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Abstract  

Ribosome profiling (Ribo-seq), a promising technology for exploring ribosome decoding 

rates, is characterized by the presence of infrequent high peaks in ribosome footprint density 

and by long alignment gaps. Here, to reduce the impact of the data heterogeneity we 

introduce a simple normalization method, Ribo-seq Unit Step Transformation (RUST). 

RUST is robust and outperforms other normalization techniques in the presence of 

heterogeneous noise. We illustrate how RUST can be used for identifying mRNA sequence 

features that affect ribosome footprint densities globally. We show that a few parameters 

extracted with RUST are sufficient for predicting experimental densities with high accuracy.  

Importantly the application of RUST to 30 publicly available Ribo-seq datasets revealed a 

substantial variation in sequence determinants of ribosome footprint frequencies, 

questioning the reliability of Ribo-seq as an accurate representation of local ribosome 

densities without prior quality control. This emphasizes our incomplete understanding of 

how protocol parameters affect ribosome footprint densities. 

Introduction  

The advent of ribosomal profiling (ribo-seq) has provided the research community with a 

technique that enables the characterization of the cellular translatome (the translated fraction of 

the transcriptome). It is based on arresting translating ribosomes and capturing the short mRNA 

fragments within the ribosome that are protected from nuclease cleavage. The high throughput 

sequencing of these fragments provides information on the mRNA locations of elongating 

ribosomes and thereby generates a quantitative measure of ribosome density across each transcript.  

Accordingly, ribosome profiling data contain information that could be used to infer the properties 

that affect ribosome decoding (or elongation) rates. Unsurprisingly, a large number of studies 
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analyzing ribosome profiling data for this purpose have been published recently1-21.  

There is a considerable discordance among some of the findings in these works that is 

unlikely to be wholly caused by differences in the biological systems used. It may also be attributed 

to the computational methods used for estimating local decoding rates which are often based on 

elaborate models of translation that use certain assumptions regarding the process. The abstraction 

required for modelling necessitates the generalization of the process across all mRNAs, although 

we are aware of numerous special cases22. Even if the generalized models provide an accurate 

representation of the physical process of translation in the cell, they do not model the ribosome 

profiling technique itself, which may introduce various technical artefacts. Oft-cited potential 

artefacts include the methods used to arrest ribosomes (the result is affected by the choice8,23 and 

the timing7,21,24 of antibiotic treatment), the sequence preferences of enzymes involved in the 

library generation1,25 and the quality of alignment. These artefacts may distort the output and it 

may not be easy to disentangle their effects in the presence of biologically functional and sporadic 

alterations in translation.  

Ribosome profiling data are characterized by high heterogeneity caused by alignment gaps 

and sporadic high density peaks due to technical artefacts and ribosome pauses4,26. These 

fluctuations, even if caused by genuine ribosome pauses, are thought to negatively impact the 

ability of some methods to accurately characterize factors that influence ribosome read density 

globally. With this rationale we developed a data smoothing method, that we term RUST (Ribo-

seq Unit Step Transformation). We first demonstrate that RUST is resistant to the presence of 

heterogeneous noise using simulated data and outperforms other normalization techniques in 

reducing data variance. Then we analyze real data from 30 publicly available ribosome profiling 

datasets obtained using samples (cells or tissues) from human14,27-39, mice7,37,40-42 and yeast1,6,8,12,43-
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45.  

We show that a few parameters extracted with RUST are sufficient to predict experimental 

footprint densities with high accuracy. This suggests that RUST noise resistance allows accurate 

quantitative assessments of the global impact of mRNA sequence characteristics on the 

composition of footprint libraries.  

The comparison of RUST parameters among different datasets revealed a considerable 

discordance in the relative impact of the sequence factors determining frequencies of ribosome 

footprints in the libraries. This most likely can be attributed to the differences in experimental 

protocols, suggesting that the variance in the data, rather than in the analytical approaches used is 

responsible for the current contradictions regarding the sequence determinants of the decoding 

rates.  

 

Results 

Ribo-seq Unit Step Transformation (RUST) 

The probability of finding a ribosome decoding a particular codon of an mRNA (and by 

extension the expected number of corresponding ribo-seq reads in a library) depends on three 

variables: the mRNA expression level, the translation initiation rate for the corresponding open 

reading frame (ORF) and the time that the ribosome spends at that codon (dwell time). The latter 

(as an invert) is usually described as a codon elongation rate or a codon decoding rate. Estimating 

the true decoding rates with ribo-seq is made difficult by the absence of precise measurements of 

initiation rates. Therefore, studies (including this one) using ribo-seq for this type of analysis 
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typically attempt to measure the relative dwell time of codons instead of the actual dwell time. A 

frequent and intuitive approach is the normalization of the local ribo-seq signal by the average 

signal across the coding region4,9. This approach has been described as conventional4 and we will 

refer to it as CN for conventional normalization. It is based on the reasonable assumption that the 

transcript expression levels and ORF initiation rates are the same for all codons from that ORF. 

