
Exposing hidden alternative backbone conformations  1 
in X-ray crystallography using qFit 2 

 3 
Daniel A. Keedy1, James S. Fraser1, Henry van den Bedem2* 4 
 5 
1 - Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 6 
San Francisco, California, United States of America  7 
2 - Division of Biosciences, SLAC National Accelerator Laboratory, Stanford University, California, 8 
United States of America   9 
* corresponding author 10 
Email: vdbedem@slac.stanford.edu (HvdB) 11 
 12 
Abstract  13 
Proteins must move between different conformations of their native ensemble to perform their 14 
functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this 15 
heterogeneity as a spatial and temporal conformational average. Although movement between natively 16 
populated alternative conformations can be critical for characterizing molecular mechanisms, it is 17 
challenging to identify these conformations within electron density maps. Alternative side chain 18 
conformations are generally well separated into distinct rotameric conformations, but alternative 19 
backbone conformations can overlap at several atomic positions. Our model building program qFit uses 20 
mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of 21 
sidechain conformers and backbone fragments to locally explain the electron density. Here, we 22 
describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations.  23 
We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the 24 
n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is 25 
exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” 26 
regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as 27 
conformational switches, often enabled by glycine flexibility, that result in dramatic local 28 
rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis 29 
to provide new insights into conformational heterogeneity.  Overall, improved modeling of backbone 30 
heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function 31 
relationship and help drive new design strategies for inhibitors of biomedically important systems. 32 
 33 
Author Summary  34 
Describing the multiple conformations of proteins is important for understanding the relationship 35 
between molecular flexibility and function.  However, most methods for interpreting data from X-ray 36 
crystallography focus on building a single structure of the protein, which limits the potential for biological 37 
insights.  Here we introduce an improved algorithm for using crystallographic data to model these 38 
multiple conformations that addresses two previously overlooked types of protein backbone flexibility: 39 
peptide flips and glycine movements.  The method successfully models known examples of these types 40 
of multiple conformations, and also identifies new cases that were previously unrecognized but are well 41 
supported by the experimental data.  For example, we discover glycine-driven peptide flips in the 42 
inhibitor-gating “flaps” of the drug target HIV protease that were not modeled in the original structures.  43 
Automatically modeling “hidden” multiple conformations of proteins using our algorithm may help drive 44 
biomedically relevant insights in structural biology pertaining to, e.g., drug discovery for HIV-1 protease 45 
and other therapeutic targets. 46 
 47 
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Introduction 48 

Even well-folded globular proteins exhibit significant flexibility in their native state [1]. However, despite 49 

advances in nuclear magnetic resonance dynamics experiments and computational simulations, 50 

accurately characterizing the nature and extent of biomolecular flexibility remains a formidable 51 

challenge [2].  While traditionally X-ray crystallography is associated with characterizing the ground 52 

state of a biomolecule, the ensemble nature of diffraction experiments means that precise details of 53 

alternative conformations can be accessed when the electron density maps are of sufficient quality and 54 

resolution [3]. These maps represent spatiotemporal averaged electron density from conformational 55 

heterogeneity across the millions of unit cells within a crystal [4, 5].  56 

 57 

Computational methods have made strides toward uncovering and modeling conformational 58 

heterogeneity in protein structures from crystallographic data [3].  However, there is currently no 59 

automated approach to recognize the features of extensive backbone flexibility in electron density 60 

maps, model the constituent alternative conformations, and validate that the incorporation of 61 

heterogeneity improves the model. B-factors theoretically model harmonic displacements from the 62 

mean position of each atom, but in practice are often convolved with occupancies of discrete alternative 63 

positions when multiple backbone conformations partially overlap [5]. Statistical analyses of electron 64 

density using Ringer has revealed evidence for a surprising number of “hidden” alternative 65 

conformations in electron density maps [6, 7].  The phenix.ensemble_refinement method [8] uses 66 

electron density to bias molecular dynamics simulations, then assembles snapshots from this trajectory 67 

into a multi-copy ensemble model. However, energy barriers of the simulation may prevent sampling of 68 

well separated backbone conformations.  Accurately modeling protein conformational heterogeneity, in 69 

particular when the mainchain adopts distinct conformations for one or a number of contiguous 70 

residues, remains a difficult task. The spatial overlap of electron density of multiple conformations and 71 

the relatively similar profiles of branching mainchain and sidechains blur structural features that can 72 

guide the human eye to reduce the large number of possible interpretations [9]. 73 

 74 

We have previously developed qFit [10], a method for automatically disentangling and modeling 75 

alternative conformations and their associated occupancies, which are represented by the variable q 76 

(for “occupancy”) in standard structure factor equations.  The qFit algorithm examines a vast number of 77 

alternative interpretations of the electron density map simultaneously. To propitiously explore a high-78 

dimensional search space, conformational sampling is guided by the anisotropy of electron density at 79 

the Cβ atom position, the nexus of backbone and sidechain in polypeptides [11].  For each slightly 80 

shifted Cβ atom position, qFit samples sidechain conformations with a rotamer library [12] and uses 81 

inverse kinematics to maintain backbone closure [9].  Finally, it selects a set of one to four 82 
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conformations for each residue that, collectively, optimally explain the local electron density in real 83 

space.  84 

 85 

However, the anisotropy of the Cβ atom limits the exploration radius of qFit to model backbone 86 

conformational heterogeneity. While protein backbone motions are often associated with large-87 

amplitude conformational flexibility of surface loop regions, subtle motions can have important ripple 88 

effects in closely packed areas via sidechain-backbone coupling.  For example, fast (ps-ns) backbone 89 

NH and sidechain methyl order parameters from spin relaxation experiments are highly correlated with 90 

each other in flexible regions [13], suggesting that mainchain and sidechain motions collectively sample 91 

conformational substates. For example, a backbone backrub motion [14] repositions the Cα-Cβ bond 92 

vector in a plane perpendicular to the chain direction, enabling the sidechain to access alternative, 93 

often sparsely populated rotamers that otherwise would be energetically unfavorable. We previously 94 

linked coupled transitions between alternative sidechain conformations, like “falling dominos”, to 95 

enzymatic turnover and allostery [15, 16].   96 

 97 

Additionally, qFit cannot model discrete conformational substates such as peptide flips, which are >90° 98 

rotations of a peptide group while minimally perturbing the flanking residues. Some structure validation 99 

methods highlight incorrect peptide orientations [17] and even automate subsequent model rebuilding 100 

[18]. However, rebuilding fits a correct, unique conformation rather than multiple well-populated 101 

alternative peptide conformations. Peptide flips can have important functional roles in proteins.  For 102 

example, flavodoxin undergoes peptide rotations between functional states as part of the catalytic cycle 103 

[19], and peptide flips that convert β-sheet to α-sheet have been linked to amyloid formation [20].  104 

Furthermore, high-resolution crystal structures have shown that alternative conformations related by a 105 

peptide flip may be populated in the same crystal [14].    106 

 107 

Modeling alternative conformations of glycine residues, which lack a Cβ atom, is also a current 108 

limitation of qFit. The lack of a Cβ atom allows glycine residues to access otherwise forbidden regions 109 

of conformational space [11] and thereby fill special structural roles such as capping helix C-termini 110 

