48) (GSE56712). Five 

lung tumour and 5 matched normal samples were taken from 5 patients with LUAD. DNA was 

extracted and captured using the Agilent SureSelect Methyl-Seq system, followed by bisulfite 

sequencing, resulting in 15-40 million 90bp paired-end Illumina reads per sample (48). 

We obtained the raw FASTQ files from the Sequence Read Archive (SRA). The reads were assessed 

for quality using FastQC (0.10.1). Trimming was performed with Trim Galore (0.3.7); 10bp were 

trimmed from the 5’ end of each read and 5bp were trimmed from the 3’ end of each read following 

quality trimming and adapter removal. Read pairs were discarded if at least one read from the pair 

was less than 20bp long. The reads were then mapped to the human genome (hg19) using Bismark 

(0.12.5) and Bowtie2 (2.1.0). Duplicates were removed with the deduplicate_bismark tool. Methylation 

calls were made using the bismark_methylation_extractor. The pipeline for processing the bisulfite 

sequencing data was implemented in bpipe (0.9.8.6) (49) and is available at 

https://github.com/JovMaksimovic/methyl-seq_bpipe. The data was then imported into R (3.1.0) for 

downstream analysis. CpGs not covered by at least 1 read in all 10 sequenced samples were 

discarded, leaving 1,656,501 loci per sample. We then identified the CpGs that were covered in both 

the filtered LUAD 450k dataset and the bisulfite sequencing dataset, which left 221,694 CpGs for 

downstream analysis. Differential methylation analysis of the 5 tumour versus 5 normal methyl-seq 

samples was performed using the Bayesian hierarchical model and Wald test approach implemented 

in the Bioconductor DSS package (50).  

RESULTS 
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RUVm: A 2-stage approach for differential methylation analysis of 450k data using RUV-

inverse 

As with RUV-2, performing a DM analysis using RUV-inverse relies on having negative control 

features to accurately estimate the components of unwanted variation (see Methods)(22, 23). 

Gagnon-Bartsch and Speed (22) emphasise that the choice of negative control features can be 

crucial in determining the effectiveness of the method. Negative control features are probes/genes 

that are known a priori not to be associated with the biological factor of interest, but are affected by 

unwanted variation. For example, in a microarray gene expression study, these could be house-

keeping genes or a set of spike-in controls (22). Although there is some evidence that the CpGs in the 

CpG islands of housekeeping gene promoters are generally unmethylated (51), to our knowledge, 

there is no general list of “housekeeping” CpGs for researchers to draw from that could be used as 

negative control features in a differential methylation analysis with RUV-inverse.  

Given that CpG methylation varies greatly between different cell types, tissues etc. (52, 53), it would 

be beneficial to be able to empirically determine CpG probes that are not associated with a particular 

factor of interest for each individual experiment. However, empirically identifying negative control 

probes shares the same difficulties inherent to determining which probes are differentially methylated, 

particularly in the presence of unwanted variation. Gagnon-Bartsch and Speed (22, 23) outlined a 

strategy in which an initial DM analysis is used to determine empirical control probes (ECPs) for use 

in a subsequent DM analysis. A similar iterated model was also previously proposed by Leek and 

Storey (20). The basic requirements for this strategy to work are that the initial DM analysis is “good 

enough” and that the subsequent DM analysis is somewhat robust to an imperfect set of negative 

control features.  

Based on these criteria, we propose using a 2-stage approach for the DM analysis of 450k data 

(Figure 1). Stage 1 involves performing a DM analysis using RUV-inverse with the 613 Illumina 

negative controls (INCs) present on the 450k array to rank all the CpG probes by p-value based on 

their association with the factor of interest. The INCs are randomly permuted sequences that should 

not hybridize to the DNA template and are generally used to define the system background. Thus, 

they are not expected to contain any biological signal but do capture some technical variation 

between samples, chips, batches etc. which can result in an improvement in probe rankings over an 

unadjusted analysis. However, as the INCs only produce a background level signal and can only 

capture technical variation they are not an ideal set of negative control features. Hence, our approach 

uses the results from Stage 1 to empirically select a more informative set of negative controls from the 

CpG probes on the 450k array. This involves designating a proportion of the least associated CpG 

probes as ECPs for use in Stage 2. In Stage 2, the ECPs are used to perform a second DM analysis 

of the original dataset with RUV-inverse. If necessary, Stage 2 can be performed multiple times to 

further refine the set of ECPs, although this often not necessary (23). For simplicity, the 2-stage 

approach described will henceforth be referred to as “RUVm”.  