CN is perceived to have two major shortcomings: it is expected to be very sensitive to the high 

density peaks which frequently occur due to functional ribosome pauses4 (Fig. 1a) and it is 

typically applied only to the transcripts with high ribosome coverage, as the relative impact of a 

single read alignment on CN is excessive with sparse profile data (Fig. 1a).  

Various approaches have been tried to reduce the impact of density outliers (Fig. 1b). Dana 

and Tuller removed atypical densities based on expected distribution of densities4. Artieri and 

Fraser used logarithmic mean instead of the arithmetic mean to produce a “corrected ribo 

coverage”1 (Fig. 1b). Gardin et al.6 developed an intricate approach for calculating a statistics that 

they called “ribosome residence time (RRT)”. The approach involves CN like sampling, but only 

from specific segments of RNA that satisfy certain sequence and coverage requirements6 (Fig. 1b). 

Pop et al. introduced a sophisticated model that is based on the assumption that the ribosome 

footprint density profile must satisfy flow conservation constraints, i.e. the translation is at steady 

state and that all ribosomes translated the entire coding region12. While flow conservation 

constraints may be true for the ribosome densities, they may not hold for footprint densities 

because of technical artefacts such as sequencing biases and misalignments.  

We reasoned that a practical approach for the analysis of ribosome profiling data should be 

(i) simple; (ii) robust to the presence of heterogeneous noise; (iii) able to use all available data (i.e. 

no restriction to genes with high read coverage) and (iv) be able to produce statistics that would 
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allow accurate prediction of experimental densities. With this in mind we developed a procedure 

that we term Ribo-seq Unit Step Transformation (RUST) where the ribosome footprint densities 

(the number of reads corresponding to the position of the A-site codon) are converted into a binary 

step unit function (also known as Heaviside step function). Individual codons are given a score of 

1 or 0 depending on whether the footprint density at these codons exceeds the average for the 

corresponding ORF (Fig. 1a and Supplementary Fig. 1). In addition to codons, the procedure could 

be applied to any other potential determinant of read density such as individual nucleotides, 

encoded amino acids, their combinations as well as their properties, such as a charge or 

hydrophobicity of encoded peptides or free energy of RNA secondary structures. The average 

RUST value for each putative determinant of decoding rates may be compared to the expected 

RUST value to measure its effect, see Methods. As a result of the transformation the impact of 

every site has a small influence on the final RUST value. The value is influenced primarily by the 

consistent presence of reads at numerous sites. For example, no differentiation is made between a 

stall site where the ribosome density just exceeds the average to one where the average is grossly 

exceeded. For the details of transformation, see Methods and the RUST pipeline in Supplementary 

Figure 1. 

 

Evaluation of normalization methods with simulated data 

 In order to evaluate RUST performance, we tested its ability to estimate decoding rates 

from simulated data. We simulated the data under a simplifying assumption that the local decoding 

rates depend only on the identity of a codon in the A-site. To simulate the data we used real 

transcript sequences and experimental distribution of footprints per transcript, but modeled the 
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distribution of footprints within a transcript by specifying the dwell time of each of 61 codons and 

introducing different levels of heterogeneous noise (see Methods and below for how the noise was 

simulated). We compared its performance to the RRT approach, the CN method and to a 

logarithmic mean normalization (LMN) similar to that obtained with the “corrected ribo coverage” 

(see Methods). Unlike in the original approach in LMN ribo-seq density is not normalized by the 

mRNA-seq density. The CN method was used in two modes with filtering requiring a minimal 

coverage threshold (average transcript footprint density of >1 read/nucleotide) CN>1, and without 

any threshold, CN>0. The parameters of the simulation were selected either to produce data similar 

to the experimental data or the data with reduced quality (see Methods). For example, the 

sequencing depth was either equal or lower than what has been obtained with actual data. 

 Figure 1c compares the performance of the five methods for three different simulated sets 

of data with different sequencing depth and levels of noise simulated as sporadic high density 

peaks (3x the value of the highest footprint density for the original simulated profile) or as a loss 

of density that could arise, for example due to removal of ambiguous mappings. For these 

simulations the relative time that ribosome dwell at each of 61 codons tc was pre-set (see Methods) 

and the normalization approaches were compared in their ability to accurately detect codon dwell 

times (tc) from the simulated data. The estimated-to-simulated dwell time log ratios were obtained 

for 61 codons. We assessed the performance of each method by showing the distribution obtained 

using box plots. For accurate methods the values for each codon should be zero, i.e. the observed 

and simulated values should be the same. We also provide the coefficient of determination, R2, 

between the estimated and simulated dwell times as a measure of the normalization approaches 

accuracy, with values closer to one indicating better accuracy. We find that all approaches estimate 

relative tc values very accurately in the absence of noise provided that coverage is high. However, 
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in the presence of noise or under reduced coverage the performance worsens. In this regard RUST 

appears to be the most resilient to the reduced coverage and both types of noise. While its ability 

to accurately predict simulated relative dwell times drops under high levels of noise, the combined 

inferred values still correlate remarkably well with the simulated values (Fig. 1c).   

We conjectured that the accuracy of the normalization approaches may depend on codon 

specific properties, such as a relationship between codon usage and dwell times. Therefore, we 

simulated the data under three different sets of tc parameters. In the first two simulations the range 

of tc values were set to rank-correlate with the codon usage (see Methods and Supplementary Fig. 

