
Title: Inferring species interactions from co-occurrence data with Markov networks1

Author: David J. Harris: Population Biology; 1 Shields Avenue, Davis CA, 956162

Abstract: Inferring species interactions from co-occurrence data is one of the most3

controversial tasks in community ecology. One difficulty is that a single pairwise interaction4

can ripple through an ecological network and produce surprising indirect consequences. For5

example, the negative correlation between two competing species can be reversed in the6

presence of a third species that is capable of outcompeting both of them. Here, I apply7

models from statistical physics, called Markov networks or Markov random fields, that can8

predict the direct and indirect consequences of any possible species interaction matrix.9

Interactions in these models can also be estimated from observed co-occurrence rates via10

maximum likelihood, controlling for indirect effects. Using simulated landscapes with known11

pairwise interaction strengths, I evaluated Markov networks and six existing approaches.12

The Markov networks consistently outperformed other methods, correctly isolating direct13

interactions between species pairs even when indirect interactions or abiotic factors largely14

overpowered them. Two computationally efficient approximations, based on controlling for15

indirect effects with linear or generalized linear models, also performed well. Indirect effects16

reliably caused a common null modeling approach to produce incorrect inferences, however.17

Key words: Ecological interactions; Occurrence data; Species associations; Markov network;18

Markov random field; Ising model; Biogeography; Presence–absence matrix; Null model19

Introduction20

To the extent that nontrophic species interactions (such as competition) affect community21

assembly, ecologists might expect to find signatures of these interactions in species22

composition data (MacArthur 1958, Diamond 1975). Despite decades of work and several23
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Inferring species interactions

major controversies, however (Lewin 1983, Strong et al. 1984, Connor et al. 2013), existing24

methods for detecting competition’s effects on community structure are unreliable (Gotelli25

and Ulrich 2009). In particular, species’ effects on one another can become lost in a web of26

indirect effects. For example, the competitive interaction between the two shrub species in27

Figure 1A is obscured by their shared tendency to occur in unshaded areas (Figure 1B).28

While ecologists have long known that indirect effects can overwhelm direct ones at the29

landscape level (Levine 1976), the vast majority of our methods for drawing inferences from30

observational data do not control for these effects (e.g. Diamond 1975, Strong et al. 1984,31

Gotelli and Ulrich 2009, Veech 2013, Pollock et al. 2014). To the extent that indirect32

interactions like those in Figure 1 are generally important, existing methods will not provide33

much evidence regarding species interactions.34

While competition doesn’t reliably reduce co-occurrence rates at the whole-landscape35

level (as most methods assume), it does still leave a signal in the data (Figure 1C). For36

example, after partitioning the data set into shaded and unshaded sites, there will be37

co-occurrence deficits in each subset that wouldn’t otherwise be apparent. More generally,38

controlling for other species in the network will often be important for obtaining reliable39

estimates of direct (conditional, or all-else-equal) effects. This kind of precision is difficult to40

obtain from null models, which only test the most extreme possible hypothesis: that all41

direct and indirect interactions are exactly zero. Nevertheless, null models have dominated42

this field for more than three decades (Strong et al. 1984, Gotelli and Ulrich 2009).43

Following Azaele et al. (2010), this paper shows that Markov networks (undirected44

graphical models also known as Markov random fields; Murphy 2012) can provide a45

framework for understanding the landscape-level consequences of pairwise species46

interactions, and for estimating them from observed presence-absence matrices. Markov47
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Figure 1: A. A small network of three competing species. The tree (top) tends not to
co-occur with either of the two shrub species, as indicated by the strongly negative coefficient
linking them. The two shrub species also compete with one another, but more weakly (circled
coefficient). B. In spite of the competitive interactions between the two shrub species, their
shared tendency to occur in locations without trees makes their occurrence vectors positively
correlated (circled). C. Controlling for trees with a conditional (all-else-equal) approach such
as a partial covariance or a Markov network leads to correct identification of the negative
shrub-shrub interaction (circled).
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Inferring species interactions

networks have been used in many scientific fields in similar contexts for decades, from48

physics (where nearby particles interact magnetically; Cipra 1987) to spatial statistics (where49

adjacent grid cells have correlated values; Harris 1974, Gelfand et al. 2005). While50

community ecologists explored some related approaches in the 1980’s (Whittam and51

Siegel-Causey 1981), they used severe approximations that led to unintelligible results (e.g.52