[21].  In addition, the flexibility of glycines may contribute directly to function at flexible inter-domain 111 

linkers or conformationally dynamic enzyme active sites [22]. Automatically modeling such cases as 112 

alternative conformations with qFit paves the way toward understanding their contributions to protein 113 

function. Increasingly, new experiments are being proposed which, combined with computational 114 

analysis, can extract the spatiotemporal ensemble from electron density maps [15, 23, 24]. 115 

 116 

Adding the capability to model peptide flips and alternative conformations for glycines will increase our 117 

power to uncover conformational heterogeneity. While the number of sampled conformations for 118 
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glycines is modest owing to a missing side-chain, including peptide flips for all amino acids adds 119 

significant computational complexity to the qFit algorithm. A powerful quadratic programming algorithm 120 

lies at the core of qFit and is necessary to determine non-zero occupancies for up to four conformations 121 

from among hundreds or even thousands of candidate conformations for each residue. Even for 122 

modest sample sizes, around 500, the number of combinations of candidate conformations is 123 

enormous, exceeding 109. As more backbone motion is incorporated into qFit, the computational 124 

complexity increases, demanding a parallelized approach to refinement on a residue by residue basis. 125 

Although this moves rebuilding away from a single node towards a larger compute cluster, the 126 

combination of data-driven sampling and selection has enabled qFit to automatically build 127 

multiconformer models that have illuminated intramolecular networks of coupled conformational 128 

substates [16] and the effects of cryocooling crystals [25, 26]. Similar hybrid approaches using robotics 129 

sampling and selection based on experimental NMR data are also being extended to nucleotide 130 

systems such as the excited state of HIV-1 TAR RNA [27].  131 

 132 

Here we introduce qFit 2.0, an updated version of the qFit algorithm with new capabilities for modeling 133 

near-native backbone conformational heterogeneity in crystal structures.  We first describe the 134 

quadratic programming procedure that allows selection of a small set of conformations per residue that 135 

collectively account for the local electron density, and discuss its extension to fitting backbone atoms in 136 

addition to sidechain atoms.  We then describe new conformational sampling features of qFit 2.0, in 137 

particular glycine shifts and peptide flips.  Finally, we validate the updated algorithm with both synthetic 138 

and experimental X-ray data.  qFit 2.0 is freely available by webserver and source code is available for 139 

download at https://simtk.org/home/qfit. 140 

 141 

Results 142 

Improved backbone sampling and selection in qFit 143 

To automatically identify alternative backbone conformations, including peptide flips, we augmented the 144 

sample-and-select protocol in qFit (see Figure 1 and Methods).  Previously, conformations were 145 

sampled based on anisotropy of the Cβ atom and were selected based on the fit between observed 146 

and calculated electron density for the sidechain (Cβ atom and beyond) only.  Alternative 147 

conformations for mainchain atoms were ultimately included in the multiconformer model only because 148 

they accommodated the best sidechain fits.  In qFit 2.0, we now select conformations based on the fit 149 

between observed and calculated electron density for the sidechain atoms and also the backbone O 150 

atom. The O atom is an excellent yardstick for identifying backbone conformational heterogeneity for 151 

two reasons.  First, it is furthest from the Cα-Cα axis so its density profile is somewhat isolated and is 152 

displaced most by rotations around that axis [14]. Second, it has more electrons than other backbone 153 

heavy atoms, so is most evident in electron density maps. This change allows us to select peptide flips 154 
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outside of α-helices and β-sheets, where flips are prevented by steric and hydrogen-bonding 155 

constraints, then directly select flipped conformations.  This procedure is effective because the large 156 

movement of the backbone O during a peptide flip leaves a major signature in the electron density. 157 

 158 

Glycine modeling 159 

Incorporating the backbone O atom also enhances the detection of less discrete backbone 160 

conformational changes.  In particular, we now sample alternative glycine conformations based on 161 

anisotropy of the electron density for the O atom, by analogy to the Cβ-driven sampling for all other 162 

amino acids.  This results in alternative glycine conformations that are dictated by their own local 163 

electron density.  After sampling, we select combinations of conformers from a pool of candidates 164 

based on both sidechain and backbone O atoms for all amino acids, including glycines. This addition 165 

results in greater potential to discover alternative conformations throughout the protein and include 166 

additional conformational heterogeneity in the final multiconformer model. 167 

 168 

Characterizing peptide flip geometry 169 

The nullspace inverse kinematics procedure of qFit [9] naturally encodes backrub [14], crankshaft [28], 170 

and shear [29, 30] motions (Figure S1) where they are dictated by the anisotropy of the electron 171 

density for the Cβ atom. However, this anisotropy cannot identify more discrete substates of the 172 

backbone, such as peptide flips.  Peptide flips are large, ~180° rotations of a peptide plane in protein 173 

backbone with minimal disturbance of adjacent peptide conformations. Enumerating many peptide flip 174 

candidate conformations with the nullspace inverse kinematics procedure would quickly lead to 175 

prohibitively large sample sizes. We therefore examined common geometries of discrete peptide flips to 176 

expedite sampling of discrete backbone substates in qFit 2.0.  177 

 178 
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 179 
Figure 1: Flowchart of the qFit 2.0 algorithm. qFit can operate on each residue in the protein (orange boxes) in 180 

parallel (1 ≤ n ≤ N indices are for residues in the protein). Anisotropic refinement gives a thermal ellipsoid for the 181 

Cβ (orange model), and refinement with occupancies set to 0 gives an omit map (purple model).  These inputs 182 
are combined, backbone translations and peptide flips are sampled (blue models), each backbone is decorated 183 
with sidechain rotamers, and an MIQP is used to select 1-4 conformations for the residue.  Residues with 184 
consecutive multiple backbone conformations, called fragments (yellow boxes), are then subjected to a second 185 
MIQP to trace compatible alternative backbone conformations across residues.  Residues and fragments are 186 
combined into an intermediate model. Finally, a Monte Carlo procedure is used to adjust alternative conformation 187 
labels (“altloc” identifiers) to minimize steric overlaps, and the final model is refined. 188 

 189 

Steric interactions prevent arbitrary rotations of the peptide plane, much like sidechains adopt preferred 190 

rotamer conformations.  To identify plausible geometries for peptides relative to a single input peptide, 191 

we examined cases where the peptide rotates by 90-180° around the Cα-Cα axis. We identified 147 192 

peptide flips modeled as alternative conformations in high-quality structures.  After filtering this set of 193 

peptide flips with structure validation criteria and reserving some examples for a test set, we retained 194 

79 examples that clustered around four geometries (Table S1).  We observed that peptide flips often 195 

included rotation and translation within the peptide plane such that the first Cα moves “below” the Cα-196 