2), i.e. the lowest tc was set for the rarest codon and the highest tc for the most abundant codon. In 

one set the tc range spans one order of magnitude and in the other, two orders of magnitude. In the 

third set, the tc parameters were set to negatively correlate with the codon usage. For the scenario 

where the range of decoding rates is increased to span two orders of magnitude (Supplementary 

Fig. 2, middle and bottom plots) the effect of noise on the accuracy of tc inference is similar.  

Interestingly, in all simulations (Fig. 1c and Supplementary Fig. 2) the logarithm ratios 

between estimated and simulated values are not uniform among 61 codons, i.e. the estimations are 

not equally accurate for each codon. The estimated relative dwell times of quickly decoded codons 

were found to be consistently overestimated by all methods tested, i.e. inferred as slower. This is 

more acute when the decoding rates span 2 orders of magnitude but is also observed even when 

the decoding rates span 1 order of magnitude (Supplementary Fig. 2, top plots). We also found 

that the R2 values were consistently lower when the codon usage negatively correlated with the 

simulated dwell time than when they were positively correlated (Supplementary Fig. 2, middle and 

bottom plots). However, the difference is small suggesting that relationship between the codon 

usage and decoding rate appears to have a relatively minor influence on the correct estimation of 
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the relative dwell time.  

Counterintuitively in most simulations CN>0 performs similar or even better than CN>1 

and the LMN was found to be inferior to both CN normalizations. Under almost all scenarios tested 

RUST was found to outperform other normalization techniques in the presence of noise. 

 

 

  

The impact of technical biases varies among datasets 

 The velocity of a ribosome could be influenced by the sequence of mRNA in several ways 

(outlined in the scheme in Fig. 2a). Codons in the E-, P- and A-sites of the ribosome determine the 

identity of corresponding tRNAs (and amino acids) inside the ribosome. The mRNA sequence in 

the cavity between subunits could affect ribosome movement by directly interacting with its 

components.  In addition, the sequence upstream of the A-site codon (up to 90 nucleotides) could 

influence the progressive movement of the ribosome through the interactions between the peptide 

it encodes and ribosome peptide tunnel. Lastly, the sequence downstream of the ribosome could 

alter its velocity through the formation of stable RNA secondary structures46,47 or the presence of 

RNA-protein complexes. 

 In addition to these intrinsic factors affecting ribosome velocities, there are technical 

factors that influence the distribution of sequencing reads in ribo-seq datasets. First, the drugs used 

to block elongating ribosomes could act on ribosomes only at a specific conformation8 or could 

also alter their distribution along mRNAs23,24. Second, various enzymes used for cleaving mRNA, 
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for generating cDNA libraries and for their sequencing exhibit sequence specificity especially at 

the boundaries of ribosome footprints1. Third, the accuracy of alignment step depends on the 

existence of paralogs and transcript sequence complexity and the way how ambiguous alignments 

are treated. Fourth, the occurrence of alternative splicing, ribosome drop-off, ribosome stacking 

and alternative translation initiation may all affect the distribution of reads across individual 

transcripts. 

 To analyze how sequence of mRNA effect density of footprints in different locations 

relative to the A-site in experimental data we used an approach similar to the one used by Artieri 

and Fraser1. We calculated observed-to-expected RUST ratios for each codon position within a 

window of 60 codons (see Methods and Supplementary Fig. 3). This window encompasses the 

ribosome protected fragment (codons -5 to +5), the region encoding the nascent peptide (codons -

30 to 0) and the region downstream of the ribosome (+5 to +20), where zero coordinate 

corresponds to the A-site codon. To measure the contribution of local mRNA positions to the 

density of footprints correspondingly derived from a ribosome decoding a particular codon, we 

measured the relative entropy at each position using the Kulback-Leibler (K-L) divergence. 

 Figure 2b shows the relative entropy and normalized observed-to-expected RUST ratios 

ro/re (see Methods) for each individual codon for two of the ribosomal profiling datasets explored 

in this work. By analogy with metagene profiles we refer to the plots of ro/re RUST ratios as 

metafootprint profiles. The areas of reduced entropy (increased K-L divergence) are mostly 

contained within a window of 10 codons upstream and downstream of the A-site, approximately 

matching to the position of the actual ribosome footprint. In almost all cases three local K-L 

maxima are observed, one corresponds to the decoding center (Fig. 2b), the other two maxima 

roughly correspond to the 5’ and 3’ ends of ribosome footprints. The same procedure carried out 
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on mRNA-seq libraries reveals decreased entropy in the same area with two maxima 

corresponding to the mRNA fragment ends (Fig. 2b). This suggests that the main contributing 

factors to footprint frequency at the corresponding location are the identity of the codons in the A- 

and/or P-sites and the sequence-specificity of the enzymes used during library construction. The 

metafootprint analysis for all human studies explored in this study are available in Figure 3, see 

Supplementary Figure 3 for non-human studies and mRNA-seq controls. The degree of variation 

in the relative impact of these factors among different datasets is surprising. In some of the ribo-

seq datasets, the density of footprints depends on the identity of the codon at the ends of footprint 

more than on the identity of the codon in the A- or P-sites. This is suggestive of a high level of 

sequencing biases introduced during the cDNA library generation in some of the tested datasets. 

