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Abstract

Analysis of Hi-C data has shown that the genome can be divided into two compart-
ments called A/B compartments. These compartments are cell-type specific and are
associated with open and closed chromatin. We show that A/B compartments can
be reliably estimated using epigenetic data from two different platforms, the Illumina
450k DNA methylation microarray and DNase hypersensitivity sequencing. We do
this by exploiting the fact that the structure of long range correlations differs between
open and closed compartments. This work makes A/B compartments readily avail-
able in a wide variety of cell types, including many human cancers.
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Background

Hi-C, a method for quantifying long-range physical interactions in the genome, was in-
troduced by Lieberman-Aiden et al. [2009], and reviewed in Dekker et al. [2013]. A Hi-C
assay produces a so-called genome contact matrix which – at a given resolution deter-
mined by sequencing depth – measures the degree of interaction between two loci in the
genome. In the last 5 years, significant efforts have been made to obtain Hi-C maps at
ever increasing resolutions [Dixon et al., 2012, Jin et al., 2013, Naumova et al., 2013, Pope
et al., 2014, Rao et al., 2014, Dixon et al., 2015]. Currently, the highest resolution maps are
1kb [Rao et al., 2014]. Existing Hi-C experiments have largely been performed in cell lines
or for samples where unlimited input material is available.

In Lieberman-Aiden et al. [2009] it was established that at the megabase scale, the genome
is divided into two compartments, called A/B compartments. Interactions between loci
are largely constrained to occur between loci belonging to the same compartment. The ’A’
compartment was found to be associated with open chromatin and the ’B’ compartment
with closed chromatin. Lieberman-Aiden et al. [2009] also showed that these compart-
ments are cell-type specific, but did not comprehensively describe differences between
cell types across the genome. In most subsequent work using the Hi-C assay, the A/B
compartments have received little attention; the focus has largely been on describing
smaller domain structures using higher resolution data. Recently, it was shown that 36%
of the genome changes compartment during mammalian development [Dixon et al., 2015]
and that these compartment changes are associated with gene expression; they conclude
”that the A and B compartments have a contributory but not deterministic role in deter-
mining cell-type-specific patterns of gene expression”.

The A/B compartments are estimated by an eigenvector analysis of the genome contact
matrix after normalization by the observed-expected method [Lieberman-Aiden et al.,
2009]. Specifically, boundary changes between the two compartments occur where the
entries of the first eigenvector change sign. The observed-expected method normalizes
bands of the genome contact matrix by dividing by their mean. This effectively standard-
izes interactions between two loci separated by a given distance by the average interac-
tion between all loci separated by the same amount. It is critical that the genome contact
matrix is normalized in this way, for the first eigenvector to yield the A/B compartments.

Open and closed chromatin can be defined in different ways using different assays such
as DNase hypersensitivity or ChIP sequencing for various histone modifications. While
Lieberman-Aiden et al. [2009] established that the ’A’ compartment is associated with
open chromatin profiles from various assays, including DNase hypersensitivity, it was
not determined to which degree these different data types measure the same underlying
phenomena, including whether the domain boundaries estimated using different assays
coincide genomewide.

In this manuscript, we show that we can reliably estimate A/B compartments as defined
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using Hi-C data by using the Illumina 450k DNA methylation microarray data [Bibikova
et al., 2011] as well as DNase hypersensitivity sequencing [Crawford et al., 2006, Boyle
et al., 2008]. Both of these data types are widely available on a large number of cell types.
In particular the 450k array has been used to profile a large number of primary samples,
including many human cancers; more than 20,000 samples are readily available through
the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) [TCGA].
We show that our methods can recover cell type differences. This work makes it possible
to study A/B compartments comprehensively across many cell types, including primary
samples, and to further investigate the relationship between genome compartmentaliza-
tion and transcriptional activity or other functional readouts.

As an application, we show how the somatic mutation rate in prostate adenocarcinoma
is different between compartments and we show how the A/B compartments change
between several human cancers; currently The Cancer Genome Atlas does not include
assays measuring chromatin accessibility. Furthermore, our work reveals unappreciated
aspects of the structure of long-range correlations in DNA methylation and DNase hyper-
sensitivity data. Specifically, we observe that both DNA methylation and DNase signal
are highly correlated between distant loci, provided that the two loci are both in the closed
compartment.
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Results

A/B compartments are highly reproducible and are cell-type specific

We obtained publicly available Hi-C data on EBV-transformed lymphoblastoid cell lines
(LCLs) and fibroblast cell lines and estimated A/B compartments by an eigenvector anal-
ysis of the normalized Hi-C contact matrix (Methods). The contact matrices were pre-
processed with ICE [Imakaev et al., 2012] and normalized using the expected-observed
method [Lieberman-Aiden et al., 2009]. As in Lieberman-Aiden et al. [2009], we found
that the eigenvector divides the genome into two compartments based on the sign of its
entries. These two compartments have previously been found to be associated with open
and closed chromatin; in the following we will use open to refer to the ’A’ compartment
and closed to refer to the ’B’ compartment. The sign of the eigenvector is arbitrary; in
this manuscript we select the sign so that positive values are associated with the closed
compartment (Methods). In Figure 1 we show estimated eigenvectors at 100kb resolution
from chromosome 14 across 2 cell types measured in multiple laboratories with widely
different sequencing depth, as well as variations in the experimental protocol. We ob-
serve a very high degree of correspondence between replicates of the same cell type; on
chromosome 14, the correlation between eigenvectors from experiments in the same cell
type is greater than 96% (ranges from 96.3% to 98.4%). The agreement, defined as the
percentage of genomic bins which are assigned to the same compartment in two different
experiments, is greater than 92% (ranges from 92.6% to 96.0%).

Using high resolution data does not change the estimated A/B compartments as seen in
Figure 2.

Figure 1 shows the A/B compartments are cell-type specific, with a variation between
cell types which exceeds technical variation in the assay; this has been previously noted
[Lieberman-Aiden et al., 2009, Dixon et al., 2015]. The correlation between eigenvectors
from different cell types is around 60%, in contrast to 96+% between eigenvectors from
the same cell type.

In the remainder of the manuscript, we use the most recent data, ie. EBV-2014 and IMR90-
2014, to represent eigenvectors and A/B compartments derived from Hi-C data in these
cell types.

Predicting A/B compartments from DNA methylation data

To estimate A/B compartments using other types of epigenetic data we first concentrate
on DNA methylation data assayed using the Illumina 450k microarray platform. Data
from this platform is widely available across many different primary cell types. To com-
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pare with existing Hi-C maps, we obtained data from 288 EBV-transformed lymphoblas-
toid cell lines from the HapMap project [Heyn et al., 2013].