Ageing methylation data 
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Batch effects occur because measurements can be affected by factors such as laboratory conditions, 

differences in reagents and/or equipment or because different personnel processed different samples 

(16, 17). To determine how various methods perform at correcting for large batch effects in 450k 

methylation data, we created a dataset with a pronounced batch effect by merging data from three 

different studies concerned with examining changes in methylation due to age. The three contributing 

studies (Study 1-3) all compared methylation at birth to methylation in older individuals (see Methods 

for details). In the resulting dataset, which will henceforth be referred to as the “ageing+” data, the 

batch effects are, in fact, much larger than the factor of interest (Figure 2c-f). This is analogous to 

many EWAS in which the collection and processing of numerous samples makes them susceptible to 

batch effects that are much larger than the effect of interest (case versus control). 

In gene expression studies, relative log expression (RLE) plots are commonly used to show deviation 

from the median gene expression level, to determine the overall quality of the dataset and to identify 

poor arrays. In the case of 450k data, we look at the deviation from the median methylation level for 

each array on the M-value scale. The RLE plot in Figure 2a highlights the existence of 3 clear batches 

in the ageing+ data with the application SWAN (42) within-array pre-processing. Using SQN pre-

processing (43), which normalises between arrays as well as between probe types, improves the 

appearance of the RLE plot (Figure 2b), however there are still differences between the 3 studies, 

particularly Study 1 compared to 2 and 3, indicating that the batch effects have not been eliminated.   

Multi-dimensional scaling (MDS) plots of the data using the 1000 most variable probes show that the 

largest source of variation is cell type, regardless of the type of pre-processing used (Figure 2c, d). 

Unsurprisingly, the buccal cell samples from Study 1 are distinct from the blood-derived samples from 

Studies 2 and 3. Furthermore, the Study 2 samples, which were extracted from purified CD4+ T-cells, 

show significantly less variability than the Study 3 whole blood samples. Both the birth and 1 year 

Study 2 samples cluster closer to the Study 3 birth samples than to the Study 3 centenarian samples. 

Examining a higher dimension reveals that age is associated with the third largest dimension of 

variation in the data (Figure 2e, f). Figure 2f also shows that using SQN (54) pre-processing reduces 

the variation between Studies 2 and 3 compared to using SWAN (42)(Figure 2e).   

Defining the ageing “truth” set. To compare the relative performance of methods for removing batch 

effects in methylation array data, an appropriate “truth” dataset was required. We used an unrelated 

dataset, published by Cruickshank et al. (44), which measured methylation in blood at birth and 18 

years of age in a cohort of 24 individuals to identify CpGs that change in methylation with age (see 

Methods). However, as Jaffe and Irizarry (8) recently demonstrated, changes in DNA methylation can 

be confounded with changes in cell type proportions when methylation is measured in a mixed cell 

population, such as blood. Consequently, as Cruickshank et al. (44) data was derived from Guthrie 

cards and dried blood spots, we needed to ensure that the “truth” set was not contaminated with 

spurious associations due to changes in cell type proportions confounded with age.  

Firstly, we sought to characterise whether there was significant confounding between the age at 

which the samples were taken and changes in blood cell type composition between birth and 18 
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years. We used the method developed by Jaffe and Irizarry (8) to estimate the proportions of the 

various blood cell sub types in the birth and 18 year old samples. Supplementary Figure 1a shows 

that although there were some differences in cell type proportions that correlated with age, the 

confounding is not extreme. In their study, Jaffe and Irizarry (8) showed that in the Heyn et al. (55) 

birth versus centenarian data, the centenarian samples were almost entirely comprised of 

granulocytes, meaning that a comparison of methylation between ages in that dataset is effectively a 

comparison between cell types. We recapitulated their results in this study (Supplementary Figure 1b) 

to illustrate that the Cruickshank et al. (44) data was not as dramatically affected by changes in cell 

type proportions. Furthermore, examining the methylation distribution of the 600 probes identified by 

Jaffe and Irizarry (8) as discriminating between blood cell sub types (Supplementary Figure 2), 

indicates that there is no significant difference in the distribution of these probes between birth and 18 

years (K-S Test p-value = 0.29) in the Cruickshank et al. (44) data (Supplementary Figure 1c). In 

contrast, the difference is statistically significant for the Heyn et al. data (K-S Test p-value < 2x10-16) 

(Supplementary Figure 1d), due to the large difference in cell type proportions between the newborn 

and centenarian samples. It is also apparent that the methylation distribution of the probes from the 

centenarian samples most closely resembles that of the granulocytes, which further supports the 

proportion estimate shown in Supplementary Figure 1b. Finally, a DM analysis using only the 600 cell 

type discriminating probes resulted in 268 significant associations (FDR adj. p-value < 0.05) with age 

for the Cruickshank et al. data and 506 for the Heyn et al. (Supplementary Figure 1e).       