 Figure 2c shows a heatmap produced as a result of pairwise comparison of observed-to-

expected RUST ratios for the 61 codons when they are located in the A-site. Most apparent is the 

high reproducibility for most ribosomal profiling datasets produced in yeast under cycloheximide 

pretreatment (Fig 2c, Supplementary Fig. 5). The comparison of the protocol conditions (Table 1) 

points to the consistency in the protocols used in these studies. The variance across the datasets 

obtained from mammalian sources is more substantial as are the differences in the protocols (Table 

1). We found that variance in RUST ratios of nonsynonymous codons is greater than that of 

synonymous codons. In other words, the identity of decoded amino acid has a greater influence on 

read density than the identity of the specific codon. ANOVA revealed that this was statistically 

significant in 28 of the 30 ribo-seq samples. We carried out similar analysis for mRNA-seq controls 

for codons located at the same distance from the 5’ end as the A-site codons in ribosome footprints. 

As expected, the degree of variation among all 61 codons was much smaller. However 

synonymous codons also exhibited statistically significant higher variation (Supplementary Fig. 
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6). This casts some doubts on biological relevance of this observation.  

 Some of the studies produced the data with a change to a single parameter: the samples 

were either pretreated or not with cycloheximide before lysis 7,8,14,38. We found that ‘Stadler’14 

datasets are similar for both types of treatments, while ‘Lareau’8, ‘Ingolia’7 and ‘Stern-

Ginnoassar’38 are different (Fig. 2c). Supplementary Figure 7 provides the analysis of RUST ratios 

for ‘Lareau’ and ‘Ingolia’ datasets under both conditions, clearly indicating that cycloheximide 

substantially alters the distribution of footprints on mRNA. This is consistent with the observation 

that cycloheximide blocks ribosomes in a specific conformation and this ribosome arrest has 

certain codon preferences16. A more focused and detailed analysis of this phenomenon23 was 

published while this manuscript was in preparation.  

 Prior studies explored the effects of different antibiotic treatments in mammalian cells7 and 

in yeast8,23,24. The effect of buffer conditions on triplet periodicity was also explored to some 

extent38,43 as well as conditions of nuclease treatments48. We agree with a plea for standardization 

of ribosome protocols25, however, as recently argued21 it is clear that a more systematic study of 

protocol dependency of ribosome profiling data is needed for this.  

Influence of RNA secondary structure and nascent peptide 

To illustrate RUST capacity at analyzing mRNA features that may affect ribosome 

velocities we chose three, ‘Andreev’27, ‘Rubio’36, ‘Pop’12. These datasets exhibit a low level of K-

L divergence at the ends of the footprints and a high K-L divergence at the decoding center, 

suggesting low sequencing bias at the end of footprints. However, while these datasets are 

relatively free of sequencing artefacts, the distribution of footprints could still be skewed for other 

reasons discussed in the previous section and caution needs to be applied in the interpretation of 
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the results described below.  

To estimate the effect of RNA secondary structure we calculated the RUST ratios for RNA 

sequences that can form secondary structures at a particular free energy threshold as calculated 

with RNAfold49, see Methods. Supplementary Figure 8a shows the distribution of RUST ratios for 

RNA secondary structures predicted within 80 nucleotides window with different free energies. It 

can be seen that sequences predicted to contain stable structures are underrepresented (low RUST 

ratios) in windows that overlap with sequencing reads. This is observed for both ribo-seq and 

mRNA-seq reads and therefore is likely to be an artefact related to cDNA library generation and 

sequencing. This is not explained by a putative nucleotide bias. The distribution of individual 

nucleotides at the footprint location does not deviate significantly with the exception for the 

location of the decoding center (Supplementary Fig. 8b). 

The RUST ratios for individual amino acids and dipeptides (Supplementary Fig. 9) do not 

reveal evidence of universal nascent peptide effect on ribosome velocity from the positions distant 

from the peptidyl transferase center. Although, such effects can be seen in individual datasets, e.g. 

strong influence of two Prolines in close proximity to the peptidyl transferase center in ‘Andreev’ 

dataset (Supplementary Fig. 9).  Such nascent peptide interactions may also be facilitated by 

specific physicochemical properties of the peptide, as suggested earlier2. In this case the RUST 

ratio of individual amino acids may not provide an accurate representation of the nascent peptide 

effect on ribosome movement. Therefore, we measured RUST ratios for peptide fragments (10 

residues) with particular physicochemical properties (number of positive charges, net charge and 

number of hydrophobic amino acids) (Supplementary Fig. 10). Under high positive charge we 

observed deviations for the distributions of these physicochemical properties in the datasets. 