DNA methylation is often described as related to active and inactive parts of the genome.
Most established is high methylation in a genic promoter leading to silencing of the gene
[Deaton and Bird, 2011]. As a first attempt to predict A/B compartments from DNA
methylation data, we binned the genome and averaged methylation values across sam-
ples and CpGs inside each bin. Only CpGs more than 4kb away from CpG islands were
used; these are termed open sea CpGs (Methods). We found that high levels of average
methylation were associated with the open compartment and not the closed compart-
ment; this might be a consequence of averaging over open sea probes. Figure 3 depicts
data from such an analysis for lymphoblastoid cell lines on chromosome 14 at a 100kb
resolution and shows some agreement between estimated compartments from Hi-C and
this analysis, with a correlation of 56.3% and a compartment agreement between datasets
of 71.7%. In this analysis, we implicitly assume that there is no variation in compartments
between different individuals in the same cell type.

Surprisingly, we found that we could improve considerably on this analysis by doing an
eigenvector analysis of a suitably processed between-CpG correlation matrix (Figure 3).
This matrix represents correlations between any two CpGs measured on the 450k array,
with the correlation being based on biological replicates of the same cell type. The cor-
relation eigenvector shows strong agreement with the Hi-C eigenvector; certainly higher
than with the average methylation vector (Figure 3). Quantifying this agreement, we find
that the correlation between the two vectors is 84.8% and the compartment agreement is
83.8% on chromosome 14. Genomewide, the correlation is 70.9% and the agreement is
79% (Table 1); we tend to perform worse on smaller chromosomes. Again, this analysis
implicitly assumes lack of variation in compartments between biological replicates.

Closely examining differences between the 450k-based predictions and the Hi-C-based
estimates, we find that almost all disagreements between the two methods occur when
entries in one of the two eigenvectors is close to zero; in other words, where there is
uncertainty about the compartment in either of the two analyses. Excluding bins where
the 450k-based prediction is close to zero, that is bins that have an absolute eigenvector
value less than 0.01, we get an agreement of 88.8% (14.2% of the bins excluded). Excluding
bins where either the 450k-based prediction is close to zero or the Hi-C eigenvector is close
to zero, we get an agreement of 93% (24.8% of the bins excluded).

Our processing of the correlation matrix is as follows (details are in Methods and rationale
is explained below): in our correlation matrix, we only include so-called ’open sea’ CpGs;
these CpGs are more than 4kb away from CpG islands. Next, we bin each chromosome
into 100kb bins and compute which open sea CpGs are inside each bin; this will vary be-
tween bins due to the design of the 450k microarray. To get a single number representing
the correlation between two bins, we take the median of the correlations of the individual
CpGs located in each bin. We obtain the first eigenvector of this binned correlation matrix
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and gently smooth the signal by using two iterations of a moving average with a window
size of 3 bins.

The sign of the eigenvector is chosen so that the sign of the correlation between the eigen-
vector and column sums of the correlation matrix is positive; this ensures that positive
values of the eigenvector is associated with the closed compartment (see Methods).

Long-range correlations in DNA methylation data predicts A/B compart-
ment changes between cell types

To examine how well the predictions based on long-range correlations in 450k data cap-
tures differences between cell types, we obtained publicly available 450k data from 62 fi-
broblast samples [Wagner et al., 2014], and compared them to Hi-C data from the IMR90
cell lines. Note that the fibroblast cell lines assayed on the 450k platform are from pri-
mary skin in contrast to the IMR90 cell line, a fetal lung fibroblast. Figure 4 and Table 1
shows our ability to recover the A/B compartments in fibroblasts; it is similar to our per-
formance for EBV-transformed lymphocytes.

To firmly establish that the high correlation between our predicted compartments using
DNA methylation and Hi-C data is not due to chance, we compared the predicted com-
partments in EBV transformed lymphocytes and fibroblasts to Hi-C data from different
cell types, including the K562 cell line which serves as a somewhat independent negative
control. In Figure 5, we show the correlation and agreement between the two sets of pre-
dicted compartments and Hi-C data from the three cell types. There is always a decent
agreement between predicted compartments of any two cell types, but the agreement is
consistently higher when the prediction is from data from the same cell type as the Hi-C
data.

How to best quantify differences in A/B compartments is still an open question. Lieberman-
Aiden et al. [2009] used 0 as a threshold to differentiate the two compartments. Con-
sidering the difference of two eigenvectors derived in different cell types, it is not clear
that functional differences exist exactly when the two eigenvectors have opposite signs;
instead, functional differences might be associated with changes in the magnitude of
the eigenvectors reflecting a genomic region being relatively more open or closed. We
note that the genomic region highlighted as cell-type specific, and validated by FISH, in
Lieberman-Aiden et al. [2009], is far away from zero in one condition and has small values
fluctuating around zero in the other condition.

Following this discussion, we focus on estimating the direction of change in eigenvectors
between different cell types. Figure 4 shows estimated differences between Hi-C and 450k
eigenvectors for two cell types. Large differences between the two vectors are replicated
well between the two data types, but there is disagreement when the eigenvectors are
close to zero. This is to be expected; there is technical variation in such a difference even
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between Hi-C experiments (Figure 1). Using the data displayed in Figure 1 we find that
the technical variation in the Hi-C data is such that 98% of genomic bins have an absolute
value less than 0.02. Using this cutoff for technical variation, we find that the correlation
between the two difference vectors displayed in Figure 4 is 85% when restricted to the 24%
of genomic bins where both vectors have an absolute value greater than 0.02. The sign of
the differential vectors are also in high agreement; they agree in 90% of the genomic bins
exceeding the cutoff for technical variation. In contrast, the correlation is 61% when the
entire chromosome is included, reflecting that the technical noise is less correlated than
the signal.

The structure of long-range correlations in DNA methylation data

To understand why we are able to predict open and closed compartments using the 450k
array, we studied the structure of long-range correlations in DNA methylation data. First,
we note that entries in our binned correlation matrix (within a chromosome) do not decay
with distance between bins (Figure 6a). This is in contrast to a Hi-C contact matrix, which
has repeatedly been shown to decay with distance as expected (Figure 6b). However, for
the first eigenvector to define open and closed compartments, the Hi-C contact matrix
needs to be normalized using the expected-observed method [Lieberman-Aiden et al.,
2009]. This normalization has the consequence that values in the matrix no longer decay
with distance (Figure 6c).