Despite demonstrating that the Cruickshank et al. (44) data does not show dramatic differences in 

estimated cell type proportions between the birth and 18 years samples, differences do exist that may 

contribute to false associations between methylation and age. To mitigate these effects we included 

the estimated cell type proportions as covariates in the limma linear model used to identify differential 

methylation between birth and 18 years. Prior to adjusting for cell type proportions we identified 

100,800 significantly DM CpGs at FDR adj. p-value < 0.05. However, after including the cell type 

proportion estimates in the linear model, our analysis ultimately identified 2,238 “true” positives (FDR 

adj. p-value < 0.05) and 188,895 “true” negatives (FDR adj. p-value > 0.9). 

Differential methylation analysis of ageing+ data. Before comparing the performance of RUVm to that 

of other methods, we were interested in evaluating the effect of ECP selection on the performance of 

RUVm. The selection of ECPs must be based on some criteria for determining the proportion of 

probes that are the “least” associated with the factor of interest. One possibility is to choose ECPs 

based on a cut-off using FDR adjusted p-values (23). This will often work, but may fail if the p-values 

are biased (either systematically inflated or deflated). Another option is to select a fixed percentage of 

the lowest ranked probes based on expected amount of DM in the data; for example, it is expected 

that a DM study of cancer versus normal would identify many DM probes whereas an EWAS 

investigating the effect of maternal smoking during pregnancy is expected to result in very few DM 

loci. To evaluate how selection of ECPs affected the performance of RUVm, we performed several 

analyses on the ageing+ data, which was pre-processed in 2 different ways (SWAN and SQN) and 

varied how ECPs were selected (FDR > 0.1-0.9 or bottom 10-90%). We gauged relative performance 
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by constructing (Receiver Operating Characteristic) ROC curves using the truth data described in the 

previous section.  

Supplementary Figure 3 shows that the proportion of probes selected as ECPs decreases linearly 

with increasing FDR cut-off in the range of 0.1-0.9. It also shows that pre-processing affects the 

proportion of probes selected as ECPs by FDR cut-off, which is unsurprising as normalization 

techniques are designed to reduce the variability between samples and thus influence p-values (56–

58). Supplementary Figure 4 shows that, for the ageing+ data, the performance of RUVm is relatively 

robust to the choice of ECPs. This result is consistent irrespective of pre-processing or the criteria 

used to select ECPs: either FDR cut-off or fixed percentage.  

We then compared the performance of RUVm to several other methods in a DM analysis of the 

ageing+ data; an unadjusted limma regression analysis, an “adjusted” limma regression analysis 

including a factor for study, ComBat (18) with study as the batch variable, ISVA (21) and SVA (19, 

20). We used the 2-stage RUVm approach previously described with ECPs selected at FDR adjusted 

p-value > 0.2. Evaluating the quality of an adjustment on real data is not trivial. Gagnon-Bartsch and 

Speed (22) suggest several useful strategies such as looking at p-value distributions (19, 20) and the 

rankings of “true” positives. If “true” negatives are also available, an ROC curve can be particularly 

useful as it allows the visualisation of the rate of false positives versus the rate of true positives.  

The p-value histograms resulting from the DM analyses of the ageing+ data using various approaches 

are not a dramatic departure from the ideal shape, which is expected to be almost uniform with a 

spike near zero (Supplementary Figure 5). However, regardless of the type of pre-processing used, 

the p-value histogram for the limma analysis without the batch factor does have a significantly shorter 

bar and the most pronounced slope in the height of the bars between 0.05 and 1 (Supplementary 

Figure 5a, b). This suggests that, as expected, the “batch adjusted” analysis is an improvement for 

limma. However, as the p-value histograms for the other methods look very similar, using p-value 

histograms alone is insufficient to discern the relative performance of the other algorithms.            

