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Abstract

Current methods for processing diffusion MRI (dMRI) to map the connectivity of the human brain require precise delin-
eations of anatomical structures. This requirement has been approached by either segmenting the data in native dMRI
space or mapping the structural information from T1-weighted (T1w) images. The characteristic features of diffusion
data in terms of signal-to-noise ratio, resolution, as well as the geometrical distortions caused by the inhomogeneity of
magnetic susceptibility across tissues hinder both solutions. Unifying the two approaches, we propose regseg, a surface-
to-volume nonlinear registration method that segments homogeneous regions within multivariate images by mapping
a set of nested reference-surfaces. Accurate surfaces are extracted from a T1w image of the subject, using as target
image the bivariate volume comprehending the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC)
maps derived from the dMRI dataset. We first verify the accuracy of regseg on a general context using digital phantoms
distorted with synthetic and random deformations. Then we establish an evaluation framework using undistorted dMRI
data from the Human Connectome Project (HCP) and realistic deformations derived from the inhomogeneity fieldmap
corresponding to each subject. We analyze the performance of regseg computing the misregistration error of the surfaces
estimated after being mapped with regseg onto 16 datasets from the HCP. The distribution of errors shows a 95% CI
of 0.56–0.66 mm, that is below the dMRI resolution (1.25 mm, isotropic). Finally, we cross-compare the proposed tool
against a nonlinear b0-to-T2w registration method, thereby obtaining a significantly lower misregistration error with
regseg. The accurate mapping of structural information in dMRI space is fundamental to increase the reliability of net-
work building in connectivity analyses, and to improve the performance of the emerging structure-informed techniques
for dMRI data processing.

Keywords: active surfaces, cortical parcellation, diffusion MRI, nonlinear registration, segmentation,
susceptibility distortion.

1. Introduction

Diffusion MRI enables the mapping of microstructure
(Basser and Pierpaoli, 1996) and connectivity (Craddock
et al., 2013) of the human brain in-vivo. It is generally
acquired using echo-planar imaging (EPI) schemes, since
they are very fast at scanning a large sequence of images
called diffusion weighted images (DWIs). Each DWI is
sensitized with a gradient to probe proton diffusion in a
certain orientation. Subsequent processing involves de-
scribing the local microstructure with one of the available
models, which range from the early diffusion tensor imag-
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ing (DTI) proposed by Basser and Pierpaoli (1996) to cur-
rent models such as AMICO (accelerated microstructure
imaging via convex optimization, Daducci et al., 2015).
The microstructural map is then used to draw the prefer-
ential orientations of diffusion across the brain using trac-
tography (Mori et al., 1999). Finally, a graph represent-
ing the corresponding structural network is built using the
regions of a cortical parcellation as nodes and the fiber
paths found by tractography as edges (Hagmann et al.,
2008). The methodologies to solve reconstruction, trac-
tography and network building require the delineation of
the anatomy in the dMRI space. Moreover, current trends
on reconstruction (Jeurissen et al., 2014) and tractogra-
phy (Smith et al., 2012) are increasingly using structural
information to improve the microstructural mapping and
fiber-tracking.

Possibly, the earliest structural information incorporated
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to aid dMRI processing is the white matter (WM) mask
used as a termination criteria for tractography. The stan-
dardized procedure to obtain this mask was thresholding
the FA map. However, the mask and subsequent analy-
ses are highly dependent on the threshold that is chosen
(Taoka et al., 2009). To overcome the unreliability of FA
thresholding, and to broaden WM segmentation to brain
tissue segmentation, a large number of methods have been
proposed using DWIs, the b0, and DTI-derived scalar maps
such as FA, ADC and others (Zhukov et al., 2003; Rousson
et al., 2004; Jonasson, 2005; Hadjiprocopis et al., 2005;
Liu et al., 2007; Lu et al., 2008; Han et al., 2009). How-
ever, the precise segmentation of dMRI is difficult for sev-
eral reasons. First, dMRI images have a resolution that is
much lower than that of the imaged microstructural fea-
tures. Therefore, voxels located in structural discontinu-
ities are affected by partial voluming of the signal sources.
Second, the extremely low signal-to-noise ratio (SNR) and
the high dimensionality of the DWIs prevent their direct
use in segmentation. Third, the low contrast between gray
matter (GM) and WM in the b0 volume also makes it un-
suitable for brain tissue segmentation.

An alternative route to segmentation in dMRI space is
the mapping of the structural information extracted from
anatomical MR images, such as T1w, using image regis-
tration techniques. Generally, intra-subject registration of
MR images of the brain involves only a linear mapping to
compensate for head motion between scans. However, EPI
introduces a geometrical distortion (Jezzard and Balaban,
1995) that impedes the linear mapping from the struc-
tural space. Numerous methods have been proposed to
overcome this problem by incorporating information from
extra MR acquisitions such as fieldmaps (Jezzard and Bal-
aban, 1995), DWIs with a different phase-encoding (PE)
scheme (Cordes et al., 2000; Chiou and Nalcioglu, 2000),
or T2-weighted (T2w) images (Kybic et al., 2000; Stud-
holme et al., 2000). These methods estimate the defor-
mation field associated to EPI distortions and resample the
DWIs onto a corrected dMRI space. The retrospective EPI
correction is an active field of research yielding frequent
refinements and combinations of the original methods, such
as (Holland et al., 2010; Andersson et al., 2012; Irfanoglu
et al., 2015). A standardized method to solve the remain-
ing linear mapping between the corrected-dMRI and the
structural spaces is bbregister (Greve and Fischl, 2009).