In Figure 7 we show density plots of binned correlations on chromosome 14, stratified
in two ways. The first stratification separates correlations between bins which are both
in the open compartment, both in the closed and finally cross-compartment correlations.
This stratification shows that we have a large amount of intermediate correlation values
(0.2-0.5), but only between bins which are both in the closed compartment. The second
stratification separates open sea probes and CpG resort probes (probes within 4kb of a
CpG island, see Methods). This stratification shows that we only have intermediate cor-
relation values for open sea probes; CpG resort probes are generally uncorrelated. In
conclusion, we have the following structure of the binned correlation matrix: most of the
matrix contains correlation values around zero (slightly positive), except between two
bins both in the closed compartment, which have an intermediate correlation value of
0.2-0.5. This shows why an eigen analysis of the binned correlation matrix recovers the
open and closed compartments, see Figure 8 for an illustration.

The lack of decay of correlation with distance extends even to trans-chromosomal corre-
lations, again with a clear difference between correlations within the open compartment
and the closed compartment (Figure 9).

To understand what drives the correlation between closed compartments, we carefully
examined the DNA methylation data in these genomic regions. Figure 10 shows a very
surprising feature of the data, which explains the long-range correlations. In this fig-
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ure, we have arbitrarily selected 10 samples and we plot their methylation levels across a
small part of chromosome 14, with each sample having its own color. Data from both
EBV-transformed lymphocytes and fibroblasts are depicted. While the same coloring
scheme has been used for both cell types, there is no overlap between the samples as-
sayed in the different experiments. The figure shows that the 10 samples have roughly
the same ranking inside each region in the closed compartment. This illustrates a surpris-
ing genome-wide ranking between samples in the closed compartment.

To gain more insights into whether this ranking was caused by technological artifacts
or whether it reflects real differences between the biological replicates, we obtained data
where the exact same HapMap samples were profiled in two different experiments us-
ing the Illumina 27k methylation array. This array design is concentrated around CpG
islands, but we determined that 5,599 probes are part of the 450k array and annotated as
open sea probes. For these probes, we determined which were part of the closed compart-
ment and we computed the sample specific average methylation in this compartment, as
a proxy for the observed ranking described above. In Figure 11a, we show that the cor-
relation of these measurements between hybridization duplicates from the same experi-
ment is high (92.7%). In Figure 11b we show that the these measurements replicate well
between different experiments (correlation of 74.4%).

The striking global ranking between different samples using the open sea probes in the
closed compartment could not be explained by the bisulfite conversion control probes,
neither batch nor background noise. Neither the medians not the means were signifi-
cantly associated with any of the different control probe types.

Finally, using the 27k data, we show that the eigenvector replicates between a 450k exper-
iment and a 27k experiment using the same cell type (EBV), but different samples (corre-
lation of 89%, see Figure 12). As a control, we compared to a 450k derived eigenvector for
a different cell type (fibroblast) and observed weak correlation (40%). We note that the
eigenvector derived from the 27k experiment is based on far fewer probes; we do not rec-
ommend using 27k data to estimate compartments. This result shows that the estimated
genome compartments do not depend on the design of the microarray and suggests that
our observations are common across methylation assays.

Notes on processing of the DNA methylation data

We have analyzed a wide variety of DNA methylation data both from the Illumina 450k
and Illumina 27k microarrays. For each dataset, it varies which kind of data is publicly
available (raw or processed). If possible, we have preferred to process the data ourselves
starting from the Illumina IDAT files. However, for several datasets, we had to use the
original authors preprocessing pipeline; see the Methods section for details.

We examined the impact of preprocessing methods on the estimated eigenvectors by us-
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ing both functional normalization [Fortin et al., 2014b], quantile normalization adapted
to the 450k array [Aryee et al., 2014] and raw (no) normalization; we did not find any
substantial changes in the results. The agreement between the eigenvectors using the dif-
ferent preprocessing methods is greater than 94% and we note that the agreement with
Hi-C data is best using functional normalization. This might be caused by the ability of
functional normalization to preserve large differences in methylation between samples
[Fortin et al., 2014b], which is what we observe in the closed compartment.

We examined the resolution of our approach using data from the 450k methylation array.
As resolution increases, the number of bins with zero or few probes per bin increases. In
Figure 13 we show the tradeoff between bins with zero probes and agreement with Hi-
C data. This figure shows that a reasonable lower limit of resolution is 100kb. We note
that the compartments estimated from Hi-C data do not change with increased resolution
(Figure 2).

An application to prostate cancer

We applied these methods to Illumina 450k data on prostate adenocarcinoma (PRAD)
from The Cancer Genome Atlas (TCGA). Quality control shows both normal and cancer
samples to be of good quality. Since the normal prostate samples represents uncultured
primary samples, we confirmed that this dataset had the same information in its long-
range correlation structure as established above (Figure 14; compare with Figure 10).

We obtained a list of curated somatic mutations from TCGA and used them to compute
simple estimates of the mutation rate in each 100kb bin of the genome. Since the list of
somatic mutations was obtained using whole-exome sequencing (WXS), we obtained the
relevant list of capture regions and used this list to compute mutation rates. We com-
pared the somatic mutation rate to the eigenvector estimating the open and closed com-
partments and found the mutation rate to be elevated in the closed compartment. This
confirms previous observations about the relationship between mutation rates and open
and closed chromatin [Makova and Hardison, 2015], including cancer [Schuster-Böckler
and Lehner, 2012, Polak et al., 2015]. Of particular interest was the mutation rate in ge-
nomic regions belonging to different compartments in normal and tumor samples. Table 2
shows these mutation rates computed using bins where the associated eigenvector value
has a magnitude greater than 0.01; this was done to discard bins where the compartment
association could be considered ambiguous. The table shows that regions of the genome
changing from open to closed compartment in tumors have a similar mutation rate to re-
gions which are in the closed compartment in both tumor and normals. Said differently:
changes in compartments are associated with changes in somatic mutation rate. To our
knowledge, this is the first time a cancer-specific map of open and closed compartments
based on primary samples have been derived; existing analyses depends on chromatin as-
says performed in ENCODE and Epigenomics Roadmap samples [Schuster-Böckler and
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Lehner, 2012, Polak et al., 2015].

Compartments across human cancers

Using the method we have developed in this manuscript, it is straightforward to estimate
A/B compartments across a wide variety of human cancers using data from TCGA. Fig-
ure 16 displays the smoothed first eigenvectors for chromosome 14 at 100kb resolution for
eleven different cancers. Regions of similarity and differences are readily observed. We
emphasize that TCGA does not include assays measuring chromatin accessibility such as
DNase or various histone modifications. The extent to which these differences are associ-
ated with functional differences between these cancers is left for future work.