Cα axis and the second Cα moves “above” it (from the view in Figure 2A,C). These in-plane 197 

movements justify sampling geometries found in natural peptide flips in qFit 2.0 rather than, e.g., simply 198 

rotating the peptide 180° around the Cα-Cα axis.  The first two clusters, “simple down” (Figure 2A,C, 199 

blue) and “tweaked down” (Figure 2A,C, red), feature a very nearly 180° rotation around the Cα-Cα 200 
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axis, but with different in-plane adjustments.  By contrast, the second two clusters, “left” (Figure 2B,D, 201 

green) and “right” (Figure 2B,D, brown), feature rotations closer to 120°, but in opposite directions.  202 

Our dataset here is sufficient to propose plausible, well-validated peptide flip geometries for sampling in 203 

qFit 2.0, and suggests that the four clusters could also be used to inspire moves in protein design. 204 

 205 

Cluster # of examples # (%) in tight 

turn 

# (%) with Gly as 

first residue 

# (%) with Gly as 

second residue 

“tweaked down” 

(red) 

26 13 (50%) 0 (0%) 16 (62%) 

“simple down” 

(blue) 

29 12 (41%) 4 (14%) 19 (66%) 

“left” (green) 10 0 (0%) 1 (10%) 2 (20%) 

“right” (brown) 14 2 (14%) 1 (7%) 3 (21%) 

Table 1: Peptide flip geometries aggregate into distinct clusters. Colors refer to Figure 2. 206 

 207 

Structural context of flips 208 

We found that the two “down” clusters were more common in tight turns between β-strands: 41-50% of 209 

flips in these clusters were found in turns, as compared to 0-14% for the other two flip clusters (with a 210 

conservative definition of a turn; see Methods) (Table 1).  The flip is nearly always associated with a 211 

transition between Type I/I’ and II/II’ turns.  The “left”/”right” clusters were dispersed among many 212 

irregular structural contexts, but not α-helices or β-sheets.  Across the four clusters, the first residue of 213 

the peptide was a glycine 7.5% of the time, in line with the general abundance of glycines in proteins 214 

(7-8%).  However, the second residue of the peptide was a glycine significantly more frequently (50%, p 215 

< 10-22).  This was true for the “left”/”right” clusters (21%, p < 0.05) and especially the two “down” 216 

clusters (Figure 2C) (64%, p < 10-24).  This may be in part because a glycine as the second residue of 217 

a peptide can lower the flip transition energy [31].  These results generally agree with reports of flip-like 218 

conformational differences between the same tight turn in separate homologous structures [32].   219 

 220 
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  221 
Figure 2: Geometry and distribution of peptide flips in training set.  (A,B) Reference primary conformation 222 
peptide (black) and four cluster centroids for secondary peptide conformations (colors), from the side (A) or “top-223 
down” (B).  (C) Members from the training set segregate into two ~180° rotated clusters with different translations 224 
in the peptide plan (blue vs. red).  View from roughly the same angle as (A).  (D) Other members from the training 225 
set segregate into +120° and -120° rotated clusters (green vs. brown).  View from roughly the same angle as (B). 226 

 227 

 228 

Tests with synthetic datasets 229 

To test these advances, we first explored synthetic datasets spanning resolutions from 0.9 to 2.0 Å with 230 

increasing B-factors as a function of resolution and Gaussian noise added to structure factors (see 231 

Methods).  We used the Top8000 peptide flip geometry cluster centroids, with the alternative 232 

conformations at 70/30 occupancies for the “tweaked down” cluster and 50/50 occupancies for the 233 

other three clusters.  Because qFit uses these geometries to sample peptide flips, we expected it would 234 

be able to successfully identify each flipped alternative conformation starting from the primary (labeled 235 

“A”) conformation at high-to-medium simulated resolution, but less well at lower simulated resolution.  236 

Indeed, qFit 2.0 successfully finds the flipped conformations for most peptide flip geometry clusters 237 

across resolutions with a 92% success rate overall; this rate drops only slightly with resolution from 0.9 238 

to 2.0 Å (Figure 3).  Since we rebuilt the entire protein chain, we also assessed the performance on 239 

other residues.  By contrast to the true positive peptide flip results, the peptide flip and rotamer false 240 

positive rates remain quite low across clusters and resolutions (Figure 3).  These results indicate that 241 
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qFit 2.0 is effective at identifying peptide flip alternative conformations across a wide range of 242 

crystallographic resolutions without introducing spurious conformations. 243 

 244 

 245 
Figure 3: True vs. false positives with synthetic data.  Peptide flip true positives = percent of peptide flips in 246 
the actual synthetic model that are present in the qFit 2.0 model.  Peptide flip false positives = percent of residues 247 
with a peptide flip in the qFit 2.0 model that are not in the actual synthetic model.  Rotamer false positives = 248 
percent of sidechain rotamers (as defined by MolProbity [12, 33]) in the qFit 2.0 model that are not in the actual 249 
synthetic model.  True positives in green; false positives in red.  Peptide flips in solid lines; rotamers in dotted line.  250 
Data is averaged over all four synthetic datasets (corresponding to the four peptide flip geometry clusters in 251 
Figure 2) and all three mainchain amplitudes are considered; see Methods. 252 

 253 

 254 

Tests with experimental datasets 255 

Although tests with synthetic datasets offer insight into resolution dependence, a more direct test of the 256 

usefulness of qFit 2.0 involves crystal structures with real data.  We combined structures left out of the 257 

training set from the Top8000 peptide flip examples with a few more manually curated examples for a 258 

total of 15 test cases (Table 2).  When comparing qFit 2.0 models to rerefined original structures, Rfree 259 

is better for 7/15 cases and Rwork is better for 8/15 cases (Figure S2).  However, after rerefinement with 260 

automated removal and addition of water molecules to allow the ordered solvent to respond to the new 261 

protein alternative conformations modeled by qFit (see Methods), Rfree is better for the qFit 2.0 model 262 
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for 10/15 cases and Rwork is better for 13/15 cases (Figure 4).  The differences generally are small: the 263 

average ΔRfree is ~0.1%.  Overall, these results suggest that qFit 2.0 models explain experimental 264 

crystallographic data as well as or better than traditional refinement protocols at a global structural 265 

level. 266 

 267 

PDB ID Resolution (Å) Chain Peptide Found flip? 

1w0n 0.80 A 42-43 Y 

1nki 0.95 A 53-54 Y 

1nki 0.95 B 53-54 Y 

1x9i 1.16 A 65-66 Y 

1c9o 1.17 A 36-37 Y 

1c9o 1.17 B 36-37 n 

2c6z 1.20 A 227-228 n 

2qd6 1.28 A 50-51 n 

2qd6 1.28 B 150-151 Y 

3n6z 1.30 A 177-178 Y 

2c0c 1.45 A 44-45 n 

3h0u 1.50 C 115-116 Y 

3el5 1.60 A 50-51 Y 

3el5 1.60 B 50-51 Y 

3ii7 1.63 A 539-540 Y 

3ie5 1.69 A 61-62 Y 

2ozv 1.70 A 54-55 Y 

3f7w 1.85 A 48-49 Y 

Table 2: List of positive-control peptide flip test cases.  Last column indicates whether or not qFit 2.0 found the 268 
peptide flip alternative conformations for at least one of the three backbone amplitude parameters.  Overall, 14/18 269 
(78%) peptide flips were successfully identified. 270 