However, it is not clear whether they are caused by their direct effects on decoding rates. 
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We also examined whether tripeptides could affect ribosome velocity differently than may 

be expected from their individual components. We detect such synergetic effects by comparing 

the RUST values for tripeptides to what would be expected from independent RUST values of 

corresponding residues using the standard score (Z-score). We carried out this analysis for adjacent 

amino acids only and thus explored synergetic effects for 464,000 tripeptides (20x20x20 residues 

x 58 positions). Approximately 0.2% (~1,000) of the tripeptides were found to have a standard 

score greater than 4 (Sijk>4 or Sijk< -4) in any individual dataset. These synergistic interactions 

were found to occur mostly near the decoding center or at the reads termini. They also had a 

relatively small influence with the majority of interactions having less than a 2 fold change 

between observed and expected values (Supplementary Fig. 11c). In the ‘Andreev’ dataset the 

motifs that displayed positive synergetic effects (slower than expected) were overrepresented with 

Proline. This is a poor substrate for peptide bond formation (see Supplementary Fig. 11a for 

examples) and therefore a good a priori candidate for such synergistic effects.  However, there 

was poor convergence between the results obtained from the thirty datasets, overall 7,854 

examples of synergistic interaction were found with the majority (5,850) of candidates found only 

in a single dataset (Supplementary Fig. 11d). 

Accurate prediction of experimental footprint densities 

We proceeded to test whether we can reconstruct ribosome densities using RUST ratios 

obtained for codon positions relative to the decoding center. Figure 4a shows the comparison of 

experimental densities to predicted densities based on RUST ratios for the A-site codon or 12 

codons comprising the ribosome footprint and the codons immediately adjacent to them. 

Predictions made based only on the A-site RUST values correlate with the real profiles (Pearson’s 

r=0.451, Spearman’s r=0.503 for Andreev et al dataset27). The incorporation of RUST ratios for 
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all codon sites in the footprint improves the predictive power even further, with an average 

Pearson’s r=0.62. These values may improve further with increased sequencing depth. Note that 

this is not an example of overfitting of a model, as the RUST metafootprint profile is relatively 

unaffected if it is obtained from a subset of genes (Supplementary Fig. 12) different from which 

are used to evaluate the profiles. We also compared the profiles to those obtained from another 

ribo-seq sample of the same study. This had an average Pearson’s r of 0.78, the difference between 

the samples probably reflects the stochastic nature of RNA-seq. The ability to predict ribosome 

profiles was replicated for other datasets, with an average Pearson’s correlation coefficient greater 

than 0.5 in 16 of 30th datasets. The accuracy of these predictions support our earlier findings of a 

limited influence of the nascent peptide, mRNA structure or synergistic effects on read density. 

Figure 4b shows comparison of predicted ribosome profiles with experimental profiles for five 

mRNAs with different degrees of correlation. It is clear from the example shown that the poor 

correlation is a result of technical artefacts in the data, rather than poor prediction. 

 

Comparison of the datasets 

We designed a web site http://lapti.ucc.ie/rust, that provides detailed characteristics 

(metafootprint analysis, RUST ratios, triplet periodicity, etc.) of each dataset explored in this 

study, an example for an individual dataset is shown in Figure 5. It also hosts executable scripts to 

implement the RUST analysis. 

Discussion 

Here, we described a simple computational technique RUST for the characterization of 

ribosome profiling data based on a simple smoothing transformation of ribosome density profiles 
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into a binary function. Using simulated data we show that this technique is robust in the presence 

of sporadic heterogeneous noise (modeled as extra high density and missing data) and outperforms 

previous methods. Using experimental data, we show that the characteristics of ribosome profiling 

data extracted with RUST can explain much of the variation observed in experimental ribosome 

footprint densities. 

We applied this technique to thirty publicly available ribo-seq datasets (obtained from 

yeast, mammalian cultured cells and tissues) and uncovered substantial variability among them in 

sequence features that determine footprint frequencies at individual locations. The most similar 

datasets are those obtained with cycloheximide pre-treatments of yeast cells and no or minimal 

variations in protocols used. For the datasets obtained in mammalian systems we found substantial 

variation that is likely to be related to the timing of cycloheximide treatments as well as conditions 

of buffers used for lysis and nuclease digestion. The position specificity of sequencing biases (they 

affect the boundaries of ribosome footprints) enabled us to determine their relative impact on 

composition of footprints in individual datasets.  

Our simulations suggest that potential uncharacterized artefacts of the computational 

analysis of ribo-seq data are unlikely to be a major cause in the current difficulties for the 

determination of the true ribosome decoding rates. However, it appears that all current approaches 

including RUST overestimate the dwell time of quickly decoding determinants of elongation 

(codons in the case of simulations). A number of attempts were made to supersede CN approach. 

Surprisingly, in this study we find that for many applications, such as the analysis of the enrichment 

rate of individual codons, the simplest variant CN>0 provides surprisingly accurate results. In our 

simulation we found that it was only marginally worse than RUST irrespective of the relationship 

between codon usage and dwell times. For real data CN>0 provided results broadly similar to that 
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obtained with RUST, except that the noise reductions achieved with RUST is counterbalanced 

with a lower signal, (Supplementary Fig. 13). It is likely that the superiority of CN>0 normalization 

over CN>1 is due to larger volume of data used. While it seems reasonable to filter out lowly 

expressed genes prior to the analysis because their individual ribosome profiles are unrealistic 

representations of the real ribosome density, collectively these profiles produce a statistically 

reliable signal and their analysis is highly informative.  