Compartment prediction using DNase hypersensitivity data

Lieberman-Aiden et al. [2009] established a connection between A/B compartments and
DNAse data, mostly illustrated by selected loci. Based on these results we examined the
degree to which we can predict A/B compartments using DNase hypersensitivity data.
This data, while widely available from resources such as ENCODE, does not encompass
the wide variety of primary samples as the Illumina 450k methylation array.

We obtained DNase-seq data on 70 samples [Degner et al., 2012] from EBV-transformed
lymphocytes from the HapMap project, as well as 4 experiments on the IMR90 cell line
performed as part of the Roadmap Epigenomics project [Bernstein et al., 2010]. We com-
puted coverage vectors for each sample and adjusted them by library size. For each sam-
ple, we computed the signal in each 100kb genomic bin and averaged this signal across
samples. The resulting mean signal is highly skewed towards positive values in the open
compartment, and we therefore centered the signal by the median. The median was cho-
sen as this has the best compartment agreement with Hi-C data. Figure 17 shows the
result of this procedure, slightly modified for display purposes (the sign was changed
to let high values be associated with closed compartment; additionally very low values
were thresholded). A good visual agreement is observed for both cell types; the correla-
tion between Hi-C and the average DNase signal on chromosome 14 is 72% for EBV and
76% for IMR90 with a compartment agreement of 83% for EBV and 86% for IMR90.

Inspired by the success of considering long-range correlations for the 450k data, we com-
puted a DNase correlation matrix by computing the Pearson correlation matrix of the
binned DNase signal; in contrast to the 450k data, we did not bin the correlation matrix
as the signal matrix was already binned. The first eigenvector of this correlation matrix is
highly skewed; we centered it by its median. Figure 17 shows the result of this procedure.
We obtained a correlation between this centered eigenvector and the Hi-C eigenvector of
78% for EBV and 76% for IMR90 and a compartment agreement of 86% for EBV and 83%
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for IMR90. These results are comparable to what we obtain using the average DNase sig-
nal. It might be notable that the correlation based method works better for the EBV data
which contains biological replicates and worse for the IMR90 dataset which is based on
growth replicates of the same cell line.

To examine why the correlation based approach works for DNase data, we performed the
same investigation as for the 450k datasets. In Figure 18 we show the distribution of cor-
relations stratified by compartment type. As for the DNA methylation data, the DNase
data has high positive correlations between bins in the closed compartment, although the
correlations in the DNase data are much higher. For the DNA methylation data, correla-
tions were close to zero between loci when at least one loci was in the open compartment.
In contrast to this, the DNase data show an almost uniform distribution of correlation
values when one of the two loci are in the open compartment.

Figure 19 suggests that, like DNA methylation, the DNase signal is ranked in the same
way between samples in every region part of the closed compartment. There is a tendency
for the ranking to be reversed in the open compartment.
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Discussion

In this work, we show how to estimate A/B compartments using long-range correlations
of epigenetic data. We have comprehensively evaluated the use of data from the Illumina
450k DNA methylation microarray for this purpose; such data is widely available on
many primary cell types. Using data from this platform, we can reliably estimate A/B
compartments in different cell types, as well as changes between cell types.

This result is possible because of the structure of long-range correlations in this type of
data. Specifically, we found that correlations are high between two loci both in the closed
compartment and low otherwise, and does not decay with distance between loci. This
result only holds true for array probes measuring CpGs located more than 4kb from CpG
islands, so-called open sea probes. This high correlation is the consequence of a surpris-
ing ranking of DNA methylation in different samples across all regions belonging to the
closed compartment. We have replicated this result in an independent experiment using
the Illumina 27k DNA methylation microarray.

We have furthermore established that A/B compartments can be estimated using data
from DNase hypersensitivity sequencing. This can be done in two ways: first by simply
computing the average DNase signal in a genomic region, and second by considering
long-range correlations in the data, like for 450k array data. Again, we exploited the
structure of long range correlations in this type of epigenetic data and, like the case for
DNA methylation data, we found that correlations between loci both in the closed com-
partment are high, whereas correlations between other loci are approximately uniformly
distributed. Again, this correlation is caused by a ranking of DNase signal in different
samples across all regions belonging to the closed compartment.

Our approach is based on computing the first eigenvector of the (possibly binned) corre-
lation matrix. It is well known that this eigenvector is equal to the first left singular vector
from the singular value decomposition of the data matrix. The right singular vector of this
matrix is in turn equal to the first eigenvector of the sample correlation matrix; also called
the first principal component. This vector has been shown to carry fundamental informa-
tion about batch effects [Leek et al., 2010]. Because of this relationship, we are concerned
that our method might fail when applied to experiments that are heavily affected by batch
effects; we recommend careful quality control of this issue before analysis.

The reason our method works is because of a surprising, consistent ranking of different
samples across all regions belonging to the closed compartment (and only the closed com-
partment). By comparison with additional 27k methylation array experiments, we have
shown that this ranking is not a technical artifact caused by (for example) hybridization
conditions. In recent work, we studied colon cancer and EBV transformation of lym-
phocytes using whole-genome bisulfite sequencing (WGBS) [Hansen et al., 2011, 2014].
Using WGBS, it is easy to estimate the average methylation level across all CpGs in the
genome; we call this global methylation. In these two systems, we observed global hy-
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pomethylation as well as an increased variation in global methylation levels in colon can-
cer and EBV-transformed lymphocytes when compared to normal matched samples from
the same person. However, we saw minimal variation in global methylation between 3
normal samples in both systems. This work might explain why EBV-transformed sam-
ples from different people show a consistent ranking genomewide. But it does not explain
why the same observation is made in fibroblasts and normal primary prostate (however,
the later could be affected by contamination of the normal tissue with the adjacent can-
cer). More work is needed to firmly establish whether this observation holds true for most
primary tissues or might be a consequence of oncogenesis or manipulation in culture. We
note that the cause of the ranking does not matter; as long as the ranking is present it can
be exploited to reconstruct A/B compartments.