 271 
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 272 
Figure 4: Multiconformer modeling with qFit results in similar or better crystallographic R-factors.  Rwork 273 
and Rfree are plotted vs. PDB ID sorted from high to low resolution.  X’s indicate rerefined original structures and 274 
filled circles indicate qFit 2.0 models; both are after refinement with water picking. 275 

 276 

While global metrics are important, a major focus of the current work is correctly identifying local 277 

alternative backbone conformations. To explore this aspect, we compared results from qFit 2.0 to those 278 

from qFit 1.0 and original deposited structures for our test set (Table 2).  qFit 2.0 successfully models 279 

both flipped conformations in 14/18 (78%) cases.  For example, Val539-Gly540 in the Kelch domain of 280 

human KLHL7 is modeled with two alternative conformations related by a peptide flip (1.63 Å, PDB ID 281 

3ii7) (Figure 5A).  qFit 1.0 fails to discover the flip, resulting in significant difference electron density 282 

peaks (Figure 5B).  By contrast, qFit 2.0 beautifully recovers both alternative conformations (Figure 283 

5C).  In another example, Asn42-Gly43 in carbohydrate binding domain 36 at high resolution (0.8 Å, 284 

PDB 1w0n) adopts flipped peptide conformations -- yet MolProbity flags geometry errors in the 285 

deposited structure that indicate it re-converges too quickly, with alternative conformations for only the 286 

Asn42 and not also Gly43 (Figure 5D).  qFit 1.0 fails to capture the flip (Figure 5E).  However, qFit 2.0 287 

not only identifies both peptide flip conformations for Asn42, but also includes split conformations for 288 

Gly43, thereby repairing the covalent backbone geometry (Figure 5F).  In both cases, the peptide flip 289 

and glycine sampling enhancements in qFit 2.0 combine to model discrete backbone heterogeneity as 290 

accurately as or even better than the original structure. 291 

 292 
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 293 
Figure 5: qFit 2.0 successfully identifies known peptide flips.  (A-C) Val539-Gly540 in the Kelch domain of 294 
human KLHL7 at 1.63 Å (PDB ID 3ii7).  2mFo-DFc electron density is contoured at 1.2 σ (cyan) and 2.5 σ (blue); 295 
mFo-DFc electron density is contoured at +3.0 σ (green) and -3.0 σ (red).  (A) The deposited model includes 296 
alternative conformations for this peptide, which are well justified by the electron density.  (B) qFit 1.0 starting 297 
from single-conformer input fails to find the second conformation, resulting in peaks in the difference density map 298 
(arrow).  (C) qFit 2.0 finds both conformations, resulting in the disappearance of the difference peaks.  (D-E) 299 
Asn42-Gly43 in carbohydrate binding domain 36 at 0.8 Å resolution (PDB ID 1w0n).  The Asn42 sidechain (left, 300 
darker green/purple) points up out of the image so is visually truncated.  In (E-F), 2mFo-DFc electron density is 301 
contoured at 1.5 σ (cyan) and 2.5 σ (blue); mFo-DFc electron density is contoured at +3.0 σ (green) and -3.0 σ 302 
(red).  (D) The deposited structure includes alternative conformations (green and purple) related by a peptide flip, 303 
but re-converges too early at the Gly43 backbone N atom, resulting in >4 σ bond length (red and blue fans) and 304 
bond angle (red and blue springs) outliers [33].  (E) qFit 1.0 fails to identify the flip, leaving significant difference 305 
density map features.  (F) qFit 2.0 identifies the flip at Asn43 and also correctly splits Gly43 into separate 306 
conformations, thereby flattening the difference map relative to qFit 1.0 and eliminating the covalent geometry 307 
errors in the original structure. 308 

 309 

Discovering new conformational heterogeneity from experimental datasets 310 

In addition to retrospective positive-control tests, we also looked prospectively for “hidden” peptide flip 311 

alternative conformations that are unmodeled in existing structures.  One such example is Met519-312 

Thr520 in RNA binding protein 39.  In chain A of the room-temperature structure (PDB ID 4j5o), the 313 

mFo-DFc difference electron density map around this peptide has significant positive and negative 314 

peaks, indicating it is mismodeled as a single conformation (Figure 6A).  Other instances of this 315 

peptide -- including in chain B of the room-temperature structure and both chains of the cryogenic 316 

structure -- feature conformational diversity, much of which may be related to crystal contacts; however, 317 

these conformations fail to account for the room-temperature chain A mFo-DFc peaks (Figure 6B).  318 

However, using the room-temperature data, qFit 2.0 identifies a peptide flip in this region, which 319 
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repositions Met519 and flattens the local difference density (Figure 6C).  By contrast, it does not 320 

identify a peptide flip for this region in either chain using the cryogenic data, which is in accord with 321 

previous reports that cryocooling crystals can conceal or otherwise perturb conformational 322 

heterogeneity that is present at room temperature [25, 26]. 323 

 324 

 325 
Figure 6: qFit 2.0 finds a hidden peptide flip at room temperature.  (A) Met519-Thr520 in mouse RNA binding 326 
protein 39 (RBM39) is modeled with just a single conformation in chain A of the 1.11 Å room-temperature 327 
structure (PDB ID 4j5o, pink).  There appear to missing unmodeled conformations based on mFo-DFc difference 328 
electron density contoured at +3.0 σ (green) and -3.0 σ (red).  2mFo-DFc electron density is shown contoured at 329 
0.9 σ (cyan) and 2.5 σ (dark blue).  (B) Although there is diversity for this region in chain B of the asymmetric unit 330 
from this structure and in chains A and B from the 0.95 Å cryogenic structure (PDB ID 3s6e, blue), none of the 331 
other instances explain the electron density at RT in chain A.  There is also no clear evidence for missing 332 
alternative conformations in these other instances (not shown).  (C) The RT qFit model (magenta) adds a flipped 333 
peptide as an alternative conformation, which positions the Met519 sidechain differently.  Collectively, these 334 
changes better explain the local electron density. 335 

 336 

In addition to selection of conformers based on fit to density for the backbone O atom for all amino 337 

acids, qFit 2.0 also adds sampling based on this atom for glycine, enabling density-driven backbone 338 

sampling for the most flexible amino acid.  This facilitates modeling peptide flips in which one of the 339 

constituent residues is a glycine, as seen in the examples above (Figure 5) -- but also opens the door 340 

to modeling less discrete glycine flexibility.  For the 489 glycines across the 15 datasets in the test set 341 

(Table 2), qFit 1.0 cannot model more than a single conformation, but qFit 2.0 models alternative 342 

conformations for 365/489 (75%) of glycines.  The Cα displacements average 0.28 Å and range from 343 

<0.01 Å up to 1.70 Å.  Only 4 (4%) of these glycines were modeled with alternative conformations in the 344 

original PDB structures.  These results show that the direct sampling and selection based on electron 345 

density for glycine backbone atoms in qFit 2.0 successfully identify conformational heterogeneity that 346 

was formerly unrecognized.  For example, a small, glycine-rich loop in PDB ID 3ie5 is modeled with a 347 

single conformation in the deposited structure and qFit 1.0 model (Figure 7A).  By contrast, qFit 2.0 348 

recognizes the anisotropy of the electron density for each of the three glycine O atoms in the loop, so 349 

models them with alternative conformations that collectively shift the entire mini-loop region (Figure 350 