The RUST approach maximizes the chances that detected signal is real in two ways. On 

one hand it is based on gathering information from all transcriptome coordinates increasing the 

chance that the signal is not arising due to stochastic reasons. The benefit of this becomes greatest 

when examining the influence of relatively infrequent determinants, such as certain dipeptides, 

tripeptides. On the other hand, by reducing the impact of each individual site, RUST ensures that 

a signal is not a product of a rare outlier (whether due to technical or biological reasons). The 

smoothing achieved by RUST could also be applied to other high-throughput methods that are 

characterized by the presence of heterogeneous noise. In this work, for example, we were able to 

detect that sequencing reads that form RNA secondary structures are underrepresented not only in 

ribosome profiling data, but also in mRNA-seq data. Thus RUST could have a broader impact if 

adopted. 

The conversion of regular profile to a binary profile leads to an unavoidable loss of 

information. The approach is therefore “blind” to individual special cases where infrequent motifs 

may pause the ribosome for a long period. This, however, can be used to identify such special 

cases by looking for large discrepancies between the densities in the real data and in simulations 

based on parameters extracted with RUST. This application, however, is challenged by the 

presence of technical artefacts as illustrated in Figure 5.  
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We illustrated the applicability of RUST for measurement of mRNA features that impact 

decoding rates using datasets with lower sequencing bias. The results suggest that sites other than 

at the decoding center have a relatively minor influence on the decoding rate globally. This 

observation does not contradict the well characterized pauses modulated by nascent peptide signals 

and RNA secondary structures at specific locations of individual mRNAs. However, we also 

showed that in addition to identity of codons in the decoding center of the ribosome, sequences 

surrounding the ends of footprints are major determinants of footprint densities. The influence of 

these regions on read density greatly vary among different datasets, in some exceeding that of the 

sequences in the decoding center. We suggest that this feature could be used for quality assessment 

of ribosome profiling datasets for the presence of cDNA library construction biases.  Cross-

platform implementation of RUST is freely available at RiboGalaxy (http://ribogalaxy.ucc.ie). 

 

Methods 

Ribo-seq datasets used in this study and their processing 

The datasets (and SRA repository accession numbers) are summarized in Supplementary 

Table 1. For simplicity these datasets are indexed in the text using the first author name of the 

original article. The processing of the reads consisted of clipping the adapter sequence and removal 

of ribosomal RNA reads followed by the alignment of the mammalian reads to the RefSeq 

transcriptome50 and the yeast reads to the Saccharomyces cerevisiae genome (sacCer3 assembly). 

The weakly updated human RefSeq catalogue was downloaded on the 13th Aug 2014 from the 

NCBI ftp website ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/ and the mouse RefSeq catalogue 

was downloaded on the 18th March 2014 from ftp://ftp.ncbi.nlm.nih.gov/refseq/M_musculus/. The 

yeast genome (sacCer3 assembly) and annotation data were downloaded on 13th Aug 2014 from 
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the UCSC genome browser51 website,  

http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/bigZips/sacCer3.2bit (genome), 

http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/database/sgdGene.txt.gz (annotations). 

 

Bowtie version 1.0.052 was used to carry out the alignments. The reads were aligned using 

Bowtie to the entire human or mouse catalogue with the following parameters (-a, -m 100 -norc). 

Except where otherwise indicated the reads that mapped unambiguously to a gene (but not 

necessarily to a single transcript) were brought forward for further analysis. For the yeast datasets 

reads were aligned to the yeast genome allowing only unambiguous alignments (-a, -m 1). 

 

Ribo-seq simulation 

 

The simulated alignment data were modelled using real human mRNA sequences obtained from 

the RefSeq database and with the average transcript read density similar to that of real ribosome 

profiling data. We simulated the data under the simplistic model where the local decoding rate 

depends exclusively on the identity of a decoded codon (A-site codon). The number of footprints 

at each codon position was determined by sampling from the following Poisson probability mass 

function: 

 

𝑝𝑚,𝑐,𝑑 =

(
𝑡𝑐𝐷𝑚

∑ 𝑛𝑐,𝑚𝑡𝑐𝐶=(𝐴𝐴𝐴…𝑇𝑇𝑇)
)
𝑑

𝑒
−𝑡𝑐𝐷𝑚

∑ 𝑛𝑐,𝑚𝑡𝑐𝐶=(𝐴𝐴𝐴…𝑇𝑇𝑇)

𝑑!
[1] 

Where pm,c,d is the probability of finding d number of footprints at a specific location at mRNA m 

at a codon c from the set of 61 sense codons C. Dm is the total number of footprints aligning to 
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mRNA m; nc,m is the number of codons c in the coding region of mRNA m; and tc is the relative 

dwell time for the codon c. The dwell times tc for the 61 sense codons were set to span either a ~10 

or ~100 fold range with equal increments of 0.15 or 1.5, (the fastest codon was given a score of 1, 

the slowest was 10.15 or 92.5). To model the noise arising from high density peaks the number of 

reads at a certain percentage of randomly selected coordinates (irrespective of where it originally 

contained a mapped read) was substituted with a 3x the value of the highest footprint density for 

the original simulated profile.  The number of codons selected was calculated as a percentage 

(either 5% or 20%) of the number of codons with a mapped read. To model the absence of mapped 

reads because of discarding of ambiguous alignments reads were removed from 20% of codons 

with mapped reads. The selection of codons was carried out using a probability distribution, 

therefore for individual mRNA density profiles the number of altered codons may differ from 5% 

to 20%. 