“probabilities” greater than one; Gilpin and Diamond 1982).53

Below, I demonstrate Markov networks’ ability to produce exact predictions about the54

direct and indirect consequences of an interaction matrix, and also to make inferences about55

the species interactions that contributed to an observed set of co-occurrences. Using56

simulated data sets where the “true” interactions are known, I compare this approach with57

several existing methods. Finally, I discuss opportunities for extending the approach58

presented here to other problems in community ecology, e.g. quantifying the overall effect of59

species interactions on occurrence rates (Roughgarden 1983) and disentangling the effects of60

biotic versus abiotic interactions on species composition (Pollock et al. 2014).61

Methods62

Markov networks. Markov networks provide a framework for translating back and forth63

between the conditional (all-else-equal) relationships among species (Figure 1C) and the64

kinds of species assemblages that these relationships produce. Here, I show how a set of65

conditional relationships can determine species composition. Methods for estimating66

conditional relationships from data are discussed in the next section.67

A Markov network defines the relative probability of observing a given vector of68

species-level presences (1s) and absences (0s), ~y at a site, as69

p(~y;α, β) ∝ exp(
∑
i

αiyi +
∑
<ij>

βijyiyj),70
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Inferring species interactions

where the second sum is over all 1
2n(n− 1) pairs of n species. In this model, αi is an71

intercept term determining the amount that the presence of species i contributes to the72

log-probability of ~y; it directly controls the prevalence of species i. Similarly, βij is the73

amount that the co-occurrence of species i and species j contributes to the log-probability; it74

controls the conditional relationship between two species, i.e. the probability that they will75

be found together, after controlling for the other species in the network (Figure 2A, Figure76

2B). For example, if βij = +2, then each species’ odds of occurrence would be e2 times higher77

when the other one is present (as compared with otherwise equivalent sites). The relative78

probability of a presence-absence vector increases when positively-associated species co-occur79

and decreases when negatively-associated species co-occur. As a result, the model tends—all80

else equal—to produce assemblages where many positively-associated species pairs co-occur81

and few negatively-associated pairs do (just as an ecologist might expect). When all else is82

not equal (e.g. Figure 1, where the presence of one competitor is associated with release from83

another competitor), then predicting species’ overall co-occurrence rates can be more84

complicated, and may require summing over the different possible assemblages (Figure 2B).85

Estimating α and β coefficients from presence-absence data. In the previous86

section, the values of α and β were known and the goal was to make predictions about87

possible species assemblages. In practice, however, ecologists will often need to estimate the88

parameters from an observed co-occurrence matrix (i.e. from a set of independent ~y vectors89

indicating which species are present at each site on the landscape). When the number of90

species is reasonably small (less than about 30), one can find exact maximum likelihood91

estimates for all of the α and β coefficients given a presence-absence matrix by numerically92

optimizing p(~y;α, β). Fully-observed Markov networks like the ones considered here have93

unimodal likelihood surfaces (Murphy 2012), ensuring that this procedure will converge on94
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Species 1

Absent Present

Species 2
Absent 5% 15%

Present 40% 40%

α2α1

Abiotic environment

y1 y2β12

A. Defining a small network

C. Expected co-occurrence rates

α1  = +1 
α2  =+2 
β     = -1

α1y1 α2y2 βy1y2

P[0  0] = e( + 0 + 0 + 0) / Z  = e(0) / Z

P[y1 0] = e( +1 + 0 + 0) / Z  = e(1) / Z

P[0 y1] = e( + 0 + 2 + 0) / Z  = e(2) / Z

P[y1y2 ] = e( + 1 + 2 - 1) / Z  = e(2) / Z

B. Solving the network

(e0 + e1 + e2 + e2) / Z = 1 

Species 1

Absent Present

Species 2
Absent 3% 9%

Present 24% 64%

D. Expected co-occurrence 
     without competition (β12=0)

Figure 2: A. A small Markov network, defined by its α and β values. The abiotic environment
favors the occurrence of each species (α > 0), particularly species 2 (α2 > α1). The negative
β12 coefficient is consistent with competition between the two species. B. The coefficients
determine the probabilities of all four possible presence-absence combinations for Species
1 and Species 2. α1 is added to the exponent whenever Species 1 is present (y1 = 1), but
not when it is absent (y1 = 0). Similarly, the exponent includes α2 only when species 2 is
present (y2 = 1), and includes β12 only when both are present (y1y2 = 1). The normalizing
constant Z, ensures that the four probabilities sum to 1. In this case, Z is about 18.5. C.
The expected frequencies of all possible co-occurrence patterns between the two species of
interest, as calculated in the previous panel. D. Without competition (i.e. with β12 = 0, each
species would occur more often.
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the global maximum. I used the rosalia package (Harris 2015a) for the R programming95