7B). 351 
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 352 

 353 
Figure 7: qFit 2.0 identifies alternative glycine conformations.  This small loop in the 1.69 Å structure of Hyp-354 
1 protein from St. John’s wort (PDB ID 3ie5) includes several glycines: 49, 50, and 52.  (A) The deposited 355 
structure (orange) depicts these glycines with single conformations.  The qFit 1.0 model (red) does the same, 356 
because it cannot sample alternative glycine conformations.  (B) The qFit 2.0 model identifies alternative 357 
conformations (green/purple) for the entire loop, including all three glycines, based on subtly anisotropic 358 
backbone O atoms (arrows). 2mFo-DFc electron density contoured at 1.0 σ (cyan) and 3.0 σ (blue); mFo-DFc 359 
electron density contoured at +3.0 σ (green) and -3.0 σ (red). 360 

 361 

Selecting conformers based on fit to density for the backbone O atom helps find alternative 362 

conformations not only for glycines, but also more generally for other amino acids.  In many cases, this 363 

additional data-driven aspect to conformer selection drives the identification of subtle, non-discrete 364 

backbone motions that are coupled to larger, discrete sidechain changes.  Indeed, for the 15 proteins in 365 

Table 2, qFit 2.0 shifts the Cα more than does qFit 1.0 for 52% of residues, but the reverse is true for 366 

only 20% of residues (the remaining residues are not moved by either version) (Figure 8A). 367 

Furthermore, for 63% of the residues for which qFit 2.0 finds a new sidechain rotamer that qFit 1.0 does 368 

not, qFit 2.0 also moves the Cα more (Figure 8B).  These results imply that the backbone sampling by 369 

qFit 2.0 not only increases backbone heterogeneity in and of itself, but also drives discovery of 370 

sidechain conformational heterogeneity.  As one specific example, Thr157 in cyclophilin A is modeled 371 

with alternative backbone and rotamer conformations in the deposited structure (Figure 8A).  qFit 1.0 372 

fails to find the alternative rotamer because it maintains a single backbone conformation (Figure 8B), 373 

but, driven by carbonyl O anisotropy, qFit 2.0 identifies the alternative backbone conformations, 374 

allowing it to discover the second rotamer (Figure 8C). 375 

 376 
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 377 
Figure 8: Extra backbone heterogeneity in qFit 2.0 helps discover new sidechain heterogeneity. 378 
(A) Histogram of difference in maximum Cα displacement across all combinations of alternative conformations 379 
between qFit 2.0 and qFit 1.0 for the test set.  Vertical dotted line at 0 difference.  (B) Maximum Cα displacements 380 
for qFit 2.0 vs. 1.0 for residues with a newly discovered sidechain rotamer in the qFit 2.0 model but not in the qFit 381 
1.0 model.  Many of these residues fall above the diagonal line, meaning the Cα moves more in the qFit 2.0 382 
model than in the qFit 1.0 model.  (C-D) Thr157 in cyclophilin A at room temperature (PDB ID 3k0n).  2mFo-DFc 383 
electron density is contoured at 0.5 σ (cyan) and 3.0 σ (blue); mFo-DFc difference electron density is contoured at 384 
+3.1 σ (green) and -3.1 σ (red).  (C) The deposited structure has alternative rotamers that were correctly manually 385 
modeled.  (D) qFit 1.0 does not move the backbone and misses the alternative rotamer, as evidenced by a peak 386 
of +mFo-DFc density (arrow).  (E) qFit 2.0 does move the backbone (note especially the backbone carbonyl 387 
displacement), and successfully identifies the alternative rotamer. 388 

 389 

Newly identified peptide flips in the “flap” region of HIV protease  390 

We also observed hidden peptide flips for the Ile50-Gly51 tight turn in the “flap” region of HIV-1 391 

protease. HIV-1 protease is a homodimer, with residue numbers often denoted by 1-99 and 1’-99’. The 392 

flap region consisting of residues 46-56 is an antiparallel β-sheet and tight turn at the interface of the 393 

dimer (Figure 9A). In most of the hundreds of crystal structures of HIV-1 protease, the two tight turns 394 
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(Leu50-Gly51 and Leu50’-Gly51’) adopt an asymmetric conformation, with one flap in a single type I 395 

conformation and the other in a single type II conformation.  However, NMR relaxation data suggest 396 

that these flips can undergo chemical exchange on a slow (~10 µs) timescale in solution [34].  397 

Mutational data also linked collective conformational exchanges of these flips to catalytic rates [35].  In 398 

line with these solution studies, we noticed that for many HIV-1 protease crystal structures, the electron 399 

density maps actually reveal strong evidence for alternative conformations related by dual peptide flips.  400 

For example, in one high-resolution inhibitor-bound structure (PDB ID 3qih), the Leu50-Gly51 and 401 

Leu50’-Gly51’ flaps are modeled with single asymmetric conformations, but strong positive mFo-DFc 402 

electron density coincides with potentially flipped states (Figure 9B).  Strikingly, qFit 2.0 automatically 403 

identifies dual “flap flips”, suggesting the flaps actually populate two different asymmetric states (green 404 

vs. purple in Figure 9C) in this particular inhibitor complex.  More generally, this result suggests that 405 

these inhibitor-gating flaps in HIV-1 protease sample multiple conformations more often than previously 406 

recognized across many inhibitor complexes, which may motivate further investigation of the effects 407 

that protein and inhibitor flexibility have on binding affinity, efficiency of catalytic inhibition, and arisal of 408 

drug resistance in this biomedically important target. 409 

 410 

 411 
Figure 9: Hidden unmodeled peptide flips in the inhibitor-gating “flaps” of HIV-1 protease.  (A) In the 1.39 412 
Å structure of a mutant of HIV-1 protease bound to a novel inhibitor (PDB ID 3qih), the Ile50-Gly51 tight turn 413 
interacts with the dimer-related copy of itself, Ile50’-Gly51’ (boxed region). Chain A in orange, chain B in red.  The 414 
inhibitor (sticks) binds in two overlapping poses immediately adjacent to these flaps.  (B) This dimer interface, 415 
viewed as if from above in (A), is asymmetric in the deposited structure: both copies of the peptide point 416 
downwards in this view.  However, positive difference electron density (arrows) suggest unmodeled 417 
conformations.  (C) qFit 2.0 models this region with coupled asymmetric peptide flips, such that both copies of the 418 
peptide point down (~70%, green) or both point up (~30%, purple) in this view.  The multiconformer model has 419 
diminished difference electron density peaks, suggesting it is a better local fit to the data.  Residual difference 420 
peaks may reflect unmodeled partial-occupancy waters that are mutually exclusive with the new protein 421 
alternative conformations. 2mFo-DFc contoured at 1.2 σ (cyan) and 3.0 σ (blue); mFo-DFc contoured at +3.0 σ 422 
(green) and -3.0 σ (red). 423 