An ROC analysis using the Cruickshank et al. (44) “truth” data shows that RUVm outperforms other 

methods regardless of the type of pre-processing used (Figure 3). When the data was pre-processed 

with SWAN (42), RUVm performed the best, followed closely by ISVA. ComBat was the next best 

performing method, although its performance was substantially lower than that of ISVA, followed by 

limma with a factor for study and SVA. Unsurprisingly, the unadjusted limma analysis performed the 

poorest (Figure 3a). As SWAN is only a within-array probe type adjustment method it cannot remove 

the large technical variation present between the samples in the ageing+ dataset; therefore, we also 

applied SQN (43), which incorporates between-array normalisation. On the SQN pre-processed data, 

RUVm once again performed the best. Surprisingly, the performance of ISVA decreased substantially 

when the method was applied to data pre-processed with SQN (Figure 3b, Supplementary Figure 6e). 

The limma analysis including a factor for study performed better than ComBat on the SQN pre-

processed data whilst the relative performance of the other methods remained the same (Figure 3b). 

Compared to SWAN, the use of SQN was of greatest benefit to the limma analyses (with and without 
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adjustment for study) (Supplementary Figure 6a, b). The choice of pre-processing method had 

virtually no effect on RUVm (Supplementary Figure 6f) whilst the use of SQN was detrimental to ISVA 

(Supplementary Figure 6e).       

Smoking methylation data 

Although the ageing+ data contains very large batch effects and other unwanted variation, the mean 

absolute difference in methylation between birth and later time points is in the order of ~25%, which 

can be considered a relatively large effect size. Many EWAS aim to identify associations between 

methylation and diseases or environmental factors that have relatively small effects on the methylome 

(<10%). Unwanted variation can be a significant problem for such studies, particularly if the number of 

samples is not large. Consistent, but small, DNA methylation changes associated with smoking have 

been identified in multiple studies (46, 59–61). The differences in methylation between smokers and 

non-smokers are small (~5%) and affect relatively few loci, genome-wide. Thus, the effect of smoking 

on methylation is a good example of a typical EWAS where unwanted variation in the data could be 

very problematic.   

As such, we sought to evaluate the performance of RUVm and other adjustment methods in a DM 

analysis of 450k data of 200 current and 193 never smokers. The data was originally used to identify 

associations between methylation and rheumatoid arthritis by Liu et al. (6) and thus the samples 

came from both rheumatoid arthritis patients and controls, of both sexes and across a range of ages. 

The data was pre-processed with SWAN and filtered as described in the methods, leaving 398,313 

probes. To assess performance we used a list of 187 CpGs identified by Zeilinger et al. (46) and 

subsequently replicated in a second cohort, as “true” positives (Supplementary Table 6). ECPs for 

use with RUVm were selected as the bottom 90% of probes from Stage 1.  

Although the samples came from both rheumatoid arthritis patients and controls with mixed sex and 

age, the data did not appear to contain any large batch effects or other systematic technical variation 

(Supplementary Figure 7a). As there were no “known” batch effects we could only apply methods that 

did not require a batch to be specified. All of the analysis methods that incorporated an adjustment for 

unwanted variation (SVA, ISVA, RUVm) performed similarly, however, the unadjusted limma analysis 

was significantly less sensitive than the other approaches (Supplementary Figure 7b). 

We then constructed a dataset with a large batch effect using a combination of samples from the Liu 

smoking data and samples from a second dataset, published by Hannum et al. (45). The Hannum 

dataset examined the association between methylation and ageing and did not provide information 

about smoking habits. However, as it consists of 656 samples, it is likely that they represent both 

smokers and non-smokers. To create the batch effect we randomly sampled 80 current smokers and 

50 never smokers from the Liu data and then combined these with 70 random samples from the 

Hannum data, 20 of which were assigned as “smokers” and 50 as “never smokers” (Supplementary 

Table 3). This resulted in a dataset of 100 “smokers” and 100 “never smokers”, which will be referred 

to as the “smoking+” data (Figure 4a). This was intended to simulate two types of severe unwanted 
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variation that may occur in an EWAS: a batch effect due to differences in sample collection and 

processing and unwanted variation due to misreported phenotypes and/or sample mix-ups. 