language (R Core Team 2015) to calculate p(~y;α, β) and its gradients (Murphy 2012); the96

package passes these functions to the “BFGS” method in R’s general-purpose optimizer,97

which then estimates the Markov network parameters.98

Simulated landscapes. I simulated several sets of landscapes using known parameters to99

evaluate different statistical methods’ performance. The first set of landscapes included the100

three competing species shown in Figure 1. For each of 1000 replicates, I generated a101

landscape with 100 sites by sampling from a probability distribution defined by the figure’s102

interaction coefficients (Appendix 1). Each of the methods described below was then103

evaluated on its ability to correctly infer that the two shrub species competed with one104

another, despite their frequent co-occurrence.105

I then generated landscapes with up to 20 interacting species at 25, 200, or 1600 sites106

using three increasingly complex models (50 replicates for each combination of size and107

model; see Appendix 2 for details). I randomly drew the “true” coefficient magnitudes for108

each replicate landscape from exponential distributions so that most species pairs interacted109

negligibly but a few pairs interacted strongly enough that their effects could propagate110

indirectly to other species in the network.111

The first set of 20-species landscapes, like the landscapes with three species, were112

generated directly from a Markov network to ensure that the model could recover the113

parameters used to generate the “observed” co-occurrence data. Then, I added two114

environmental factors that varied from location to location across the simulated landscapes,115

and simulated a new set of co-occurrence data so that species’ α coefficients depended on the116

local environment. The latter set of simulated landscapes provide an important test of the117

methods’ ability to distinguish co-occurrence patterns that were generated from pairwise118
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biotic interactions from those that were generated by external forces like abiotic119

environmental filtering. This task was made especially difficult because—as with most120

analyses of presence-absence data for co-occurrence patterns—the inference procedure did121

not have access to any information about the environmental or spatial variables that helped122

shape the landscape (cf Connor et al. 2013). I generated the final set of landscapes with an123

abundance-based model that included per-capita interaction rates instead of per-species124

interaction rates.125

Recovering species interactions from simulated data. I compared seven techniques126

for determining the sign and strength of the associations between pairs of species from127

simulated data (Appendix 3). First, I used the rosalia package (Harris 2015a) to fit Markov128

network models, as described above. For the analyses with 20 species, a weak regularizer129

(equivalent to a logistic prior with scale 2) ensured that the estimates were always finite.130

I also evaluated six alternative methods: five from the existing literature, plus a novel131

combination of two of these methods. The first alternative interaction metric was the sample132

correlation between species’ presence-absence vectors, which summarizes their marginal133

association. Next, I used partial correlations, which summarize species’ conditional134

relationships. This approach is common in molecular biology (Friedman et al. 2008), but is135

rare in ecology (see Albrecht and Gotelli (2001) and Faisal et al. (2010) for two exceptions).136

In the context of non-Gaussian data, the partial correlation can be thought of as a137

computationally efficient approximation to the full Markov network model (Loh and138

Wainwright 2013). Because partial correlations are undefined for landscapes with139

perfectly-correlated species pairs, I used a regularized estimate provided by the corpcor140

package’s pcor.shrink function with the default settings (Schäfer et al. 2014).141

The third alternative, generalized linear models (GLMs), also provide a computationally142
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efficient approximation to the Markov network (Lee and Hastie 2012). Following Faisal et al.143

(2010), I fit regularized logistic regression models (Gelman et al. 2008) for each species, using144

the other species on the landscape as predictors. This produced two interaction estimates for145

each species pair; one for the effect of species i on species j and one for the reverse. These146

two coefficients are not identifiable from the data, however (Schmidt and Murphy 2012), so I147

used their average as an overall measure of the pairwise relationship.148

The next method, described in Gotelli and Ulrich (2009), involved simulating new149

landscapes from a null model that retains the row and column sums of the original matrix150