 424 

 425 
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Discussion 426 

The ruggedness of protein energy landscapes leads to conformational heterogeneity even in folded 427 

globular proteins.  Evidence for these alternative conformations is remarkably prevalent in high-428 

resolution (<2 Å) crystallographic electron density maps [6].  However, because these alternative 429 

conformations are difficult and/or time-consuming to model manually using existing graphics and 430 

refinement tools, they are underrepresented in the PDB [6].  qFit is a computational approach to 431 

overcoming these problems, by automatically identifying “hidden” alternative conformations and using 432 

quadratic programming to select a parsimonious subset that collectively best explains the diffraction 433 

data.  Here we have demonstrated a new version of this algorithm, called qFit 2.0, with several 434 

enhancements to handling flexible backbone -- most notably, automated detection of discrete peptide 435 

flips and explicit fitting of backbone atoms for glycines. 436 

 437 

qFit has previously captured different types of backbone motion that can occur in secondary structure.  438 

For example, it correctly identifies the backrub motion [14] that helps Ser99 transition between 439 

sidechain rotamers in the active-site β-sheet network of CypA [15, 16], and also identifies a previously 440 

hidden α-helix winding/unwinding or “shear” motion [14, 29] (Figure S1).  However, qFit 2.0 can now 441 

model larger backbone motions in which the backbone change itself is discrete, instead of inherently 442 

continuous but coupled to discrete sidechain rotamer changes.  Specifically, it models peptide flips, 443 

which occur outside of helices and sheets and involve discrete jumps over a larger energetic barrier.   444 

 445 

Peptide flips have important implications for understanding protein function. For example, our results for 446 

HIV-1 protease (Figure 9) strongly suggest that conformational heterogeneity, in particular peptide 447 

flips, may play underappreciated roles in protein-inhibitor complexes. Previously, molecular dynamics 448 

simulations identified a large-scale “curling” motion of these flaps that is maintained by drug-resistance 449 

mutations and therefore seems important for substrate access [36]. Although this motion is more 450 

dramatic than the peptide flaps at the tips of the flaps that we observe, it underlines that flap flexibility -- 451 

potentially across multiple length scales -- is central to protease function and viral propagation. The 452 

peptide flip acts as a key conformational switch between type I/II turns, rearranging its environment 453 

beyond its immediate sequence neighbors and enabling alternative sidechain conformations with 454 

implications for function. However, the large number of unmodeled turns in HIV protease structures 455 

illustrates the challenge of distinguishing alternative conformations in electron density maps, even at 456 

high resolution. As an additional example which unfortunately lacks deposited structure factors, the 457 

active-site Gly57-Asp58 peptide in C. beijerinckii flavodoxin adopts distinct peptide flip states in concert 458 

with the oxidation state of the FMN prosthetic group [19].  The N137A mutation removes artificial lattice 459 

contacts that otherwise influence the conformation of the Gly57-Asp58 peptide, which results in a 460 
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mixture of these peptide conformations simultaneously populated in the crystal; this suggests these 461 

multiple flip states may also coexist in solution [19].   462 

 463 

Beyond the specific improvements to peptide flips, qFit 2.0 now fits conformations for each residue 464 

based on both sidechain (beyond Cβ) and backbone (carbonyl O) atoms.  Although we originally 465 

envisioned this change for modeling glycines, we observed that it results in dramatically more extensive 466 

backbone conformational heterogeneity across the protein (Figure 8).  R-factors are similar or better 467 

(Figure 4), suggesting the new models with more heterogeneity are at least as good an explanation of 468 

the experimental data.  Notably, these new backbone shifts drive discovery of many more alternative 469 

sidechain rotamers (Figure 8).  Our results suggest that sidechain and backbone degrees of freedom in 470 

proteins are tightly coupled, in agreement with previous reports that even subtle backbone motions can 471 

facilitate rotamer changes [14], open up breathing room for natural mutations [37], and expand 472 

accessible sequence space in computational protein design [30, 38]. 473 

 474 

Future work will investigate an armamentarium of methods for modeling larger backbone 475 

conformational change in qFit, including helix shear motions [29], adjustments of entire α-helices [39, 476 

40], correlated β-sheet flexing [28], automated loop building algorithms such as Xpleo [9], and pre-477 

knowledge of conformational differences between homologous structures. While these future steps will 478 

move us closer to capturing the full hierarchy of protein conformational substates [41], they will also 479 

dramatically increase the computational cost of automated multiconformer model building.  Many 480 

aspects of qFit are parallelizable; however, the total computational cost for reproducing the data in this 481 

manuscript is approximately 105 CPU hours.  As cloud-computing capabilities of 108 CPU hours can 482 

now be leveraged for pure simulation data [42], we envision that marshalling similar computational 483 

capabilities will become increasingly important for analysis of experimental X-ray data.  Such data-484 

driven computational approaches to studying the dynamic relationship between protein structure and 485 

function will be especially powerful when applied to series of datasets in which the protein is subjected 486 

to perturbations that modulate conformational distributions, such as ligand binding or temperature 487 