The normalisation approaches were used to estimate relative dwell times as described 

below.  The normalised estimated/simulated values obtained for all 61 sense codons were used to 

produce the boxplots in Figure 1 and Supplementary Figure 2. The normalisation consisted of 

dividing each of 61 values by their mean to enable comparison between values from datasets and 

normalisation approaches. The coefficient of determination between the estimated and simulated 

values was also used as a measure of the accuracy of the approaches. 

 To explore how the data specific factors (e.g. coverage, sequencing biases) affect 

performance of different normalization approaches we carried out simulations using Hseih et al31 

(4 million mapped reads of which 530,051 reads passed selection criteria) and Rubio et al36 (61 

million mapped reads of which 6,470,387 reads passed selection criteria). The simulations on 

Figure 1 are based on Rubio et al. data, those in Supplementary Figure 2 were carried out on the 
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Hseih dataset. 

 

Determining offset to the A-site 

An important factor for the analysis described in this work is the application of the correct 

offset for inferring the position of the A-site codon relative to the footprint 5’ end. This is typically 

estimated with a metagene profile of either initiating or terminating ribosomes. This may not 

always allow for a precise estimation of the offset and it is possible that initiating or terminating 

ribosomes do not protect mRNAs in the same way as elongating ones because of conformational 

differences, e.g. when release factor eRF1 binds to the ribosome53. With the premise that the 

combined A-site and P-sites should have the greatest influence on decoding rates we set out to 

estimate the offset using RUST codon metafootprint profiles with the largest K-L divergence at 

adjacent offsets. We carried out three RUST metafootprint profiles (using the same approach 

described below) at multiple offsets (usually 16, 17, 18 nucleotides). For these profiles we 

determined the combined K-L divergence from two adjacent codons. The codon pair in any of the 

profiles with the largest K-L (that was not at the ends of the reads) was assumed to correspond to 

the P and A-sites.  It was necessary to take the combined K-L divergence from two adjacent sites 

as in some datasets the divergence of the P-site was greater than that of the A-site. For one of the 

datasets (with low sequencing bias) we confirmed that the maximal K-L divergence nucleotides 

corresponded to the A-site offset determined with initiating ribosomes (Supplementary Fig. 14). 

The offsets used for each dataset are listed in the Supplementary Table 1. 

 

Normalization approaches 

For this analysis the alignment data to the longest coding transcript of every expressed gene were 
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used. Owing to possible atypical translation at the beginning or the end of coding regions, the 

analysis was carried out on coding regions with the A-site position within 120 nucleotides (40 

codons) downstream of the annotated start codon and 60 nucleotides upstream of the annotated 

stop codon. With exception to one of the ‘Lareau’ datasets the analysis was carried using reads of 

the predominant length. An offset to the A-site was determined as described earlier. The exclusive 

selection of reads of one length was necessary to minimise the effect of variation in a distance 

between footprint ends and the A-site. In this analysis reads were used irrespective of the subcodon 

position to which they aligned. The exclusive selection of reads that align to a particular subcodon 

position may further improve the signal.  Because of these criteria ~15% of total (non rRNA) 

mapped reads were used to produce metafootprint profiles (Supplementary Table 1). To check 

whether exclusion of unambiguously aligned reads had a large influence on the result we repeated 

the analysis with the unambiguous reads, the obtained results are nearly the same (Supplementary 

Fig. 15). 

The RUST pipeline is described in Supplementary Figure 1. The first step of “RUST phase” 

is the conversion of ribosome density profile to a binary profile based on whether the number of 

alignments at each determinant (codon, nucleotide, amino acid) exceeds the gene average. The 

RUST value at each location l is denoted as (rocl), c stands one of 61 codons (when codons are 

examined as determinants). For each sequence determinant the expected value recl is also obtained. 

recl is obtained by averaging local RUST values across a single coding region. For lowly expressed 

genes it is expected to be close to 0 and for highly expressed genes it is substantially higher. 

Normalisation over expected values is carried out to control for the non-random distribution of 

codons (or other determinants) across the genes with different expression levels. If all codons had 

the same dwell times, their unnormalized RUST values would be higher for codons that are more 
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frequent in highly expressed genes. This analysis is carried out for all mRNA sequences in the 

translatome. In order to check for an enrichment of reads at a particular determinant the obtained 

RUST value is compared to the expected RUST value. To produce a metafootprint profile we used 

a sliding window approach illustrated in Supplementary Figure 3. For the analysis of codons as a 

determinant of footprint density the window of 61 codons is moved with a step size of one codon. 

The center of the window is considered to be the A-site codon. The RUST values are calculated 

for each codon relative to the A-site and represented in the form of a metafootprint profile. The 

procedure used for other determinants such as nucleotides, amino acids, peptide properties and 

RNA secondary structures is conceptually the same.  