(Strong et al. 1984). I used the Z-scores computed by the Pairs software described in Gotelli151

and Ulrich (2009) as my null model-based estimator of species interactions.152

The last two estimators used the latent correlation matrix estimated by the BayesComm153

package (Golding and Harris 2015) in order to evaluate the recent claim that the correlation154

coefficients estimated by “joint species distribution models” provide an accurate assessment155

of species’ pairwise interactions (Pollock et al. 2014, see also Harris 2015b). In addition to156

using the posterior mean correlation (Pollock et al. 2014), I also used the posterior mean157

partial correlation, which should control better for indirect effects.158

Evaluating model performance. For the simulated landscapes based on Figure 1, I159

assessed whether each method’s test statistic indicated a positive or negative relationship160

between the two shrubs (Appendix 1). For the null model (Pairs), I calculated statistical161

significance using its Z-score. For the Markov network, I used the Hessian matrix to162

generate approximate confidence intervals.163

For the larger landscapes, I evaluated the relationship between each method’s estimates164

and the “true” interaction strengths. To ensure that the different test statistics165

(e.g. correlations versus Z scores) were on a common scale, I rescaled them using linear166
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regression through the origin. I then calculated the proportion of variance explained for167

different combinations of model type and landscape size (compared with a null model that168

assumed all interaction strengths to be zero).169

Results170

Three species. As shown in Figure 1, the marginal relationship between the two shrub171

species was positive—despite their competition for space at a mechanistic level—due to172

indirect effects of the dominant tree species. As a result, the correlation between these173

species was positive in 94% of replicates, and the randomization-based null model falsely174

reported positive associations 100% of the time. Worse, more than 98% of these false175

conclusions were statistically significant. The partial correlation and Markov network176

estimates, on the other hand, each correctly isolated the direct negative interaction between177

the shrubs from their positive indirect interaction 94% of the time (although the confidence178

intervals overlapped zero in most replicates).179

Twenty species. In general, each model’s performance was highest for large landscapes180

with simple assembly rules and no environmental heterogeneity (Figure 3). Despite some181

variability across contexts, the rank ordering across methods was very consistent. In182

particular, the four methods that controlled for indirect effects (the Markov network, the183

generalized linear models, and the two partial correlation-based methods) always matched or184

outperformed those that did not. The Markov network consistently performed best of all. As185

anticipated by Lee and Hastie (2012), generalized linear models closely approximated the186

Markov network estimates (Figure 4A), especially when the data sets were very large (Figure187

3). As reviewed in Gotelli and Ulrich (2009), however, most analyses in this field of ecology188

involve fewer than 50 sites, and the gap between the Markov network and GLMs is larger in189

this context. As shown in Appendix 4, the standard errors associated with the estimates in190
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Figure 3 are small (less than 0.01), so the differences among methods should not be191

attributed to sampling error.192

constant environment heterogeneous environment abundance

●

●
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●

●

●

0.0

0.2

0.4

0.6

160020025 160020025 160020025

Number of sites (log scale)

R2

Method (mean R2)
● Markov network (0.45)

GLM (0.39)

partial correlation (0.31)

partial BayesComm (0.29)

correlation (0.20)

null (0.14)

BayesComm (0.13)

Figure 3: Proportion of variance in interaction coefficients explained by each method versus
number of sampled locations across the three simulation types. For the null model (Pairs),
two outliers with |Z| > 1000 were manually adjusted to |Z| = 50 to mitigate their detrimental
influence on R2 (Appendix 5).

Of the methods that did not control for indirect effects, Figure 3 shows that simple193

correlation coefficients provided a more reliable indicator of species’ true interaction194

strengths than either the joint species distribution model (BayesComm) or the null model195

(Pairs). The estimates from these approaches were tightly correlated (after controlling for196

the size of the landscape) suggesting that the null model only contains a noisy version of the197

same information that could be obtained more easily and interpretably with simple198

correlation coefficients (Figure 4B).199

Finally, we can evaluate the models’ statistical inferences (focusing on the first two200

simulation types, for which the true interaction rates are easiest to interpret). The Markov201

network’s approximate Type I error rate (defined here as the probability that 0 fell outside202

the 95% confidence interval for a pair of species where |βij| < 0.1) depended on the203

simulation type: 0.02 for simulations that matched the model’s assumptions, versus 0.14 for204

simulations that included environmental heterogeneity (see Appendix 4 for confidence205
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Figure 4: A. The Markov network’s estimated interaction coefficients were generally very
similar to the GLM estimates. B. The null model’s estimates typically matched the (negative)
correlation coefficient, after controlling for landscape size. C. For any given interaction
strength, the null model was much more likely to misclassify its sign with 95% confidence
than the Markov network was.
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interval coverage across a range of βij values). The null model’s Type I error rates were 0.30206

and 0.50 for the constant and heterogeneous landscapes, respectively—far higher than the207

nominal 0.05 rate. Figure 4C shows, across a range of true interaction strengths, the208

probability that the null model or the Markov network will predict the wrong sign of the209