Here, we present a segmentation and surface-to-volume
registration method called regseg, and show its usefulness
in mapping anatomical information from structural space
into native dMRI space to aid subsequent processing steps
(reconstruction, tractography and network building using
a cortical parcellation). The underlying hypothesis is that
the registration and segmentation problems in dMRI can
be solved simultaneously. To implement regseg we first es-
tablish an active-contours without edges (Chan and Vese,
2001) segmentation framework. A specific set of reference
surfaces extracted from the same subject initialize the 3D
active contours, which evolve searching for homogeneous

regions in the multivariate target-image. We apply regseg
to segment dMRI data by mapping a set of nested surfaces
extracted from a structural image (e.g. T1w) to a bivariate
target-volume comprehending the FA and ADC maps. The
evolution of the surfaces is supported by a B-spline ba-
sis, optimized iteratively using a descent approach driven
by shape-gradients (Jehan-Besson et al., 2003; Herbulot
et al., 2006). Therefore, regseg establishes a registration
framework that actually deals with the nonlinear warp-
ing induced by EPI distortions. Regseg integrates the ben-
efits of segmentation and registration methods together
and exploits the multivariate nature of dMRI data to con-
tribute in the proposed application on three key aspects:
1) the surfaces are typically extracted from the T1w im-
age of the same subject, therefore regseg does not require
additional MR acquisitions to the minimal dMRI protocol
in order to estimate the deformation field; 2) depending
on the application, the resampling of the DWIs introduced
by the correction method can be avoided, either by per-
forming the posterior processing on the native dMRI space
or applying the unwarping on the tractography itself; and
3) regseg increases the geometrical accuracy of the overall
process. In this paper, we first verify the functionality of
the method and the regseg implementation using a set of
digital phantoms, demonstrating the sub-pixel accuracy in
registration. Then, we evaluate regseg on real dMRI data-
sets, using a derivation of our instrumentation framework
(Esteban et al., 2014a) which simulates known and realis-
tic EPI distortions. We also compare regseg and a nonlinear
registration method to map the b0 to the corresponding
T2w image of the same subject. This approach is the first
step of the T2w-registration based (T2B) correction meth-
ods (Kybic et al., 2000). We reproduce the settings and
implementation of a widely used diffusion processing soft-
ware (ExploreDTI, Leemans et al., 2009). With this com-
parison, we demonstrate how regseg achieves higher accu-
racy with the simultaneous registration and segmentation
process.

2. Methods

2.1. Registration framework and segmentation model
Let ΓR = {Γm : m ∈ N,m ≤ NS} be the set of NS

surfaces extracted from the undistorted T1w image (the
reference space R). We reformulate the segmentation of
the distorted dMRI images (the moving space M) as a re-
gistration problem where we search for an underlying de-
formation field U such that the structures in R defined by
ΓR align optimally with their corresponding structures in
M :

U : R ⊂ Rn →M ⊂ Rn

r 7→ r′ = r + u(r), (1)

where r denotes a position in R, r′ is its corresponding lo-
cation in M , and n denotes the dimensionality of images.
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Finally, u = u(r) is the displacement of every point with
respect to the reference domain. The general overview of
how the surfaces interact with the registration framework
is presented in Figure 1.

Cost-function derivation. In a Bayesian framework for re-
gistration (Wyatt and Noble, 2003; Pohl et al., 2006; Gass
et al., 2014), the mappings U in (1) are evaluated based
on their posterior probability given the observed data M .
Let Ω = {Ωl : l ∈ N, l ≤ NL} be the set of NL competing
regions in which M is partitioned by the projection of ΓR.
Using Bayes’ rule, the posterior likelihood is computed as:

P (U |M,Ω) =
P (M | U,Ω)P (U)

P (M)
, (2)

where P (M | U,Ω) is the data likelihood. Since Ω are
mapped by U , we simplify P (U,Ω) = P (U) =⇒ P (M |
U,Ω) = P (M | U). The best estimate Û then satisfies the
maximum a posteriori criterion and it aligns ΓR into M .
First, we assume independence between pixels, and thus
we break down the global data likelihood into a product
of pixel-wise conditional probabilities:

P (M | U) =
∏
l

∏
r′∈Ωl

P (f ′ | U) , (3)

where f ′ = M(r′) is the feature vector at the displaced
position r′ (1) in the moving image. For convenience and
because it has been shown to be an appropriate approxi-
mation (Van Leemput et al., 1999; Cuadra et al., 2005),
we introduce two assumptions for each region Ωl: 1) the
features are i.i.d.; and 2) they can be modeled by multi-
variate normal distributions N (f ′ | µl,Σl), with parame-
ters {µl,Σl} for each region Ωl (Esteban et al., 2014b):

P (M | U) =
∏
l

∏
r′∈Ωl

N (f ′ | µl,Σl) =

=
∏
l

∏
r′∈Ωl

1√
(2π)C |Σl|

e(−
1
2D

2
l (f ′)), (4)

using D2
l (f ′) to denote the squared Mahalanobis distance

of f ′ with respect to the descriptors of region l as D2
l (f ′) =

(f ′−µl)
T Σl

−1 (f ′−µl). C is the number of channels com-
prised in the image M . Even though the features being
segmented are not generally i.i.d., the spatial interdepen-
dency of voxels is implicitly supported by the piecewise
smooth partition of the space Ω. In fact, the projection of
ΓR onto M is an implicit segmentation model, for which
the covariance matrix Σl of each region is minimized. The
Figure 2 shows how the joint distribution of the input im-
ages is approximated with a mixture of multivariate nor-
mal distributions, and this minimization is illustrated for
the segmentation of the FA and the ADC maps of one sub-
ject.

v1v2 n̂1n̂2

s̄1s̄2

Ωwm Ωgm Ωbg

Γ0
Γ1

s̄1 =w0,1

[
D2
wm

(
M(v1 )

)
−D2
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(
M(v1 )

)]
n̂1

u30

u31

ψ31(v1)

Figure 1: The interfacing surfaces Γm between the competing ROIs Ωl,
play the role of active contours which drive the registration process. They
evolve iteratively along the normal n̂i of the surface at each vertex vi of
the mesh. The gradient speeds s̄i drive registration, which are computed
as the disparity of the data energies with respect to the two limiting
regions of M(vi), the features of the image M in the location of vertex
vi. The computation of shape-gradients is developed in Appendix 2. In
this figure, the s̄1 derived from Equation A.6 is written in the lower box,
with Ωwm in the inner limiting region, Ωgm the outer region, and w0,1

is the relative area associated with vertex v1 with respect to the total
area of surface Γ0.