We performed a DM analysis on the smoking+ data using the same methods applied to the ageing+ 

data and assessed performance using the 187 “true” positive CpGs previously described (46). ECPs 

for use with RUVm were once again selected as the bottom 90% of probes from Stage 1. Figure 5b 

shows that all the methods are significantly less sensitive on the smoking+ data than the Liu smoking 

data alone, as the unwanted variation is much more severe. However, RUVm is significantly more 

sensitive than the other adjustment methods on the smoking+ data (Figure 4b); RUVm manages to 

rank almost 100 of the 187 “true” smoking CpGs in the top 1000, whilst the other adjustment methods 

achieve ~60 and the unadjusted limma analysis only manages ~30. 

We generated another two datasets using the same approach but with different randomly selected 

samples and different numbers of samples from the Liu and Hannum datasets (Supplementary Table 

4, 5). RUVm, once again, performed better than the other methods in terms of sensitivity 

(Supplementary Figure 8), with a particularly marked improvement in the case with more extreme 

unwanted variation (Supplementary Figure 8a).                      

Cancer methylation data 

It has been observed that considerable heterogeneity exists in methylation within and between 

tumours (62). When performing a DM analysis of cancer versus normal samples the methylation data 

not only contains the expected methylation heterogeneity between tumours, it also contains unwanted 

biological variation arising from factors such as variable tumour purity due to presence of normal 

tissue, immune cells, etc. However, as cancer has a profound effect on the methylome the differences 

between cancer and normal can be very large (>50% of CpGs) and such comparisons also result in 

many more DM loci compared with other types of EWAS. Thus, unless a study has significant 

artefacts, cancer status is often the largest source of variation. Regardless of this, the presence of 

unwanted variation can affect how probes are ranked and whether they reach statistical significance, 

particularly if the sample size is not large. To investigate how the various adjustment methods perform 

in this scenario, we used the TCGA Lung Adenocarcinoma (LUAD) dataset. The “truth” was defined 

from an independent LUAD Agilent methyl-seq capture bisulfite sequencing dataset (see Methods).  

We used all 31 of the TCGA LUAD normal samples, however, given that the complete LUAD dataset 

contains 427 tumour samples, we elected to use only the tumour samples that were assayed on the 

same chips as the normal samples, resulting in a more manageable number of 75 tumour samples. 

The 450k LUAD data was pre-processed using both SWAN (42) and minfi functional normalisation 

(FNORM), which is a between-array normalisation method for 450k data that is suitable for cancer 

(47). After separately filtering the TCGA LUAD 450k and methyl-seq datasets (see Methods), we 

intersected the remaining CpGs to identify the loci covered by both platforms, leaving 221,694 CpGs. 

RLE plots of the 450k data show that there is between-array variation that appears to be related to 

both cancer/normal status and chip (Figure 5). MDS plots of the 450k data also show evidence of 
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clustering by chip and/or plate, particularly for the normal samples (Supplementary Figure 9a-d). Chip 

and plate effects can also be seen in the MDS plots of the 500 most variable INCs (Supplementary 

Figure 9e, f). An MDS plot of both the 450k and methyl-seq data using the 1000 most variable CpGs 

shows the separation between the cancer and normal samples and the relationship between the 

samples from different platforms (Figure 5). Using the methyl-seq samples, we defined 2,051 “true” 

positives (adj. p-value < 0.05) and 170,629 “true” negatives (adj. p-value > 0.9) by performing a DM 

analysis of the 5 tumour versus 5 normal methyl-seq samples using the Bayesian hierarchical model 

and Wald test approach implemented in the Bioconductor DSS package. 

We then performed Stage 1 of the RUVm analysis. Examining the potential list of ECPs for use with 

RUVm shows that although the relationship between FDR cut-off and proportion of probes selected is 

still linear between 0.1 and 0.9, a high proportion (~40%) of probes is significantly associated with 

cancer status at FDR adjusted p-value < 0.1 (Supplementary Figure 10). Consequently, the 

performance of RUVm is notably reduced when ≥80% of CpGs from the bottom of the list are 

designated as ECPs (Supplementary Figure 11c, d) but is consistent when they are selected based 

on FDR cut-off (0.1-0.9) as significantly cancer-associated probes are avoided (Supplementary Figure 

11a, b). 