change [23]. 488 

 489 
Materials and Methods 490 
 491 
Learning peptide flip geometries 492 
 493 
To define possible relative geometries between flipped peptide conformations, we searched for 494 
trustworthy peptide flips modeled as alternative conformations in the Top8000 database. This database 495 
contains ~8000 (7957) quality-filtered protein chains from high-resolution crystal structures, each with 496 
resolution < 2 Å, MolProbity score [33] < 2, nearly ideal covalent geometry, and <70% sequence 497 
identity to any other chain in the database [43 ISBN: 978-981-4449-15-1]. We searched the Top8000 498 
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for peptides with carbonyl C-O bonds pointed away from each other (O-O distance > C-C distance + 1 499 
Å) and rotated by at least 90°, and for which both flanking Cα atoms reconverged to < 1.5 Å.  Although 500 
peptide rotations of < 90° also occur, they occur more often in irregular loop regions, have less well-501 
converged backbone for flanking residues, and are generally more diverse and difficult to simply 502 
categorize.  By contrast, in this study we investigate the class of localized peptide rotations with well-503 
converged backbone for both flanking residues.  These are either very small rotations, or large flips with 504 
a rotation nearer to 180° -- the latter being the focus here.  To identify test cases for qFit 2.0, we 505 
curated the resulting dataset by removing examples with more than two alternative peptide 506 
conformations; a cis rather than trans conformation for either state; or obvious errors based on steric 507 
clashes, strained covalent geometry, or torsional outliers from MolProbity [33].  This resulted in 104 508 
examples, from which we kept a randomly selected 79 for a geometry training set (Table S1).  We 509 
combined a subset of the remaining 25 peptide flips with a few other known examples for a test set of 510 
18 examples (Table 1).  The resolution range is 0.92-1.95 Å for the training set and 0.80-1.85 Å for the 511 
test set.   512 
 513 
Next we characterized the geometry of peptide flips by clustering the coordinates of the flipped 514 
alternative conformation (labeled “B”) in the training set after superimposing onto a reference peptide.  515 
We used the k-means algorithm with RMSD between the five heavy atoms of the peptide backbone 516 
(Cα1, C1, O1, N2, and Cα2) for different values of k.  We selected k = 4 because we observed cluster 517 
centroids with approximately 180°, +120°, and -120° rotations and for k > 4 no other significantly 518 
different rotations were identified.  Notably, all four cluster centroids featured translations of the flanking 519 
Cα atoms of >0.2 Å, and as much as >0.9 Å for one cluster (“tweaked down”, red in Figure 2).  The 520 
transformation matrices relating the flipped peptide cluster centroids to the reference peptide were used 521 
in qFit 2.0 to sample plausible alternative conformations, with subsequent refinement adjusting the 522 
atomic positions away from the centroid geometry.   523 
 524 
Tight turns and glycine enrichment 525 
 526 
We defined tight turns as having a mainchain-mainchain hydrogen bond between i-1 carbonyl C=O and 527 
i+2 amide N-H that was detectable by the program Probe [44].  This definition is somewhat 528 
conservative; several more examples also were visually similar to tight turns.  Enrichment of glycines at 529 
the two positions involved in a peptide flip was assessed for different peptide flip clusters within the 530 
training set relative to a large set of 337 randomly selected structures containing 6,092 total glycines 531 
out of 78,094 total amino acid residues.  The statistical significance of this enrichment was assessed 532 
using a one-tailed Fisher’s exact test based on the hypergeometric distribution [45]. 533 
 534 
qFit 535 
 536 
qFit part 1: Preparing each residue for qFit 537 
 538 
qFit exhaustively examines a vast number of interpretations of local electron density, and 539 
deterministically selects a small ensemble that optimally explains the density.  The method starts from 540 
an initial single-conformer model.  The occupancies of all atoms in a residue, k, beyond the Cβ atom 541 
are set to zero with phenix.pdbtools, and the model is refined with phenix.refine.  Refinement uses 542 
anisotropic B-factors for all residues if the resolution is better than 1.45 Å, or just for residue k 543 
otherwise.  Finally, all atoms in residue k beyond the Cβ atom are removed.  These steps result in two 544 
inputs to qFit: (1) an omit map and (2) starting coordinates with an anisotropic tensor for the Cβ atom. 545 
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 546 
qFit part 2: Peptide flips and backbone sampling 547 
 548 
Next, the peptide from residue k to k+1 is aligned to the centroids identified from clustering the 549 
Top8000 dataset (see above).  We calculate local coordinate frames for the peptide and cluster centers 550 
by orthogonalizing the Cαi-Cαi+1 and Cαi-Oi vectors and taking their cross-product.  Each centroid 551 
conformation is then transformed onto the starting peptide using a homogeneous coordinate 552 
transformation, resulting in a candidate flipped alternative conformation. 553 
 554 
Peptide flips do not occur in canonical secondary structure due to steric constraints, so qFit 2.0 does 555 
not attempt them in helices and sheets, as detected by the CCP4 MMDB library [46].  This both avoids 556 
false positives and affords a computational speedup by reducing combinatorics in the selection steps 557 
(see below). 558 
 559 
Next, for each residue k, a fragment of length 7 centered on residue k is extracted.  For each candidate 560 
conformation (one unflipped plus four flipped), the Cβ atom is moved along the major and minor axes of 561 
the ellipsoid (six total directions) by a distance determined by the ellipsoid eigenvectors and a scale 562 
value provided by the user.  Here we used 0.1, 0.2, and 0.3 for this scale value, and 0.05 for the 563 
optional value for random additions to scale.  For glycines, which lack a Cβ atom, the backbone O atom 564 
is used to define the anisotropic ellipsoid.  To preserve the exact geometry of the fragment, we use 565 
inverse kinematics to deform the fragment.  The gradient of the distance function is projected onto the 566 
nullspace spanned by the dihedral degrees of freedom of the fragment [9, 10].  These motions further 567 
position backbone atoms to accommodate rotameric sidechain conformations. 568 
 569 
qFit part 3: Sidechain sampling 570 
 571 
For small sidechains (Ala, Asn, Asp, Cys, Gly, Iso, Leu, Pro, Ser, Thr, Val), a 40° neighborhood of each 572 
rotameric χ dihedral angle, starting at -20°, is sampled in 10° increments on each of the 35 backbone 573 
conformations.  To avoid a combinatorial explosion, large sidechains (Arg, Glu, Gln, His, Lys, Met, Phe, 574 
Trp, Tyr) are sampled hierarchically.  First, the backbone and first dihedral angle are sampled similarly 575 
to small sidechains.  A larger neighborhood of 50° is sampled in 4.5° increments to avoid missing 576 
conformations that are initially suboptimal but can accommodate better fits for subsequent χ angles.  577 
This set is then subjected to the selection procedure, which returns a handful of conformations that fit 578 
the density up to the Cγ atom.  These selected conformations form the basis for sampling the next χ 579 
angle using the same parameters. This procedure is repeated until the entire sidechain is built. 580 
 581 
qFit part 4: Conformer selection 582 
 583 
For each of the N conformations sampled for each residue, we calculate an electron density map ρ i

c.  584 
We scale the observed electron density map ρ o to ρc.  We then subject the weighted sum of ρ i

c to a 585 
quadratic program (QP) to determine a vector of occupancies wT that minimizes the least squares 586 
residuals with respect to the observed electron density: 587 
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 588 
The residuals are calculated over regularly spaced voxels that are within a resolution-dependent radius 589 
r of any of the sidechain (Cβ and beyond) or carbonyl O atoms. The radius r (in Å) is determined by r = 590 
0.7 + (d - 0.6 )/3.0 if d < 3.0Å, and 0.5 d if d ≥ 3.0Å, where d is the resolution in Å.  591 
 592 
The vast number of conformations results in a system that is generally underdetermined.  We therefore 593 
enforce sparsity of the solution by introducing a resolution-dependent threshold constraint 0 < tdmin ≤ 1 594 
for the occupancies; i.e., wi > tdmin for all i.  The threshold constraint prevents overfitting by suppressing 595 
arbitrarily small occupancies that model noise.  Together with the constraint that the total occupancy 596 
cannot exceed unity, the threshold also enforces a cardinality constraint; i.e., the number of non-zero 597 
occupancies is bounded by the integer part of 1/tdmin.  In effect, the threshold constraint enforces 598 
selection of an optimal subset in the regression.  Note that the two constraints imply wi ∈ {0} ∪ [tdmin,1].  599 
Introducing binary variables zi ∈ {0,1}, we can rewrite the optimization problem as a mixed integer 600 
quadratic program (MIQP):  601 