Regularization. The smoothness of the resulting displace-
ment field is induced by a Thikonov regularization prior:

P (U) =
∏
r

p(u) =
∏
r

p0(u) p1(u), with (5)

p0(u) = N (u | 0,A−1),

p1(u) = N (∇u | 0,B−1), (6)

which requires that the distortion and its gradient have
zero mean, and variance governed by the matrices A and
B. Therefore, A and B are tensors that modulate the
regularization, and produce deformations with preferen-
tial directions. Finally, the maximum a posteriori problem
is adapted to a variational problem where we search for
the minimum of an energy functional by applying E(u) =
− log{P (M | U)P (U)}:

E(u) = − log
∏
l

∏
r′∈Ωl

N (f ′ | µl,Σl) p0(u) p1(u) =

= −
∑
l

∫
Ωl

{
log [N (f ′ | µl,Σl)] + log [p0(u) p1(u)]

}
dr′ =

= Const.+
∑
l

{∫
Ωl

D2
l (f ′) dr

}
+

∫
Ω

1

2

[
uTAu + (∇u)TB(∇u)

]
dr′.

(7)

This expression is the dual of the Mumford-Shah func-
tional that corresponds to the framework of active con-
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B. DETAIL OF TISSUE-WISE JOINT-DISTRIBUTIONS

A. OPTIMIZATION OF THE SEGMENTATION MODEL

Reference: segmentation by
the surfaces extracted in T1w
and original (undistorted)
diffusion data

Before registration the
contours from the T1w are
not aligned with the
distorted diffusion data

After registration the 
contours are now aligned 
with the distorted diffusion
data

THE PROPOSED SEGMENTATION MODEL comprehends the following six homogeneous regions, in hierarchical order: 1) thalamus ΩTha ; 2) ventricular system and deep gray matter

structures ΩV dGM ; 3) cerebral white matter ΩWM ; 4) brain stem and cerebellar white matter Ωbst ; 5) cerebellar gray matter ΩcbGM ; and 6) cortical gray matter ΩGM .

Figure 2: Evolution of the segmentation model defined by the homogeneous regions Ωl, for one real dataset. Panel (A, left) shows the joint distribution
of the FA and ADC conditioned to the segmentation Ω defined by the surfaces ΓR extracted from the T1w image. The plot was generated for
reference using undistorted diffusion data, and therefore, ΓR is aligned with the FA and the ADC. The problem arises when the diffusion data present
deformation, and the contours ΓR do not fit within the data (A, center). After registration with regseg, the contours are mapped onto the diffusion data
(A, right), and the joint density plot is closer to the reference situation. In panel (B), the three plots in (A) are decomposed tissue-wise. Using filled
contours, the bivariate distribution of each tissue is highlighted in its designated color, and represented over the remaining tissues (in gray colors).
To help assessment, dashed contours in black-to-white colors represent the corresponding distribution in the reference plot. The registration process
optimizes the segmentation model of regseg, and thus, the distribution of each region after registration is located closer to that corresponding in the
reference situation, the shape of the distribution is more similar to the reference, and their spread is also reduced. The effects of optimization are more
noticeable on the GM (ΩGM) and the WM (ΩWM). Particularly, the WM typically shows a bimodal distribution when the contours Γ do not fit the data.4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 3, 2016. ; https://doi.org/10.1101/018945doi: bioRxiv preprint 

https://doi.org/10.1101/018945
http://creativecommons.org/licenses/by-nc-nd/4.0/


tours without edges (Chan and Vese, 2001) with the aniso-
tropic regularization term of Nagel and Enkelmann (1986).

2.2. Numerical Implementation
Deformation model. Since the vertices of the surfaces {vi :
vi ⊂ Γ}i=1...NV

are probably located off-grid, it is neces-
sary to derive ui = u(vi) from a discrete set of parameters
{uk}k=1...K . Densification is achieved using a set of asso-
ciated basis functions ψk (8). In our implementation, ψk

is a tensor-product B-spline kernel of degree three.

v′i = vi + ui = vi +
∑
k

ψk(r) uk. (8)

Optimization. To find the minimum of the energy func-
tional (7), we propose a gradient-descent approach with
respect to the underlying deformation field using the fol-
lowing partial differential equation (PDE):

∂u(r, t)

∂t
∝ −∂E(u)

∂uk
, (9)

where t is an artificial time parameter of the contour evo-
lution and uk are the parameters that support the esti-
mate Û of the transformation at the current time point.
Let us assume that the preferential directions of the dis-
placement are aligned with the imaging axes to simplify
(7) as expression (A.1) in Appendix 1, and thus to com-
pute its derivative (9):

∂E(u)

∂uk
=

∂

∂uk

{∑
l

[ ∫
Ωl

D2
l (f ′) dr′

]
+

∫
Ω

1

2
[α · u◦2 + β · (∇u)◦2] dr′

}
,

(10)

where u◦2 = uT · u, and {α,β} are the expected vari-
ances along the imaging axes of the displacement field
and its gradient, respectively. Then, the data and regu-
larization terms are split and discretized to compute their
derivatives. The derivative of the data term is computed
using explicit shape gradients (see Appendix 2), which fi-
nally lead to obtain vertex-wise speeds of the gradient s̄i
as illustrated in Figure 1. Using the expressions (A.7) and
(A.8) given in Appendix 2 and introducing the analytical
derivative of the regularization term, then the Equation 10
is reformulated as:

∂E(u)

∂uk
= gk + α · uk − β · (∆uk), (11)

where gk are the shape-gradient contributions on the co-
efficients uk of the B-spline grid. Finally, to descend this
gradient, we establish a semi-implicit Euler scheme (see
Supplemental Materials, section S1.3), with a step size
parameter δ, which we solve in the spectral domain as
follows:

ut+1
k = F−1

{
F{δ−1 ut

k − gk}
F{(δ−1 + α) I − β∆}

}
, (12)

where I denotes the identity operator.

Implementation details and convergence. The regseg tool
includes a multiresolution strategy on the free-form defor-
mation field. Registration pyramids are created by setting
the spacing between the control points of the B-spline ba-
sis functions for each level of the multiresolution strategy.
As a rule of thumb, for a δ = 1.0, both α and β will typi-
cally be in the range [0.0, 1.0]. The parameters used (δ, α,
β, the B-spline grid resolutions, and target image smooth-
ing), the implementation details, and other features such
as the sparse matrix approach to fast interpolation are dis-
cussed in the Supplemental Materials, section S1.

2.3. Evaluation protocol
In order to assess the performance of regseg, we de-

fined the following general evaluation protocol: 1) Extract
the set of undistorted surfaces ΓR; 2) Compute a ground-
truth field of displacements Utrue, which is applied to gen-
erate warped images (M) for segmentation; 3) Execute
regseg with ΓR and use the warped data as inputs; and 4)
Perform a visual assessment and compute the error met-
rics.