The functional implications of A/B compartments have not been comprehensively de-
scribed; we know they are associated with open and closed chromatin [Lieberman-Aiden
et al., 2009], replication timing domains [Ryba et al., 2010, Pope et al., 2014], changes dur-
ing mammalian development and are somewhat associated with gene expression changes
[Dixon et al., 2015]. Our work makes it possible to more comprehensively study A/B
compartments, especially in primary samples. We have illustrated this with a brief analy-
sis of the relationship between A/B compartments and somatic mutation rate in prostate
adenocarcinoma.
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Materials and Methods

Infinium HumanMethylation450 BeadChip

We use the standard formula β = M/(M + U + 100) for estimating percent methylation
given (un)methylation intensities U and M. Traditionally, the term M-value is used for
the logit transform of the beta value, and we do the same.

With respect to CpG density, the 450k array probes fall into 4 categories that are related to
CpG islands. CpG Island probes (30.9% of the array) are probes located in CpG islands,
shore probes (23.1%) are probes within 2 kbs of CpG islands, and shelf probes (9.7%) are
probes between 2 kbs and 4 kbs from CpG islands. Open sea probes (36.3%) are the rest
of the probes. We use the term CpG resort probes to refer to the union of island, shore
and shelf probes; in other words non-open sea probes.

Methylation Data

Also see Table 3.

450k-Fibroblast dataset: The study contains 62 samples from primary skin fibroblasts
from Wagner et al. [2014]. The raw data (IDAT files) are available on GEO (Accession
number: GSE52025)

450k-EBV dataset: The study contains 288 samples from EBV-transformed lymphoblas-
toids cell lines (LCL) [Heyn et al., 2013] from three HapMap populations: 96 African-
American, 96 Han Chinese-American and 96 Caucasian. The data are available on GEO
(Accession number: GSE36369).

27k-EBV Vancouver: The study contains 180 samples from EBV-transformed lymphoblas-
toid cell lines (LCL) [Fraser et al., 2012] from two HapMap populations: 90 individu-
als from Northern European ancestry (CEU), and 90 individuals from Yoruban (West
African) ancestry (YRI). The processed data are available on GEO (Accession number:
GSE27146)

27k-EBV London: The study contains 77 EBV-transformed lymphoblastoid cell lines
(LCL) assayed in duplicates [Bell et al., 2011]. Individuals are from the Yoruba HapMap
population, and 60 of them are also part of the 27k-EBV Vancouver dataset. The raw data
(IDAT files) are available on GEO (Accession number: GSE26133)

450k-PRAD Normal, 450k-PRAD Tumor: At the time of download, the dataset contained
340 prostate adenocarcinoma tumor samples from The Cancer Genome Atlas (TCGA)
[TCGA] along with 49 matched normal samples. We used the Level 1 data (IDAT files)
available through the TCGA Data portal.
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Processing of the methylation data

For the 450k-Fibroblast and 450k-PRAD datasets, we downloaded the IDAT files contain-
ing the raw intensities. We read the data into R using the illuminaio package [Smith et al.,
2013]. For data normalization, we use the minfi package [Aryee et al., 2014] to apply
the noob background subtraction and dye-bias correction [Triche et al., 2013] followed
by functional normalization [Fortin et al., 2014b]. We have previously shown [Fortin
et al., 2014b] that functional normalization is an adequate between-array normalization
when global methylation differences are expected between individuals. For the 450k-EBV
dataset, only the methylated and unmethylated intensities were available, and therefore
we did not apply any normalization. For the 27k-EBV London dataset, IDAT files were
available, and we applied the noob background correction and dye-bias correctin as im-
plemented in the methylumi package [Triche et al., 2013]. For the 27k-EBV Vancouver
dataset, IDAT files were not available and therefore we used the provided quantile nor-
malized data as discussed in Fraser et al. [2012].

For quality control of the samples, we used the packages minfi and shinyMethyl [Aryee
et al., 2014, Fortin et al., 2014a] to investigate the different control probes and potential
batch effects. All arrays in all data sets passed the quality control. After normalization of
the 450k array, we removed 17,302 loci that contain a SNP with an annotated minor allele
frequency greater than or equal to 1% in the CpG site itself or in the single-base extension
site. We used the UCSC Common SNPs table based on dbSNP 137. The table is included
in the minfi package.

For the analysis of the 27k array data, we only considered probes that are also part of the
450k array platform (25,978 probes retained in total) and applied the same probe filtering
as discussed above.

Construction of 450k correlation matrices

For each chromosome, we start with a p× n methylation matrix M of p normalized and
filtered loci and n samples. We use M-values as methylation measures. We compute the
p× p matrix of pairwise probe correlations C = cor(M′), and further bin the correlation
matrix C at a predefined resolution k by taking the median correlation for between CpGs
contained in each of two bins. Because of the probe design of the 450k array, some of
the bins along the chromosome do not contain any probes; these bins are removed. As
discussed in the Results section, the correlations of the open sea probes are the most pre-
dictive probes for A/B compartments, and therefore the correlation matrix is computed
using only those probes (36.3% of the probes on the 450k array). The inter-chromosomal
correlations are computed similarly.
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Hi-C Data

Samples are described in Table 4.

Processing of the Hi-C data

For the Hi-C datasets EBV-2014, K562-2014 and IMR90-2014 from Rao et al. [2014], we
used the raw observed contact matrices that were constructed from all read pairs that
map to the human genome hg19 with a MAPQ ≥ 30. These contact matrices are avail-
able in the supplementary files of the GEO deposition (GSE63525). For the IMR90-2013
dataset from Jin et al. [2013], we used the online deposited non-redundant read pairs that
were mapped with Bowtie [Langmead et al., 2009] to human genome hg18 using only
the first 36 bases. For the EBV-2009 and K562-2009 datasets from Lieberman-Aiden et al.
[2009], we used the mapped reads deposited on GEO (GSE18199). Reads were mapped to
human genome hg18 using Maq, as described in [Lieberman-Aiden et al., 2009]. For the
Fibro-Skin dataset from McCord et al. [2013], we merged the reads from two individuals
with normal cells (Father and Age-Matched control). We used the processed reads of the
GEO deposition (GSE41763) that were mapped using Bowtie2 to the hg18 genome in an
iterative procedure called ICE previously described in Imakaev et al. [2012].

For the EBV-2012 dataset from Selvaraj et al. [2013] and the Fibro-HFF1 dataset from Nau-
mova et al. [2013], we downloaded the SRA experiments containing the FASTQ files of
the raw reads. We mapped each end of the paired reads separately using Bowtie to the
hg18 genome with the –best mode enabled. We kept only paired reads with both ends
mapping to the genome.

For all datasets but the Hi-C datasets from Rao et al. [2014], we used the liftOver tool from
UCSC to lift the reads to the human genome hg19 version for consistency with the 450k
array. Reads from Rao et al. [2014] were already mapped to the hg19 genome.