interaction with 95% confidence. The null model makes such errors more than 5 times as210

often as the Markov network, even though it only reject the null hypothesis twice as often211

overall (Appendix 4). The Markov network’s errors were also more concentrated around 0, so212

it never misclassified strong interactions like the null model did.213

Discussion214

The results presented above show that Markov networks can reliably recover species’215

pairwise interactions from species composition data, even for cases where environmental216

heterogeneity and indirect interactions cause ecologists’ typical null modeling approaches to217

reliably fail. Partial covariances and generalized linear models can both provide218

computationally efficient approximations, but with somewhat lower accuracy (especially for219

typically-sized data sets with small numbers of sites; Gotelli and Ulrich 2009). The difference220

in accuracy may be larger for real data sets than for the simulated landscapes in Figure 3,221

however; linear approximations to the Markov network make larger errors when the222

interaction matrix is structured (e.g. due to guilds or trophic levels; Loh and Wainwright223

2013). Similarly, the separate generalized linear models for each species can severely overfit224

in some cases (Lee and Hastie 2012). The full Markov network should thus be preferred to225

the approximations when it is computationally tractable.226

Compositional data only contains enough degrees of freedom to estimate one interaction227

per species pair (Schmidt and Murphy 2012), so none of these methods can identify the228

exact nature of the pairwise interactions (e.g. which species in a positively-associated pair is229
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facilitating the other). To estimate asymmetric interactions, such as commensalism or230

predation, ecologists could use time series, behavioral observations, manipulative231

experiments, or natural history. These other sources of information could also be used to232

augment the likelihood function with a more informative prior distribution, reducing233

ecologists’ error and uncertainty relative to Figure 3’s results.234

Despite their limitations, Markov networks have enormous potential to improve235

ecological understanding. In particular, they make many fewer errors than existing236

approaches, and can make precise statements about the conditions where indirect237

interactions will overwhelm direct ones. They also provide a simple answer to the question of238

how competition should affect a species’ overall prevalence, which has important implications239

for community-level modeling (Strong et al. 1984). Specifically, Equation 1 can be used to240

calculate the expected prevalence of a species in the absence of biotic influences as241

eα/(e0 + eα). Competition’s effect on prevalence can then be estimated by comparing this242

value with the observed prevalence (e.g. comparing Figure 2D with Figure 2C). This novel243

quantitative result conflicts with most of our null models, which unreasonably assume that244

prevalence would be the exactly same in the absence of competition as it is in the observed245

data (Roughgarden 1983).246

Markov networks—particularly the Ising model for binary networks—are very well247

understood, having been studied for nearly a century (Cipra 1987). Tapping into this248

framework would thus allow ecologists to take advantage of into a vast set of existing249

discoveries and techniques for dealing with indirect effects, stability, and alternative stable250

states. Numerous extensions to the basic network are possible as well. For example, the251

states of the interaction network can be modeled as a function of the local abiotic252

environment (Lee and Hastie 2012), which would help incorporate networks of biotic253
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interactions into species distribution models (Pollock et al. 2014) and lead to a better254

understanding of the interplay between biotic and abiotic effects on community structure.255

Alternatively, models could allow one species to alter the relationship between two other256

species (Tjelmeland and Besag 1998, cf Bruno et al. 2003).257

Finally, the results presented here have important implications for ecologists’ continued258

use of null models for studying species interactions. Null and neutral models can be useful259

for clarifying our thinking (Harris et al. 2011, Xiao et al. 2015), but deviations from a260

particular null model must be interpreted with care (Roughgarden 1983). Even in small261

networks with three species, it may simply not be possible to implicate specific ecological262

processes like competition by rejecting a general-purpose null (Gotelli and Ulrich 2009),263

especially when the test statistic is effectively just a correlation coefficient (Figure 4B).264

When the non-null backdrop is not controlled for, Type I error rates can skyrocket, the265

apparent sign of the interaction can change, and null models can routinely produce266

misleading inferences (Figure 1, Figure 4C, Gotelli and Ulrich (2009)).267

Controlling for indirect effects via simultaneous estimation of multiple ecological268

parameters seems like a much more promising approach: to the extent that the models’269

relative performance on real data sets is similar to the range of results shown in Figure 3,270

scientists in this field could often triple their explanatory power by switching from null271

models to Markov networks (or increase it nearly as much with linear or generalized linear272

approximations). Regardless of the methods ecologists ultimately choose, controlling for273

indirect effects could clearly improve our understanding of species’ direct effects on one274

another and on community structure.275
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