A first proof of concept is introduced to demonstrate
regseg in digital phantoms with simple geometries, using
Utrue without directional restrictions. Then, regseg is eval-
uated in a framework using undistorted dMRI datasets,
and Utrue is derived from the corresponding inhomogene-
ity fieldmap of the subject. Therefore, the deformation
field is nonzero only in the phase-encoding (PE) axis, and
reproduces a real EPI distortion. The adaptation of the
evaluation protocol to the simulated phantoms and the
real data is explained in the following sections.

2.4. Simulated phantoms
The workflow required to simulate the digital phan-

toms and to assess the performance of regseg with them is
presented in Figure 3. A set of four binary objects (i.e.
“box”, “ball”, “L”, and “gyrus”) was generated by com-
bining the binarization of analytical shapes and mathe-
matical morphology. The reference surfaces ΓR were ex-
tracted from the binary shapes using FreeSurfer tools (Fis-
chl, 2012). The ground-truth distortion was generated us-
ing a chain of two displacement fields supported by grids
of B-spline basis functions. The coefficients of the ba-
sis functions were generated randomly for both levels in
their three dimensions. The three components of the dis-
placements u = (ud) were bounded above by 40% of the
separation between the control points at each level to ob-
tain diffeomorphic transforms after concatenation (Rueck-
ert et al., 2006). The first deformation field was applied
to generate large warpings with control points separated
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by 50.50 mm in the three dimensions (ud ≤ 20.20 mm).
With the second warping, we aimed to obtain a field with
smoothness close to that found in a typical distortion field
of dMRI data (Irfanoglu et al., 2011). Therefore, the con-
trol points were separated by 25.25 mm (ud ≤ 10.10 mm).
After generating the ground-truth deformation, the origi-
nal surfaces were warped by interpolating the displace-
ment field at each vertex. The warped surfaces Γtrue were
binarized to generate tissue fractions at low (2.0×2.0×2.0
[mm]) and high (1.0×1.0×1.0 [mm]) resolutions. Using
an MRI simulator (Caruyer et al., 2014), we synthesized
T1w (TE/TR= 10/1500 ms) and T2w images (TE/TR=
90/5000 ms), which corresponded to each phantom type,
with each at two resolutions (1.0 mm and 2.0 mm iso-
tropic). The field of view at both resolutions was 100×100×100
[mm]. Next, regseg was applied to map ΓR onto the warped
phantoms to obtain the registered surfaces (Γ̂test). To quan-
tify the misregistration error, we computed the Hausdorff
distance between Γ̂test and Γtrue using (Commandeur et al.,
2011). In total, 1200 experiments (four phantom types ×
150 random warpings × two resolutions) were performed
according to the workflow illustrated in Figure 3.

Segmentation model and settings. The segmentation model
of the phantoms is implicitly defined: all phantoms com-
prehend an inner surface enclosing a uniform WM-like re-
gion, and an outer surface wrapping a GM-like layer. The
outside is filled with uniform background (see Figure 3).
All the experimental settings used for the phantoms are
made available in a unique configuration file1.

2.5. Real datasets
The experimental framework for the real datasets is

presented in Figure 4, which extends our previous eval-
uation (Esteban et al., 2014a) of distortions using dMRI
phantoms.

Data. To evaluate regseg using real dMRI data obtained
from human brains, we collected 16 subjects from the HCP
database. The original acquisitions are released within
“unprocessed” packages, whereas the “minimally prepro-
cessed” packages contain the corresponding images after
some processing (correction for several artifacts, brain-
extraction, spatial normalization, etc.). We refer the reader
to Van Essen et al. (2012) for exact details of the acquisi-
tion parameters and Glasser et al. (2013) for the prepro-
cessing issues. These datasets comprise a large set of im-
ages, including T1w, T2w, and multi-shell dMRI images.
Since we obtained the dMRI data from the minimally pre-
processed package, these images are corrected for EPI dis-
tortions and spatially normalized in T1w space.

1https://github.com/oesteban/RegSeg/blob/master/Scripts/
pyacwereg/data/regseg_default.json

Segmentation model. Based on our experience and previ-
ous studies (Ennis and Kindlmann, 2006), we defined the
moving image as a stack of the FA and ADC maps derived
from dMRI data. After evaluating several alternative mod-
els, we empirically defined a partition Ω according to the
following six regions: 1) thalamus (ΩTha); 2) ventricu-
lar system and deep GM structures (ΩV dGM); 3) cerebral
WM (ΩWM); 4) brain stem and cerebellar WM (Ωbst); 5)
cerebellar GM (ΩcbGM); and 6) cortical GM (ΩGM). Us-
ing tools in FreeSurfer and appropriate selections of labels
in the aparc segmentation released with the HCP data, we
extracted the ΓR set for the reference surfaces. The seg-
mentation model corresponding to this partition is shown
in Figure 2 and discussed in greater detail in the Supple-
mental Materials, section S4.

Ground-truth generation. Realistic deformation was achieved
by generating displacement fields that satisfy the theoret-
ical properties of distortion. The displacements along the
PE axis of the dMRI image are related to the local devia-
tion of the field ∆B0(r) from its nominal value B0 (Jez-
zard and Balaban, 1995), as follows:

uPE =
γ Tacq sPE

2π
∆B0(r) [mm], (13)

where γ is the gyromagnetic ratio, Tacq is the readout
time, and sPE is the pixel size along PE. Certain MRI se-
quences are designed to estimate ∆B0, thereby obtaining
the so-called fieldmap. We derived the deformation Utrue

from the fieldmap image released with the corresponding
packages of each dataset in the HCP. The fieldmap was un-
wrapped2 and smoothed before applying (13). Next, the
original dMRI was warped using the resulting displace-
ment field and fed into a pipeline to process the corre-
sponding DTI, thereby computing the derived scalars of in-
terest (FA and ADC) using MRtrix (Tournier et al., 2012).