We next compared the performance of four different methods in a DM analysis of the 450k LUAD data 

(31 normal versus 75 tumour samples); limma, SVA, ISVA and RUVm. RUVm was applied as 

previously described with the bottom 50% of probes from the Stage 1 ranked list designated as ECPs 

for Stage 2. An examination of the p-value histograms did not reveal a significant departure from the 

ideal for any of the methods (Supplementary Figure 12), although ISVA had visibly lower peaks near 

zero than any of the other methods (Supplementary Figure 12e, f). In an ROC analysis of the SWAN 

pre-processed data, limma, RUVm and SVA perform similarly. Limma performed only slightly better 

than RUVm, which in turn was marginally better than SVA. ISVA showed significantly reduced 

performance relative to the other methods (Supplementary Figure 13a). Using FNORM instead of 

SWAN pre-processing did not change the relative performance of the methods (Supplementary 

Figure 13b). Unexpectedly, apart from ISVA, all of the methods showed a slight decrease in 

performance with FNORM relative to SWAN (Supplementary Figure 14).  

Although we did not utilise the entire TCGA LUAD 450k dataset, the 106 samples included in our 

analysis still provide a lot of power for detecting DM, as is evidenced by the competitive performance 

of limma, despite the significant amount of variability in the data. To investigate how the various 

analysis methods perform on a smaller number of samples we applied a subsampling strategy to the 

106 samples used in the initial analysis. To retain approximately realistic chip effects, we first 

randomly selected chips from the 14 available chips (without replacement). The random selection of 

chips continued until the minimum number of samples required from each group was represented on 

the selected chips; for example, for an analysis of 5 cancer versus 5 normal samples, chips would be 

randomly sampled until there were at least 5 cancer and 5 normal samples present across the 

randomly selected chips. As this approach often resulted in more than the required number of 

samples, we then randomly sampled the exact number samples required from each group (e.g. 5) 
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from only the samples present on the initially selected chips. We performed the subsampling 10 times 

for 5, 10, 15 and 20 samples per group, which produced 40 different datasets. This was done for both 

the SWAN and FNORM pre-processed data, resulting in 80 distinct datasets. A DM analysis was 

performed on each of the 80 datasets using the 4 methods previously mentioned.                   

Comparing the area under the curve (AUC) of the DM analyses of the subsampled data demonstrates 

that RUVm performed consistently well regardless of the number of samples and/or structure of the 

data (Figure 6). RUVm performed particularly well with only 5 samples per group, irrespective of the 

type of pre-processing used. SVA was also reasonably competitive, particularly with larger sample 

sizes and FNORM pre-processing; however, RUVm was computationally much faster. The AUC 

results are reflected in the ROC curves produced using the same data (Supplementary Figure 15).                           

DISCUSSION 

Due to their relatively low-cost per sample and single-nucleotide resolution coverage of >450,000 

CpG sites across the human genome, Illumina’s 450k arrays are widely used in both small and large 

scale DM studies. However, despite the abundance of literature describing and evaluating methods 

for mitigating unwanted variation in the context of microarray gene expression studies there has been 

much less research focused on methylation data.  

Here we present the novel approach, RUVm, which proposes the application of RUV-inverse in 2 

stages (23) to 450k DM studies and show that it outperforms existing methods. In the first stage, we 

use the INCs for an initial DM analysis with RUV-inverse. In the second stage, we use the resulting 

rankings of the CpG probes to select ECPs for a second DM analysis with RUV-inverse. As the INCs 

capture various types of technical variation such as plate or chip (Supplementary Figure 10, 16), their 

use in Stage 1 is often an improvement over an unadjusted analysis. However, caution is advised if 

the INCs are affected by unwanted variation that is strongly correlated with the factor of interest as 

this is likely to be detrimental to the performance of RUVm. Cases displaying strong correlation 

between technical variation and the factor of interest are often reflective of poor experimental design 

and the results of any method must be treated with scepticism. 

An important consideration for the application of RUVm is selection of ECPs. ECPs need to be 

selected on a case by case basis and the results should be carefully evaluated. We investigated the 

effect of ECP selection on the overall performance of RUVm for both the ageing+ and LUAD cancer 

data. We considered selection of ECPs based on a series of FDR cut-offs as well as selecting a fixed 

percentage of probes from the bottom of the ranked list. Our investigation showed that examining the 

results of the DM analysis performed in Stage 1 provides a reasonable indication of the final amount 

of DM and is thus a valuable guide to selecting ECPs. Supplementary Figures 3 and 10 highlight the 

difference between the ageing+ and cancer studies, respectively, in terms of DM and the acceptable 

number of probes that ECPs should be drawn from. Fewer DM CpGs are expected to be found in the 

ageing+ data compared with the cancer data and, as expected, more probes can be designated as 

ECPs in the ageing+ study compared to the cancer study, without detriment to performance. Based 
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on our analyses, we suggest that selecting ECPs based on an FDR cut-off around 0.5 or 

approximately the bottom 50% of the ranked list should work well in the absence of other information.  