Construction of Hi-C matrices

As a first step, we build for each chromosome an observed contact matrix C at resolution
k whose (i, j)’th entry contains the number of paired-end reads with one end mapping to
the i-th bin and the other end mapping to the j-th bin. The size of the bins depends on the
chosen resolution k. We remove genomic bins with low coverage, defined as bins with a
total count of reads less than 10% of the total number of reads in the matrix divided by
the number of genomic bins. This filtering also ensures that low mappability regions are
removed.

To correct for coverage and unknown sources of biases, we implemented the iterative
correction procedure called ICE [Imakaev et al., 2012] in R. This procedure forces bins to
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have the same experimental visibility. We apply the normalization procedure on a chro-
mosome basis and noted that for each Hi-C dataset, the iterative normalization converged
in less than 50 iterations. For the purpose of estimating A/B compartments, we further
normalize the genome contact matrix by the observed-expected procedure Lieberman-
Aiden et al. [2009], where each band of the matrix is divided by the mean of the band.
This procedure accounts for spatial decay of the contact matrix.

DNase-Seq Data

Also see Table 5.

DNase-EBV dataset: The study contains 70 biological replicates of EBV-transformed lym-
phoblastoid cell lines (LCL) [Degner et al., 2012] from the HapMap Yoruba population.
The data are deposited on GEO (GSE31388) and raw files are available through http:
//eqtl.uchicago.edu/dsQTL_data/RAW_DATA_HDF5/.

DNase-IMR90 dataset: The dataset is composed of 4 technical replicates of the IMR90
fetal lung fibroblast cell line available on GEO (GSE18927).

Processing of the DNase-Seq data

For the DNase-EBV dataset from Degner et al. [2012], we downloaded the raw reads in
the HDf5 format for both the forward and reverse strands. We converted the reads to bed-
Graph, lifted the reads to the hg19 genome and converted the files to bigWig files using
the UCSC tools. For the DNase-IMR90 dataset, we used the raw data already provided in
the bigWig format. Reads were mapped to the hg19 genome. For both datasets, data were
read into R by using the rtracklayer package [Lawrence et al., 2009]. We normalized each
sample by dividing the DNase score by the total number of reads to adjust for library size.

Construction of DNase signal and correlation matrices

For each sample, we construct a normalized DNase signal at resolution 100kb by taking
the integral of the coverage vector in each bin. This was done using BigWig files and the
rtracklayer package in R [Lawrence et al., 2009]. All DNAse datasets have the same read
length within experiment (EBV/IMR90). This results in a p× n signal data matrix where
p is the number of bins for the chromosome, and n the number of samples. The average
DNase signal is the across samples mean of this matrix. The DNase correlation matrix is
the p× p Pearson correlation matrix of the signal matrix.
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Eigenvector analysis

To obtain eigenvectors of the different matrices from Hi-C, DNA methylation and DNase
data, we use the non-linear iterative partial least squares (NIPALS) algorithm imple-
mented in the mixOmics package in R [Dejean et al., 2014]. Each eigenvector is smoothed
by a moving average with a 3-bin window, except the 450k data where we apply two
iterations of the moving average smoother.

When we compare eigenvectors from two different types of data, we only consider bins
which exists in both data types; some bins are filtered out in a data-type dependent man-
ner for example because of absence of probes or low coverage. This operation slightly
reduces the number of bins we consider in each comparison.

Because the sign of the eigenvector is arbitrarily defined, we use the following procedure
to define a consistent sign across different chromosomes, datasets and data types. For Hi-
C data and DNase data, we correlate the resulting eigenvector with the eigenvector from
Lieberman-Aiden et al. [2009]; changing sign if necessary to ensure a positive correla-
tion. For DNA methylation data, we use that the long-range correlations are significantly
higher for the closed-closed interactions. We therefore ensure that the eigenvector has
a positive correlation with the column sums of the binned correlation matrix; changing
sign if necessary. This procedure results in positive values of the eigenvector being as-
sociated with closed chromatin and the ’B’ compartment as defined in Lieberman-Aiden
et al. [2009] (in this paper they ensure that negative values are associated with the closed
compartment).

To measure the similarity between two eigenvectors, we use two measures: correlation
and compartment agreement. The correlation measure is the Pearson correlation between
the smoothed eigenvectors. The compartment agreement is defined as the percentage of
bins that have the same eigenvector sign, interpreted as the percentage of bins that belong
to the same genome compartment (A or B) as predicted by the two eigenvectors. Occa-
sionally, this agreement is restricted to bins with an absolute eigenvector value greater
than 0.01 to discard uncertain bins.

Because open chromatin regions have very high DNase signal in comparison to closed
chromatin regions, the DNase signal distribution is highly skewed to the right; therefore
we center both the average signal and the first eigenvector by subtracting their respective
median, before computing the correlation and agreement.

Somatic mutations in PRAD

We obtained a list of somatic mutations in PRAD from the TCGA data portal (https://
tcga-data.nci.nih.gov/tcga/). Several lists exists; we used the Broad Institute cu-
rated list (broad.mit.edu IlluminaGA curated DNA sequencing level2.maf. To
obtain capture regions, we queried the CGHub website (https://cghub.ucsc.edu)
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and found that all samples were profiled using the same capture design described in the
file whole exome agilent 1.1 refseq plus 3 boosters.targetIntervals.bed
obtained from the CGHub bitbucket account.

Somatic mutation rates in each 100kb genomic bin were computed as the number of mu-
tations inside each bin, divided by the length of the capture regions inside the bin.

Software

Methods for performing the analysis of 450k methylation arrays described in this manuscript
will be added to the minfi package [Aryee et al., 2014].
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Tables

Chr 14 Genome
EBV Fibro EBV Fibro

No threshold
Correlation 84.8% 75.1% 70.0% 73.6%
Agreement 83.7% 79.1% 79.0% 79.5%

Bins retained 100% 100% 100% 100%
Threshold, Methylation

Correlation 87.4% 78.4% 74.2% 77.3%
Agreement 88.8% 83.4% 87.9% 87.9%

Bins retained 86% 85% 78% 79%
Threshold, Methylation and Hi-C

Correlation 89.1% 84.2% 77.4% 81.1%
Agreement 93.0% 90.5% 92.6% 92.8%

Bins retained 76% 67% 66% 64%

Table 1. Correlation and agreement between Hi-C and 450k-based eigenvector
estimates of genome compartments. Thresholding refers to excluding genomic bins
where the entries of the relevant eigenvector has an absolute value less than 0.01

Normal
Open Closed

Tumor Open 54.1 58.0
Closed 83.9 97.2

Table 2. Mutation rate per 100kb of somatic mutations in PRAD stratified by
compartment.