Metric assessment. Initially, we investigated the appropri-
ateness of the segmentation model. For five test data-
sets, we uniformly sampled the space of distortions Û =
ε ·Utrue = r+ε uPE (with ε ∈ [−1.1, 1.1] and uPE from (13)),
and we evaluated the data term of the cost function (7).
The minimum of the cost function (subsection 2.1) was
consistently located at ε = 0.0 (the ground-truth) for all of
the cases (Supplemental Materials, figure S2).

Settings. Regseg accepts an affine mapping from surface-
space to the dMRI data as initialization. However, the
images provided by the HCP are already spatially normal-
ized. Therefore, the initial estimation of distortion is zero
in this experiment. Since the distortion Utrue is aligned
along the PE direction (y-axis in our settings), regseg was
configured to allow nonzero displacements only on that

2fieldmaps are phase maps, which are intrinsically clipped in the in-
terval of [−π, π) [rads] or [rads/s].
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Figure 3: Evaluation of regseg using phantom data according to the following instrumental workflow. 1) The reference surfaces ΓR are triangle
meshes extracted from the four binary shapes (i.e., “box”, “ball”, “L”, “gyrus”). 2) A ground-truth displacement field was generated as described in
subsection 2.4, and applied to warp ΓR, thereby obtaining Γtrue. 3) After being warped, Γtrue were projected onto the corresponding discrete 3D
volume and downsampled to create partial volume effects at two resolutions, i.e., 2.0×2.0×2.0 [mm] and 1.0×1.0×1.0 [mm], thereby producing sets
of tissue fractions maps. 4) The tissue fractions were fed into an MRI simulator, which generated T1-weighted (T1w) and T2-weighted (T2w) -like
images at the two possible resolutions. 5) The regseg tool was applied using the warped test images as multispectral moving images and ΓR as shape
priors. 6) The agreement between the surfaces fitted by regseg (Γ̂test) and Γtrue were assessed visually using automatically generated visual reports
and quantitatively with the Hausdorff distance between the corresponding surfaces.
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Figure 4: Experimental workflow employed to process real data from the Human Connectome Project (HCP). 1) ΓR were extracted from the anatomical
reference (T1w image). 2) For use as the ground truth, we generated a plausible synthetic distortion Utrue from the fieldmap with (13). 3) The dMRI
data were warped using Utrue to reproduce the effects of real susceptibility-derived distortions. Target diffusion scalars (FA and ADC) were computed
with the distorted data and stacked to feed the multivariate input required by regseg. 4) The method was run to obtain Utest = Ûtrue, i.e., the estimate
of the ground-truth deformation. 5) The results were evaluated visually and quantitatively. The arrows point to edges in the target images (light-yellow
arrows for FA, blue for ADC) that should be aligned with a surface, showing how distortion limits the direct mapping from the structural space in
which the contours are defined.
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corresponding direction. For the experiments on real data,
regseg established a multi-resolution pyramid of B-spline
functions, with control points distributed on grids of the
following spacings: 40×100×40 [mm] for the first (coarser)
level, 30×30×30 [mm] for the second level, and 20×30×10
[mm] in the third level. Only the first and second lev-
els included Gaussian smoothing of the target image (σ
= [2.0, 0.5] mm, respectively). The actual choices of
the parameter settings are publicly distributed with the
source code for the experiments3. These settings were ob-
tained manually, driven by the feedback obtained from the
post-registration convergence reports (like that found in
Supplemental Materials, section S1.3). We released regseg
along with the tool to generate such convergence reports.

Cross-comparison. A dual workflow to the general evalua-
tion used for regseg (Figure 4), was employed to integrate
the alternate T2B registration scheme. We reproduced the
solution and settings provided with ExploreDTI (Leemans
et al., 2009), which is a widely used toolkit for tractogra-
phy analysis of DTI. ExploreDTI internally employs elastix
(Klein et al., 2010) to perform registration. The deforma-
tion field is correspondingly restricted to the PE direction.
The settings file for elastix is also available4.

Error measurement. Distortion only occurs along the PE
axis of the image, so we computed the surface warping in-
dex (sWI) as the area-weighted distance between the cor-
responding vertices of Γtrue and their estimate obtained by
the method under the test Γ̂test:

sWI =
1∑
i ai

NV∑
i

ai ‖vi − v̂i‖, (14)

where vi ⊂ Γtrue are the locations of the total NV ver-
tices, ai is the area corresponding to each vertex vi, and
v̂i ⊂ Γ̂test are the recovered locations that correspond to
vi. In practice, we only report the sWI for three surfaces
({ΓV dGM ,ΓWM ,Γpial}) of crucial interest in whole-brain
tractography.

3. Results

3.1. Verification and validation using digital phantoms
The results summarized in Figure 5 demonstrated that

the accuracy was high and below the image resolution.
Panel B on Figure 5 shows the violin plots for each model
type corresponding to the two sets of resolutions for the
generated phantoms. In order to relate the average mis-
registration error to the resolution of the moving image,
we proceeded as follows. First, we confirmed that the

3https://github.com/oesteban/RegSeg/tree/master/Scripts/
pyacwereg/data/regseg_hcp.json

4https://github.com/oesteban/RegSeg/blob/master/Scripts/
pyacwereg/data/t2b_elastix_y.txt

Res. “gyrus” “ball” “box” “L” Aggreg.
1.0mm 0.18–0.38 0.31–0.45 0.34–0.42 0.34–0.40 0.34–0.38
2.0mm 0.59–0.60 0.65–0.76 0.68–0.71 0.67–0.77 0.64–0.66

Table 1: The distributions of vertex-wise Hausdorff distances between
the ground-truth surfaces and their corresponding estimates obtained
with regseg presented a 95% CI below the half-voxel size for all of the
phantom types. The CIs were computed by bootstrapping using 104

samples, with the median as the location statistic.
ΓV dGM ΓWM Γpial Aggreg.