Although the use of ECPs is likely to be a good option for many methylation studies, they are not the 

only option for using RUVm to analyse methylation data. Recalling that the criteria for selecting a 

good set of negative controls are (a) that they should not be truly associated with the factor of interest 

and (b) that they should be affected by unwanted variation, one can take a number of approaches to 

choosing negative controls. For example, a researcher may know a priori that, for their particular 

experiment, there is a set of CpGs that should be invariant with respect to the effect they are 

investigating and as such could be useful negative controls. Alternatively, a set of negative controls 

could be defined using data from previous experiments, as in the study by Jaffe and Irizarry (8). 

Whatever strategy is employed, it is always prudent to evaluate how an adjustment is performing; 

examples of some useful approaches can be found in this study and are also discussed in detail in 

Gagnon-Bartsch and Speed (22) and Gagnon-Bartsch et al. (23).  

We have demonstrated that the RUVm can correct for various types of unwanted variation in a DM 

analysis of 450k data. In particular, we have found that RUVm consistently outperforms other 

methods when the effect of unwanted variation in the data is larger than the factor of interest. 

Specifically, using the ageing+ dataset, which was dominated by a very large cell type batch effect 

and cell-type heterogeneity issues, we showed that RUVm performed better than other methods 

irrespective of the type of pre-processing applied to data. With a more subtle phenotype, such as 

smoking, all methods that adjusted for unwanted variation performed similarly on data with no 

discernible batch effects (Figure 5). However, on the smoking+ data, which incorporated a large a 

batch effect and several misallocated samples, RUVm ranked almost twice as many true positives in 

its top 1000 CpGs than any of the other adjustment methods. Consequently, we expect that RUVm 

should be particularly beneficial for the analysis of very “messy” datasets such as those that seek to 

combine samples from multiple labs/studies.  

Cell-type composition has also been demonstrated to be an issue in methylation studies (11–15). For 

the analysis of the ageing+ data, to ensure that the methods we were evaluating were identifying 

CpGs with real age-associations, we carefully assessed the ageing “truth” data to ensure that cell 

type composition changes were not significantly confounded with age. We also adjusted for cell type 

proportion estimates when defining “true” positives and negatives. We thus expected that, in addition 

to accounting for the batch effect, methods that were able to adjust for cell type composition should 

rank “truly” age-associated CpGs more highly than cell type associations. RUVm was able to recover 

almost 80% of “true” positives irrespective of the pre-processing method with a relatively low false 

positive rate. RUVm also performed more consistently than other methods when comparing normal 

tissue and solid tumours, which are often very heterogeneous, particularly when the sample size was 

low. We propose that this demonstrates that RUVm is able to adjust for fluctuations in cell type 

composition, enabling it to prioritise true associations over spurious effects. Jaffe and Irizarry (8) 

made a similar observation in their study when they applied RUV-2 (22). Nevertheless, we would still 
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advise that any methylation study of a mixed-cell population incorporate rigorous checking for serious 

confounding between cell type composition and the factor of interest.               

The RUVm approach proposed herein is a versatile method that effectively accounts for unwanted 

variation in DM analyses of 450k data across a wide variety of studies. RUVm performs particularly 

well in situations where the sources of unwanted variation are large relative to the factor of interest 

and therefore we believe this method will be of great utility to the EWAS community. All of the core 

RUV methods, including RUV-inverse, have been implemented in R and are available in the CRAN 

package ruv (http://cran.r-project.org/web/packages/ruv/index.html). Functions extending the ruv 

package to align it with the limma framework and for its application to 450k data have been 

implemented in the missMethyl Bioconductor package 

(http://www.bioconductor.org/packages/release/bioc/html/missMethyl.html).  
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TABLE AND FIGURES LEGENDS 

Figure 1. A schematic representation of a DM analysis using RUVm. The RUVm approach has two 

stages. The red circles indicate a DM analysis step. The blue rectangles represent the inputs that are 

required for each stage. The green rectangles are the outputs that are produced by each stage. Stage 

1: Perform an initial DM analysis using RUV-inverse with Illumina negative control probes (INCs); 

CpGs are ranked by p-value based on the strength of their association with the factor of interest. 