Dataset Cell type n Platform Acc. Reference
450k-Fibroblast Fibroblast (skin) 62 450k GSE52025 Heyn et al. [2013]

450k-EBV LCL (EBV) 288 450k GSE36369 Wagner et al. [2014]
27k-EBV Vancouver LCL (EBV) 180 27k GSE27146 Fraser et al. [2012]

27k-EBV London LCL (EBV) 160 27k GSE26133 Bell et al. [2011]
450k-PRAD Normal Prostate (normal) 49 450k TCGA TCGA
450k-PRAD Tumor Prostate (tumor) 340 450k TCGA TCGA

Table 3. Methylation data sources.
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Dataset Cell line Cell type Acc. Reference
EBV-2009 GM06990 LCL (EBV) GSE18199 Lieberman-Aiden et al. [2009]
EBV-2013 GM12878 LCL (EBV) GSE48592 Selvaraj et al. [2013]
EBV-2014 GM12878 LCL (EBV) GSE63525 Rao et al. [2014]

IMR90-2013 IMR90 Fibroblast (lung) GSE43070 Jin et al. [2013]
IMR90-2014 IMR90 Fibroblast (lung) GSE63525 Rao et al. [2014]
Fibro-Skin - Fibroblast (skin) GSE41763 McCord et al. [2013]
Fibro-HFF1 HFF-1 Fibroblast (skin) E-MTAB-1948 Naumova et al. [2013]
K562-2009 K562 Leukemia GSE18199 Lieberman-Aiden et al. [2009]
K562-2014 K562 Leukemia GSE63525 Rao et al. [2014]

Table 4. Hi-C data sources.

Dataset Cell line n Acc. Reference
DNase-EBV LCL (EBV) 70 GSE31388 Degner et al. [2012]

DNase-IMR90 Fibroblast (lung) 4 GSE18927 Bernstein et al. [2010]

Table 5. DNase-Seq data sources.
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Figure 1. A/B compartments are reproducible and cell type specific. The figure
displays data on all of chromosome 14 at 100kb resolution. The first eigenvector for the
expected-observed normalized (a) EBV-2009, (b) EBV-2012, (c) EBV-2014 datasets. (d)
The difference between (b) and (c). The first eigenvector for the expected-observed
normalized (e) IMR-2013, (f) IMR-2014 datasets and (g) their difference. (h) The
difference between (c) and (f), which is greater than the technical variation depicted in
(d) and (g). This establishes that Hi-C compartments are highly reproducible between
experiments in different laboratories and that compartments are cell type specific.
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Figure 2. A/B compartments revealed by Hi-C data do not change at resolutions
higher than 100kb. The figure displays data on all of chromosome 14 at different
resolutions. The four different tracks represent the first eigenvector of the Hi-C
IMR90-2014 dataset at resolutions (a) 10kb, (b) 25kb, (c) 50kb and (d) 100kb.
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Figure 3. The methylation correlation signal is a better predictor of A/B compartments
than the average methylation signal. The figure displays data on all of chromosome 14
at 100kb resolution. (a) The smoothed, average methylation signal on the beta-value
scale for the 450k-EBV dataset. The signal has been centered by the mean and the sign
has been reversed so that values close to one correspond to low methylation values. (b)
The first eigenvector of the EBV-2014 Hi-C dataset. (c) The smoothed first eigenvector of
the binned correlation matrix of the 450k-EBV dataset. We see that (c) correlates better
with (b) than (a).
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Figure 4. Cell-type specific A/B compartments using Hi-C data are predicted using
DNA methylation data. The figure displays data on all of chromosome 14 at 100kb
resolution. (a) The first eigenvector of the EBV-2014 Hi-C dataset. (b) The smoothed first
eigenvector of the binned correlation matrix of the 450k-EBV dataset. (c) The first
eigenvector of the IMR90-2014 Hi-C dataset. (d) The smoothed first eigenvector of the
binned correlation matrix of the 450k-Fibroblast dataset. (e) The difference between (a)
and (c). (f) the difference between (b) and (d). The high correlation between (e) and (f)
supports that the correlation eigenvectors of the 450k data can be used to find
differences between compartments in the two cell types.
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Figure 5. Compartment predictions based on 450k data are cell type specific.
Correlations between the eigenvectors from 9 different Hi-C datasets across 3 different
cell types with both the 450k-EBV and 450k-Fibroblast datasets. We observe higher
correlation between Hi-C data and DNA methylation data when the comparison is being
made for the same cell type.
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Figure 6. Correlation as function of distance between loci. In each figure we display
the median and 25%,75%-quantiles of the entries in a given matrix as a function of
genomic distance. (a) Entries in the binned correlation matrix of the 450k-EBV dataset.
(b) Entries in the ICE normalized log contact matrix for the EBV-2014 Hi-C experiment.
(c) As (b) but the matrix has been normalized using the expected-observed method.
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Figure 7. Densities of the correlations of the 450k methylation probes. Chromosome
14 was binned at resolution 100 kb and we display the binned, stratified correlations for
the 450k-EBV dataset. Each plot shows one density curve for each type of interaction:
between two bins in open compartmens, between two bins in closed compartments and
between a bin in the open compartment and the closed compartment. (a) Binned
correlations for open sea probes only. (b) Binned correlations for CpG resort probes only.
Most correlations are around zero, except correlations between two open sea probes in
the closed compartment. The open and closed compartments were defined using the
EBV-2014 Hi-C dataset.
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Figure 8. The relationship between a Hi-C contact matrix and a binned DNA
methylation correlation matrix. Depicted are the observed-expected normalized
genome contact matrix for the EBV-2014 Hi-C dataset together with the binned
correlation matrix for the 450k-EBV dataset. Both matrices correspond to chromosome
14 at resolution 100kb. There is a relationship between A/B compartments in the Hi-C
data and regions with low and high correlations.