CI regseg 0.50–0.78 0.50–0.55 0.66–0.73 0.56–0.66
T2B 1.78–2.58 1.94–2.36 2.16–2.58 2.05–2.39

H-tests p-value 4.1·10-6 2.3·10-6 2.3·10-6 1.8·10-16

H-stat 21.20 22.31 22.31 67.85

Table 2: Statistical analysis of results obtained using 16 real datasets
from the HCP, which show that regseg performed better than the alter-
native T2w-registration based (T2B) method. The distribution of the
errors computed for the surfaces of interest (ΓV dGM , ΓWM , Γpial) and
the aggregate of all surfaces (Aggreg. column) had lower 95% CIs with
regseg. The CIs in this table were computed by bootstrapping using the
mean as the location statistic and with 104 samples. The Kruskal-Wallis
H-tests indicated that there was a significant difference between the re-
sults obtained using regseg and the T2B method.

vertex-wise error distributions were skewed by using Shapiro-
Wilk’s test of normality. All of the distributions of errors
in the tests (four phantom types × two resolutions) were
nonnormal with p < 0.001. Consequently, we used the
nonparametric Wilcoxon signed-rank test with the Bon-
ferroni correction for multiple comparisons (N=150, for
each phantom type). The average errors were significantly
lower than the voxel size with p < (0.001 / 150) in all tests
(four phantom types × two resolutions). Statistical tests
might not be sufficiently conclusive, so we also computed
the confidence intervals, as shown in Table 1.

3.2. Evaluation using real datasets and cross-comparison
Finally, we compared the performance of regseg with

that of the standard T2B method. Summary reports for
visual assessment of the 16 cases are included in the Sup-
plemental Materials, section S5. In Figure 6, box A, the
visual report is shown for one subject. We computed the
sWI (14) of every surface after registration using both the
regseg and T2B methods. Finally, to compare the results,
we performed Kruskal-Wallis H-tests (a nonparametric al-
ternative to ANOVA) on the warping indices for the three
surfaces of interest selected in section 2.5 (ΓV dGM , ΓWM ,
Γpial). All of the statistical tests showed that the error dis-
tributions obtained with regseg and T2B were significantly
different, and the violin plots in box B of Figure 6 demon-
strate that the errors were always larger with T2B. We
also show the 95% CIs of the sWI for these surfaces (Ta-
ble 2). The aggregate CI for regseg was 0.56–0.66 [mm],
whereas the T2B method yielded an aggregate CI of 2.05–
2.39 [mm]. The results of the statistical tests and the CIs
are summarized in Table 2.

4. Discussion

We present regseg, a simultaneous segmentation and
registration method that maps a set of nested surfaces
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Figure 5: A. Visual assessment of the results obtained on the digital phantoms. The panel shows three coronal slices (indices indicated on the lower
left corner) of each phantom volume at low resolution: “gyrus” (top left), “L” (top right), “ball” (bottom left), and “box” at (bottom right). The
contours recovered after registration are represented in yellow. Regseg achieved high accuracy because it determined the almost exact locations of
the registered contours with respect to their ground truth positions (shown in green). The partial volume effect makes segmentation of the sulci a
challenging problem with voxel-wise clustering methods, but they were successfully segmented with regseg. B. Quantitative evaluation: the violin plot
shows the variability across experiments of the average Hausdorff distance measured in each vertex of the corresponding surface, for the low (left)
and high (right) resolutions. Error averages were consistently below the size of the voxel.

into a multivariate target-image. The nonlinear registra-
tion process evolves driven by the fitness of the piecewise-
smooth classification of voxels in the target volume im-
posed by the current mapping of the surfaces. We pro-
pose regseg to map anatomical information extracted from
T1w images into the corresponding dMRI of the same sub-
ject. Previously, joint segmentation and registration has
been applied successfully to other problems such as lon-
gitudinal object tracking (Paragios, 2003) and atlas-based
segmentation (Gorthi et al., 2011). The most common
approach involves optimizing a deformation model (re-
gistration) that supports the evolution of the active con-
tours (segmentation), like Paragios (2003); Yezzi et al.
(2003). Regseg can be seen as a particular case of atlas-
based segmentation-registration methods, replacing the at-

las by the structural image of the subject (structure-informed
segmentation). The main difference of atlas-based seg-
mentation and the application at hand is the resolution
of the target image. Atlas-based segmentation is typically
applied on structural and high-resolution images. A com-
prehensive review of joint segmentation and registration
methods applied in atlas-based segmentation is found in
(Gorthi et al., 2011). They also propose a multiphase
level-set function initialized from a labeled atlas to imple-
ment the active contours that drive the atlas registration.
Alternatively, regseg implements the active contours with
a hierarchical set of explicit surfaces (triangular meshes)
instead of the multiphase level sets, and registration is
driven by shape-gradients (Herbulot et al., 2006). As an
advantage, the use of explicit surfaces enables segmenting
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Figure 6: A. Example of a visual assessment report, which was automatically generated by the evaluation tool. Each view shows one component of the
input image (in this case, the FA map), the ground-truth locations of the surfaces (green contours), and the resulting surfaces obtained with the test
method (yellow contours). The first two rows show axial slices for regseg and the T2w-registration based (T2B) method, while the last two rows show
the corresponding sagittal views. The coronal view is omitted because it was the least informative due to the directional property of the distortions.
Specific regions where regseg outperformed T2B are enlarged. B. Violin plots of the error distributions for each surface across the 16 subjects, which
show the voxel size of the dMRI images (1.25 mm), thereby supporting the improved results obtained by regseg with the proposed settings.

dMRI images with accuracy below pixel size.
An important antecedent of regseg is bbregister (Greve

and Fischl, 2009). The tool has been widely adopted as
the standard registration method to be used along with

the EPI correction of choice. It implements a linear map-
ping and uses 3D active contours with edges to search for
intensity boundaries in the b0 image. The active contours
are initialized using surfaces extracted from the T1w us-
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ing FreeSurfer (Fischl, 2012). To overcome the problem of
nonlinear distortions, bbregister excludes from the bound-
ary search those regions that are typically warped. In-
deed, the distortion must be addressed separately because
it is not supported by the affine transformation model.
Conversely, the deformation model of regseg is nonlinear
and the active contours are without edges (Chan and Vese,
2001) since the FA and ADC maps do not present steep im-
age gradients (edges) but the anatomy can be identified by
looking for piece-wise smooth homogeneous regions.

Recently, Le Guyader and Vese (2011) proposed a si-
multaneous segmentation and registration method in 2D
using level sets and a nonlinear elasticity smoother on
the displacement vector field, which preserves the topol-
ogy even with very large deformations. Regseg includes
an anisotropic regularizer for the displacement field pro-
posed by Nagel and Enkelmann (1986). This regulariza-
tion strategy conceptually falls in the midway between the
Gaussian smoothing generally included in most of the ex-
isting methodologies, and the complexity of the elastic-
ity smoother of Le Guyader and Vese (2011). Other mi-
nor features that differ from current methods in joint seg-
mentation and registration are the support of multivariate
target-images and the efficient computation of the shape-
gradients implemented with sparse matrices.