 602 
This optimization problem belongs to the class of convex quadratic problems, for which  solvers can 603 
find a globally optimal solution.  An MIQP is NP-hard.  We therefore pre-fit conformers with QP, and 604 
subject all conformations with non-vanishing occupancies to MIQP.  While in theory this no longer 605 
guarantees an optimal solution, practice tests on small sets of conformers did not show an effect of pre-606 
fitting. 607 
 608 
qFit part 5: Putting the model back together 609 
 610 
Assembling a consistent, multiconformer model from individually fitted residues requires two steps. 611 
First, backbone heterogeneity can extend over multiple, consecutive residues, each with slightly 612 
different occupancies and/or numbers of conformers.  To synchronize the number of conformers and 613 
their occupancies over a fragment of length K residues consisting of consecutive backbone 614 
multiconformers, we again rely on conformational selection by MIQP. We enumerate all possible 615 
connections between all conformations Ci of residues i = 1, ... , K to obtain Cf = Π K i=1 Ci 616 
conformations to model this fragment.  We subject all Cf conformations to the MIQP, which selects a 617 
parsimonious ensemble of at most 1/tdmin conformations based on optimal fit to the observed electron 618 
density, each with identical occupancy for all atoms in the fragment.  Note that Cf  can be quite large, 619 
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even for modestly long fragments.  To avoid a combinatorial explosion, for long fragments we 620 
implemented a divide-and-conquer procedure that fits segments of each fragment with MIQP.  The 621 
fitted segments are then combinatorially recombined and again subjected to MIQP to obtain the final 622 
set of conformations for the fragment.  The peptide-bond geometry of the output model at this stage of 623 
qFit can be distorted.  A later refinement stage with phenix.refine corrects the geometry. 624 
 625 
Second, conformations encoding collective motions are often mutually exclusive.   626 
In crystal structures, each internally consistent set of residues is labeled with an alternative 627 
conformation or “altloc” identifier -- a capitalized letter (“A”, “B”, etc.) for multiple conformations or a 628 
blank space (“ “) for a single conformation.  However, the initial model from the preceding steps in the 629 
qFit pipeline has random labels.  To identify internally consistent labels, we use a simple downhill 630 
Monte Carlo optimization protocol.  The program Label minimizes a simple Lennard-Jones score by 631 
randomly swapping labels between conformations and accepting the change if the score improves.  632 
This is repeated 10,000 times per trial over 10 trials, and the model with the best score is used for 633 
subsequent steps. 634 
 635 
To finalize the model, we first refine the relabeled model with phenix.refine.  Next, we remove 636 
conformations that are now indistinguishable from other conformations within predicted coordinate 637 
error, and reset occupancies to sum to unity for each atom.  Finally, we refine again, using anisotropic 638 
B-factors if the resolution is better than 1.45 Å. 639 
 640 
Hydrogen treatment 641 
 642 
Hydrogens were placed at nuclear positions for Label in qFit 1.0 and at electron-cloud positions for 643 
Label in qFit 2.0.  Correspondingly, for Label in qFit 2.0, hydrogen van der Waals radii were taken from 644 
the new values in Reduce [47], which are intended to match those used in PHENIX.  Hydrogens were 645 
absent for all other steps in qFit, including the final refinement step; however, the user is encouraged to 646 
add hydrogens to the final qFit model for their protein of interest and proceed to other analyses.  Future 647 
work will update programs for downstream analysis of qFit models such as CONTACT [16] to also use 648 
electron-cloud instead of nuclear hydrogen positions.   649 
 650 
Generating synthetic datasets 651 
 652 
To generate synthetic datasets for testing qFit, we used the protein chains containing the four peptide 653 
flip cluster centroids (3mcw B 101-102, 2ior A 159-160, 2g1u A 51-52, 3g6k F 172-173).  We first used 654 
phenix.pdbtools to convert any anisotropic B-factors to isotropic, added 10 Å2 to each B-factor per Å of 655 
resolution worse than the original structure’s resolution to roughly simulate the general rise of B-factors 656 
with resolution, and placed the chain in a P1 box that comfortably encompassed it.  Next we used 657 
phenix.fmodel to calculate structure factors (with the “k_sol=0.4” and “b_sol=45” bulk solvent 658 
parameters, and also generating 5% R-free flags) and added 10% noise in complex space with the 659 
sftools utility in CCP4 [46].  This process was repeated for every simulated resolution from 0.9 to 2.0 Å 660 
with a 0.1 Å step size. 661 
 662 
Evaluating true and false positives 663 
 664 
qFit uses an input parameter (MC_AMPL) to scale the magnitude of movements of the Cβ (or O for 665 
glycines) along the directions dictated by its thermal ellipsoid.  As in previous work [10, 16, 26], we 666 
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explored multiple values for this parameter: 0.1, 0.2, and 0.3.  For evaluating results such as true vs. 667 
false positive peptide flips and rotamers here, we considered all three resulting qFit models for each 668 
dataset.  This is sensible because an end user of qFit 2.0 will likely reproduce this same protocol (with 669 
a few MC_AMPL values) and thus have a choice of models to use for developing insights into 670 
conformational heterogeneity and its connection to function. For other analyses, we used the minimum-671 
Rfree qFit model model unless otherwise noted. 672 
 673 
Re-refinement with water picking 674 
 675 
To compare R-factors between the deposited models and qFit 2.0, we finalized both models with 676 
phenix.refine for 10 macro-cycles using the same parameters, including the “ordered_solvent=true” 677 
flag.  The resulting R-factors for qFit 2.0 models are similar or slightly better (Figure 4). 678 
 679 
Programs and databases 680 
 681 
PHENIX version 1.9-1692 (the most recent official release) [48] was used for all steps of both qFit 1.0 682 
and 2.0.  Coordinates and structures factors were obtained from the Protein Data Bank [49]. qFit uses 683 
the following libraries: IBM’s ILOG CPLEX solver for QP and MIQP, which is available free of charge for 684 
academic use, and LoopTK for inverse kinematics calculations [50]. qFit is implemented in parallel; it is 685 
capable of sampling and evaluating conformations for each residue as an independent job on a Linux 686 
cluster. We have implemented job management for qFit on both Oracle/Sun Grid Engine and LSF 687 
Platform.   688 
 689 
Supplementary Figures 690 
 691 

 692 
Figure S1: qFit detects a shear backbone motion in a room-temperature crystal structure of cyclophilin A.  693 
(A) Residues 142-145 in CypA are modeled with a single conformation in the single-conformer structure (PDB ID 694 
3k0n).  The model is a reasonable fit to the 2mFo-DFc electron density contoured at 1.0 σ (cyan) and 2.5 σ (dark 695 
blue), which is slightly anisotropic for the central carbonyl oxygen.  (B) The multiconformer qFit model, on the 696 
other hand, includes three alternative conformations with backbones related by a shear-like motion to explain the 697 
electron density.  Each shear end-state (greens vs. purple) is allocated about 50% occupancy.  The 698 
multiconformer model adds a second rotamer (purple) in addition to the original rotamer (greens) for Glu143 (left-699 
hand-side of panel) and sweeps the Arg144 sidechain sideways (right-hand-side of panel). 700 
 701 
 702 
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 703 
Figure S2: Multiconformer modeling with qFit does not result in better crystallographic R-factors before 704 
solvent picking.  Rwork and Rfree are plotted vs. PDB ID sorted from high to low resolution.  X’s indicate original 705 
structures rerefined without automated addition and removal of water molecules, and filled circles indicate qFit 2.0 706 
models. 707 
 708 
Table S1: List of peptide flip examples from Top8000 used as training set. 709 
 710 
  711 
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