34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 6, 2015. ; https://doi.org/10.1101/019000doi: bioRxiv preprint 

https://doi.org/10.1101/019000
http://creativecommons.org/licenses/by/4.0/


−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8

Lo
ng

−
ra

ng
e 

co
rr

el
at

io
ns

 w
ith

 c
hr

14

ch
r1

4

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0

ch
r1

1

ch
r1

2

ch
r1

3

ch
r1

5

ch
r1

6

ch
r1

7

ch
r1

8

ch
r1

9

ch
r2

0

ch
r2

1

ch
r2

2

ch
rX

ch
r1

4

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0

ch
r1

1

ch
r1

2

ch
r1

3

ch
r1

5

ch
r1

6

ch
r1

7

ch
r1

8

ch
r1

9

ch
r2

0

ch
r2

1

ch
r2

2

ch
rX

Closed−Closed correlations
Open−Open correlation

Figure 9. Between chromosome correlations of DNA methylation. Each boxplot shows
the binned correlations between bins on chromosome 14 and bins on other chromosomes
for the 450k-EBV dataset. The boxplots are stratified by whether the correlation is inside
the open compartment or inside the closed compartment (open to close compartment
correlations are not depicted). The open and closed compartments were defined using
the EBV-2014 Hi-C dataset.
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Figure 10. Comparison of the methylation levels and the Hi-C compartments signal
for chromosome 14. The figure displays data from 36.4 to 69.8 Mb on chromosome 14 at
100kb resolution. (a) The first eigenvector from the IMR90-2014 Hi-C dataset. (b)
Average methylation on the beta scale for 10 selected samples from the 450k-Fibroblast
dataset; each sample is a line and divergent colors are used to distinguish the different
levels of methylation in the different samples. (c) The first eigenvector from the EBV-2014
Hi-C data. (d) Like (b) but for 10 samples from the 450k-EBV dataset; the samples from
the two datasets are unrelated. On (d) we depict 4 different bins; scatterplots between
methylation values in different bins across all samples in the dataset are shown in (e-g)
where (e) are two bins in the closed compartment, (g) are one bin in the open and one
bin in the closed compartment and (g) two bins in the open compartment. The figure
shows that samples have roughly the same ranking inside each closed compartment.
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Figure 11. Sample ranking based on methylation levels in the closed compartments
replicate across experiments. We computed the average methylation level of open sea
probes in the closed compartment. The compartments were defined using the EBV-2014
Hi-C data. (a) Comparison between hybridization replicates from the 27k-London
dataset. (b) Comparison between the same samples assayed in two different
experiments, the 27k-Vancouver and the 27k-London experiments.
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Figure 12. Validation of the 450k EBV eigenvector using a 27k dataset The eigenvector
for the 27k dataset was computed using the full (no binning) correlation matrix of all
5599 autosomal probes located in open sea which are commong between the two
platforms. (a) A comparison between eigenvectors from the 27k-Vancouver dataset and
the 450k-EBV dataset. The correlation between the two eigenvectors is 89.3%. (b) A
comparison between eigenvectors from the 27k-Vancouver dataset and the
450k-Fibroblast dataset. The correlation is 42.1%, confirming the cell-type specificity of
the methylation eigenvector.
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Figure 13. Performance of the A/B compartment prediction for different binning
resolutions of the 450k array. The grey points depict the increase in agreement between
compartments estimated using the 450k-EBV and EBV-2014 Hi-C datasets as binning
resolutions coarsen. The pink points show the increase in empty bins as binning
resolution is increased. We conclude that a resolution of 100kb is a good choice.
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Figure 14. Comparison of the methylation levels and the HiC compartments signal for
the TCGA PRAD datasets. Similar to Figure 10, but for the TCGA PRAD tumor/normal
datasets. (a) The first eigenvector of the binned methylation correlation matrix for the
TCGA PRAD normal dataset. (b) Average methylation signal on the beta scale for 10
selected samples for the TCGA PRAD normal dataset. (c) Like (a) but for the TCGA
PRAD tumor dataset. (d) Like (b) but for the TCGA PRAD tumor dataset.
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Figure 15. Relationship between A/B compartments and somatic mutation rate in
prostate cancer. Somatic mutation rate for prostate cancer calculated using whole exome
sequencing data from TCGA displayed against the first eigenvector of the 450k PRAD
TCGA dataset. The y-axis uses the hyperbolic arcsine scale which is similar to the
logarithm for values greater than one. A large number of genomic bins have a mutation
rate of zero. The pink line is a lowess curve fitted to all the data and the orange line is a
lowess curve fitted only to bins with a strictly positive mutation rate. We observe an
increase in somatic mutation rate in the closed compartment, as expected. Colored
points represent bins which confidently change compartments between normal samples
and cancer samples, blue is closed to open and red is open to closed. A bin confidently
changes compartment if its associated eigenvector value has a magnitude greater than
0.01 (but with different signs) in both datasets.
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Figure 16. Estimated A/B compartments across several human cancers. The figure
displays data on all of chromosome 14 at 100kb resolution. Each track represents the first
eigenvector of the methylation correlation matrix for the corresponding dataset. The
datasets depicted in (a) and (b) are the 450k-EBV and 450k-Fibroblast datasets. The
datasets in (c-m) are cancer samples from TCGA for different cancers: (c) BLCA, (d)
BRCA, (e) COAD, (f) HNSC, (g) KIRC, (h) KIRP, (i) LIHC, (j) LUAD, (k) LUSC, (l) PRAD,
and (m) UCEC.
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Figure 17. DNase data can predict A/B compartments revealed by Hi-C The figure
displays data on all of chromosome 14 at 100kb resolution. (a) The first eigenvector of
the EBV-2014 Hi-C dataset. (b) The smoothed first eigenvector of the correlation matrix
of the binned DNase-EBV dataset after median centering. (c) Average DNase signal
across samples after binning and median subtraction. The sign of the signal was
reversed for display purpose. (d) The first eigenvector of the IMR90-2014 Hi-C dataset.
(e) The smoothed first eigenvector of the correlation matrix of the binned DNase-IMR90
dataset after median centering. (f) Average DNase signal across samples after binning
after median subtraction. The sign of the signal was reversed for display purpose. Both
the average signal and correlation eigenvector are highly predictive of the Hi-C
compartments for both cell types.
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Figure 18. Densities of the correlations of DNase data. Chromosome 14 was binned at
resolution 100kb. Depicted is the correlations of this data for the DNase-EBV dataset,
stratified by compartment type. The open and closed compartments were defined using
the EBV-2014 Hi-C dataset. This figure is similar to Figure 7.
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Figure 19. DNase samples have consistent ranking within closed compartments The
figure displays data from 20.2 to 90.1 Mb on chromosome 14 at 100kb resolution.(a)
DNase signal for a subset of samples (scaled by square root for display purpose) (b)
Same as (a), but centered at each position to look at variation of the signals with respect
to the mean signal (original scale) (c) First eigenvector of the Hi-C EBV 2014 dataset (d)
First eigenvector of the DNase-EBV correlation matrix. The signal below is 0 is truncated
for display purpose.
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