We verified that precise segmentation and registration
of a set of surfaces into multivariate data is possible on
digital phantoms. We randomly deformed four different
phantom models to mimic three homogeneous regions (WM,
GM, and cerebrospinal fluid) and we used them to simu-
late T1w and T2w images at two resolution levels. We
measured the Hausdorff distance between the contours
projected using the ground-truth warping and the estima-
tions found with regseg. We concluded that the errors were
significantly lower than the voxel size. We also assessed
the 95% confidence interval (CI), which yielded an ag-
gregate interval of 0.64–0.66 [mm] for the low resolution
phantoms (2.0 mm isotropic voxel) and 0.34–0.38 [mm]
for the high resolution phantoms (1.0 mm isotropic). There-
fore, the error was bounded above by half of the voxel
size. The distributions of errors along surfaces varied im-
portantly depending on the shape of the phantom (see
Figure 5B). The misregistration error of the “gyrus” phan-
tom showed a much lower spread than that for the other
shapes. We argue that the symmetry of those other shapes
posed difficulties in driving the contours towards the ap-
propriate region due to sliding displacements between the
surfaces and their ground-truth position. The effect is not
detectable by the active contours framework, but it is con-
trollable increasing the regularization constraints. When
regseg is applied on real datasets, this surface sliding is
negligible for the convoluted nature of cortical surfaces
and the directional restriction of the distortion.

We evaluated regseg in a real environment using the
experimental framework presented in Figure 4. We pro-
cessed 16 subjects from the HCP database using both regseg
and an in-house replication of the T2w-registration based

(T2B) method. Regseg obtained a high accuracy, with an
aggregate 95% CI of 0.56–0.66 [mm], which was below
the pixel size of 1.25 mm. The misregistration error that
remained after regseg was significantly lower (p < 0.01)
than the error corresponding to the T2B correction accord-
ing to Kruskal-Wallis H-tests (Table 2). Visual inspections
of all the results (Supplemental Materials, section S5) and
the violin plots in Figure 6 confirmed that regseg achieved
higher accuracy than the T2B method in our settings. We
carefully configured the T2B method using the same al-
gorithm and the same settings employed in a widely-used
tool for dMRI processing. However, cross-comparison ex-
periments are prone to the so-called instrumentation bias
(Tustison et al., 2013). Therefore, these results did not
prove that regseg is better than T2B, but indicated that
regseg is a reliable option in this application field. Fi-
nally, we also proposed a piecewise-smooth segmentation
model defined by a selection of nested surfaces to parti-
tion the multispectral space comprehending the FA and
the ADC maps and ultimately identify anatomical struc-
tures in dMRI space. We also demonstrated the smooth-
ness of the objective function on five of the real datasets
(Supplemental Materials, figure S2), taking advantage of
the directional restriction of possible distortions. How-
ever, regseg requires densely sampled surfaces to ensure
the convergence. Using the digital phantoms, we severely
decimated the surfaces by a large factor. These surfaces in-
troduced a bias which displaced the zero of the gradients
from the minimum of the objective function impeding the
convergence.

The proposed application of the method in the task of
identifying structural information in dMRI images is an
active field of research (Jeurissen et al., 2015). Current
processing of dMRI involved in the connectome extrac-
tion and other applications (such as tract-based spatial
statistics (TBSS) or surgical planning) require a precise
segmentation of the anatomical structures in the diffusion
space. Some examples of these processing tasks are the
structure-informed reconstruction of dMRI data (Jeuris-
sen et al., 2014; Daducci et al., 2015), the anatomically
constrained tractography (Smith et al., 2012), and the im-
position of the cortical parcellation mapped from the T1w
image (Hagmann et al., 2008). The problem was firstly
addressed using image segmentation approaches in the
native diffusion space, without definite and compelling
results. With the introduction of retrospective correction
methods for the EPI distortions and image registration ap-
proaches, the task has been typically solved in a two-step
approach. First, the DWIs are corrected for EPI distortions
by estimating the nonlinear deformation field from extra
MR acquisitions (Jezzard and Balaban, 1995; Chiou and
Nalcioglu, 2000; Cordes et al., 2000; Kybic et al., 2000).
Second, mapping the structural information from the cor-
responding T1w image using a linear registration tool like
bbregister (Greve and Fischl, 2009). The current activity
on improving correction methods (Irfanoglu et al., 2015)
and the comeback of segmentation of dMRI in its native

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 3, 2016. ; https://doi.org/10.1101/018945doi: bioRxiv preprint 

https://doi.org/10.1101/018945
http://creativecommons.org/licenses/by-nc-nd/4.0/


space (Jeurissen et al., 2015) proof the open interest of
this application. Regseg addresses this joint problem in
a single step and it does not require any additional ac-
quisition other than the minimal protocol comprehending
only T1w and dMRI images. This situation is found com-
monly in historical datasets. We envision regseg to be in-
tegrated in diffusion processing pipelines, after a prelim-
inar DTI computation and before anatomically-informed
reconstruction and tractography methods. Since the struc-
tural information is projected into the native space of dMRI,
these two processes and the matrix building task can be
performed on the unaltered dMRI signal (i.e. without re-
sampling data to an undistorted space). For analyses other
than connectivity, like TBSS, the deformation estimated by
regseg can be used to map the tracts into structural space.

Beyond the presented application on dMRI data, regseg
can be indicated in situations where there are precise sur-
faces delineating the structure, a target multivariate im-
age in which the surfaces must be fitted, and the mapping
between the surfaces and the volume encodes relevant
physiological information, such as the normal/abnormal
development or the macroscopic dynamics of organs and
tissues. For instance, regseg may be applied in fields like
neonatal brain image segmentation in longitudinal MRI
studies of the early developmental patterns (Shi et al.,
2010). In these studies, the surfaces obtained in a ma-
ture timepoint of the brain are retrospectively propagated
to the initial timepoints, regardless of the changes in the
contrast and spatial development between them. More
generally, regseg may also be applied to the personalized
study of longitudinal alteration of the brain using multi-
spectral images, for instance in the case of traumatic brain
injury (Irimia et al., 2014) or in monitoring brain tumors
(Weizman et al., 2014).