Stage 2: Use the list of CpGs from Stage 1 to select a set of ECPs which are then used in a DM 

analysis with RUV-inverse. (*) Stage 2 can be performed one or more times.  

Figure 2. Relative Log Expression (RLE) and Multi-Dimensional Scaling (MDS) plots of the ageing+ 

data. These RLE plots show the deviation from the median methylation level (M-value) for each of the 

450k arrays from the 3 ageing studies combined. An MDS plot is analogous to a principal components 

analysis plot. The axes represent the major sources of variation in the data based on the top 1000 

genes with the largest standard deviations between samples; dimension 1 represents the largest 

source of variation, dimension 2 represents the next largest orthogonal source of variation, followed 

by dimension 3, etc. (A) RLE plot: SWAN pre-processed data. The samples are coloured by the study 

the data originated from: Study 1, 2 or 3. (B) RLE plot: SQN pre-processed data. The samples are 

coloured by the study the data originated from: Study 1, 2 or 3. (C) The MDS plot of the first 2 

dimensions of the SWAN pre-processed data shows that the largest source of variation between 

samples is tissue type. (D) The MDS plot of the first 2 dimensions of the SQN pre-processed data 

shows that the largest source of variation between samples is tissue type. (E) The MDS plot of 

dimension 3 versus dimension 1 of the SWAN pre-processed data shows that age is the third largest 

source of variation in the data. (F) The MDS plot of dimension 3 versus dimension 1 of the SQN pre-

processed data shows that age is the third largest source of variation in the data. 

Figure 3. Performance of various adjustment methods in a DM analysis of the ageing+ data. (A) ROC 

curve showing the false positive rate versus the true positive rate for the various adjustment methods 

on the SWAN pre-processed data. (B) ROC curve showing the false positive rate versus the true 

positive rate for the various adjustment methods on the SQN pre-processed data.  

Figure 4. DM analysis of the smoking+ data. (A) MDS plot of the first 2 dimensions of the SWAN pre-

processed smoking+ data shows that the largest source of variation between samples is the study of 

origin and there is no visible clustering by smoking status. The smoking+ data consists of a 
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combination of 80 smokers and 50 never smokers from the Liu data and 70 samples from the 

Hannum data, 20 of which were assigned as "smokers" and 50 as "never" smokers. (B) Performance 

of various analysis methods in a DM analysis of the smoking+ data. The lines represent the 

cumulative number of true positives ranked in the top 1000 CpGs produced by the different methods.  

Figure 5. RLE and MDS plots of a subset of the TCGA LUAD 450k methylation data; includes all 31 

normal samples and 75 of the tumour samples that shared chips with the normal samples. (A) SWAN 

pre-processed data; coloured by tumour/normal status. (B) FNORM pre-processed data; coloured by 

tumour/normal status. (C) SWAN pre-processed data; coloured by chip. (D) FNORM pre-processed 

data; coloured by chip. (E) MDS plot of both the TCGA LUAD data and the methyl-seq LUAD data. 

Uses the top 1000 most variable CpGs of the 221,694 loci covered by both platforms after filtering; 

450k data pre-processed using SWAN. (F) As for (E); 450k data pre-processed using FNORM. 

Figure 6. Performance of the various adjustment methods in DM analyses of smaller datasets 

subsampled from the TCGA LUAD data. The performance is expressed in terms of AUC. Each row 

represents the results for the same datasets pre-processed using either (A) SWAN or (B) FNORM. 

The individual panels in each row show the results at different levels of subsampling: 5, 10, 15 and 20 

samples per group. The different colours correspond to the analysis methods used. A solid circle 

indicates that a particular method has the highest AUC for a single dataset.  

 

Supplementary Table 1. Ageing samples used in this study. 

Supplementary Table 2. Liu et al. (6) smoking samples used in this study. 

Supplementary Table 3. Hannum et al. (45) and Liu et al. (6) samples used in this study to create the 

smoking+ dataset (Combination 1). 

Supplementary Table 4. Hannum et al. (45) and Liu et al. (6) samples used in this study (Combination 

2). 

Supplementary Table 5. Hannum et al. (45) and Liu et al. (6) samples used in this study (Combination 

3). 

Supplementary Table 6. 187 smoking CpGs identified and replicated by Zeilinger et al. (46) used as 

true positives in this study. 

Supplementary Table 7. TCGA LUAD samples used in this study. 

Supplementary Table 7. TCGA LUAD samples used in this study. 
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