Conclusion

Regseg is a variational framework for the simultaneous
segmentation and registration of 3D dMRI data obtained
from the human brain, where within-subject anatomical
information is used as a reference. The registration method
segments the target multivariate image into several com-
peting regions, which are defined explicitly by their limit-
ing surfaces. The surfaces are active and they evolve on
a free-form deformation field supported by the B-spline
basis. A descent optimization strategy is guided by shape
gradients computed on the current partition of the target
image. Regseg uses active contours without edges and it
searches for homogeneous regions within the image. We
tested regseg using digital phantoms by simulating T1w
and T2w MRI warped with smooth and random deforma-
tions. The resulting misregistration of the contours was
significantly lower than the image resolution of the phan-
toms.

We proposed regseg for simultaneously segmenting and
registering dMRI data to their corresponding T1w image
from the same subject. We demonstrated the accuracy of

the proposed method based on visual assessments of the
results obtained by regseg and cross-comparisons with a
widely used technique. Moreover, regseg does not require
any images in addition to the minimal acquisition proto-
col, which only utilizes T1w and dMRI. As well as the pro-
posed application to dMRI data, other potential uses of
regseg are atlas-based segmentation and tracking objects
in time-series.

Availability and reproducibility statement

We considered the reproducibility of our results as a
design requirement. Therefore, we used real data ob-
tained from the Human Connectome Project (Van Essen
et al., 2012) and all of the software utilized in this study
is also publicly available. Regseg was implemented on top
of ITK-4.6 (Insight Registration and Segmentation Toolkit,
http://www.itk.org). The evaluation instruments (Fig-
ure 4) were implemented using nipype (Gorgolewski et al.,
2011) to assess their reproducibility. All of the research
elements (data, source code, figures, manuscript sources,
etc.) involved in this study are publicly available under a
unique package (Esteban and Zosso, 2015).
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Appendix

Appendix 1. Simplifying the regularization term
The exponentials of the Thikonov regularization prior (6) have the general form vTMv. If M is a n × n diagonal

matrix such that M = m In, then:

vTMv = m · (vT Inv) = m · v◦2,

where we have introduced the Hadamard power notation5.
In general, the anisotropy of the distortion field is aligned with the voxel coordinate system, so A and B of (7) can be

simplified to diagonal matrices to regularize the registration process, such that A = α In and B = β In. By substituting
into equation (7), we obtain:

E(u) = Const.+
∑
l

∫
Ωl

D2
l (f ′) dr +

+

∫
Ω

1

2

[
α · u◦2 + β · (∇u)◦2

]
dr. (A.1)

Appendix 2. Application of the shape-gradients
The computation of gradients at the locations of the active contours in the instant t is based on the work of Herbulot

et al. (2006). Let F (r) be an “arbitrary” function over the image domain Ω = Ωl ∪ Ωm split in two regions l and m, and
Γl,m a closed boundary between them. We now derive the domain integral w.r.t. t:

∂

∂t

∫
Ω

F (r)dr =

∫
Ω

∂

∂t
F (r)dr−

∫
Γl,m

F (r)

〈
∂Γl,m

∂t
,NΓl,m

〉
dr, (A.2)

where
〈

∂Γl,m

∂t , NΓl,m

〉
is the projection of the boundary movement on the unit inward normal NΓl,m

. Assuming that the

region descriptors {µl,Σl} vary slowly enough, we can consider that ∂
∂tF (r) = 0 and thus:

∂

∂t

∫
Ω

F (r)dr = −
∫

Γl,m

F (r)

〈
∂Γl,m

∂t
,NΓl,m

〉
dr. (A.3)

The equation (A.3) is discretized as follows. First, the surface between limiting regions l and m (Γl,m) is explicitly
represented by a discrete set of vertices vi, with i ∈ {0, . . . , Np − 1}. Consequently, the inwards normal of the surface
NΓl,m

is represented by the discrete set of normals n̂i at each vertex of the mesh. The resulting summation is, therefore,
discrete and the integral operator is replaced by the sum:

∂

∂t

∫
Ω

F (r)dr =
��

����∫
Ω

∂

∂t
F (r)dr

Functional’s evolution

−
∫

Γl,m

F (r)

〈
∂Γl,m

∂t
,NΓl,m

〉
dr

Shape’s evolution

= −
∑
p

1

Ap

∑
i

ai F (vi)

〈
∂vi

∂t
speed of vi

, n̂i

〉
. (A.4)

where ai is the area corresponding to vertex vi, and Ap =
∑

i ai is the total area of surface p. In the following, we will
refer as wp,i = ai/Ap to the area contribution of vi to the total area of the surface it belongs to. For simplicity, the sum
over p can be also removed, as the vertices belong to only one of the total P contours.

5The Hadamard power of a matrix or a vector is the power of its elements M◦p = (mij
p)
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Then, the speed of vi is discretized using the artificial time-step parameter δ, as the displacement ∂vi

∂t = vi(δ =
t+ 1)− vi(δ = t):

∂

∂t

∫
Ω

F (r) dr = −
∑
i

wp,iF (vi)
∂vi

∂t
· n̂i. (A.5)

Since the energy functional is defined over competing regions, the displacement of vi will cause an energy exchange
between the limiting regions, and therefore F (r) must be split in two terms, Fin(r) corresponding to the interior region
and Fout(r) to the exterior:

∂

∂t

∫
Ω

F (r) dr = −
∑
i

∂vi

∂t
· wp,i

[
Fout(vi)− Fin(vi)

]
n̂i

s̄i in Figure 1

. (A.6)

Then, we identify the shape gradient contribution gk on the coefficients uk of the B-spline grid:

gk = −
∑
i

〈
∂v′i
∂uk

, s̄′i

〉
with s̄′i = wi

[
D2

out(f
′
i )−D2

in(f ′i )
]

n̂i,

and
∂v′i
∂uk

=
∂

∂uk

{
vi +

∑
k

ψk(vi)uk

}
= ψk(vi) ê,

(A.7)

where ê is the coordinates system’s unit vector. Therefore, the shape gradients projected to the grid of B-spline control
points read:

gk = −
∑
i

s̄i · ψk(vi) ê. (A.8)
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