CN normalisation consisted of an initial normalisation of the individual read density 

profiles by the average read density specific to individual coding regions. This followed by 

determination of average normalized values for each of 61 codons across the entire dataset. For 

the generation of metafootprint profiles average codon values were calculated for specific 

locations within the sliding window similarly to how it is illustrated for RUST in Supplementary 

Figure 3. For CN>0 all mRNA transcripts were used while for the CN>1 only coding regions with 

an average read density > 1 read/nucleotide were used. 

 We carried out “Ribosome residence time” RRT similar to that described by Gardin et al.15 

The analyses was carried out independently on windows of 19 codons in length that satisfy the 

following requirements: (1) greater than 19 aligned reads, (2) less than 3 codons with no 

alignments and (3) if the codon at the position 10 occurred only once in the window. For each 

window the decimal fraction of reads aligning to each codon (relative to the total number of reads 

in the window) was determined. The average obtained for each codon at all 19 codons was then 

used to produce the metafootprint profile. 
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As the other normalisation procedures do not use mRNA-seq data, we could not carry out 

an equitable comparison with the “corrected ribo coverage” analysis12 . Therefore, instead of using 

the footprint density normalized by RNA-seq density, we used only footprint densities. We refer 

to this approach as LMN for logarithmic mean normalisation. Similar to the original approach only 

coordinates with mapped reads are used and footprint densities are first normalised by the algebraic 

average read density. The algebraic average of their log2 values are then calculated across all 

coding regions (first term in equation [2] below). Further the average of all 61 codons is calculated 

(second term in equation [2] below) and subtracted from the codon specific value. The procedure 

can be summarized in the following equation 

 

𝐿𝑀𝑁𝑐 =
∑ log2𝑑𝑐𝑙𝐿

𝑁𝑐
− ∑

∑ log2 𝑑𝑐𝑙𝐿

61𝑁𝑐
𝐶=(𝐴𝐴𝐴…𝑇𝑇𝑇)  [2] 

Where LMNc is LMN value for the codon c (from a set of 61), Nc is the total number of c 

codon occurrences with non 0 footprint densities and dcl is footprint density for the codon c at the 

location l normalized by the average footprint density for the corresponding mRNA. We carried 

out the analysis on coding regions with an average read density > 1 read/nucleotide. 

The “aov” function in R was used to calculate the p-values with ANOVA for assessing 

statistical significance of the difference between the variation among synonymous codons and 

variation among all codons at the A-site.  

 

 

Kullback-Leibler divergence 

The Kulback-Leibler divergence was used to calculate relative entropy in the RUST metafootprint 

profiles and was calculated as the following 
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𝐷𝑙 =∑
𝑟𝑜𝑐𝑙

∑ 𝑟𝑜𝑐𝑙𝐶=(𝐴𝐴𝐴…𝑇𝑇𝑇)
𝑙𝑜𝑔2 (

𝑟𝑜𝑐𝑙
∑ 𝑟𝑜𝑐𝑙𝐶=(𝐴𝐴𝐴…𝑇𝑇𝑇)
⁄

𝑟𝑒𝑐
∑ 𝑟𝑒𝑐𝐶=(𝐴𝐴𝐴…𝑇𝑇𝑇)
⁄

) [3]

𝑐

 

Where Dl is the K-L at location l, rocl is the observed RUST value for codon c at location l and rec 

is the expected RUST value for codon c. The higher the K-L, the less uniform the distribution of 

RUST values is in the corresponding position. Thus, K-L indicates how much the corresponding 

position contributes to the abundance of footprints.  

 

RNA secondary structure analysis 

The computational prediction of RNA secondary structure free energy was performed using 

RNAfold in the ViennaRNA package49. Using a sliding window of 80 nucleotides with a step size 

of 10 nucleotides the minimal free energy for potential RNA secondary structures was estimated 

across each transcript. For human data the threshold free energy for the most stable RNA secondary 

structures was found to be-40.1 kcal/mol for the top 1st percentile, -32.8 kcal/mol for the 5th and -

29.0 kcal/mol the 10th percentile.  

 

Amino acid physicochemical properties 

In this study Histidine, Lysine, Arginine, were considered to be positively charged. Aspartic acid, 

Glutamic acid as negatively charged. Alanine, Valine, Isoleucine, Leucine, Methionine, 

Phenylalanine, Tyrosine, Tryptophan were considered to be hydrophobic. 

 

Standard score to identify synergistic interactions 

To identify synergistic interactions, we compared the difference in fold changes between observed 
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and expected metafootprint profiles. The fold change at each position was normalised to the 

background fold change as follows 

𝑆𝑖𝑗𝑘 =
𝑟𝑜𝑖𝑗𝑘 𝑟𝑒𝑖𝑗𝑘⁄ − 𝑟𝑜𝑖𝑟𝑜𝑗 𝑟𝑜𝑘 𝑟𝑒𝑖⁄ 𝑟𝑒𝑗𝑟𝑒𝑘

𝑠𝑡𝑑
[4] 

Where 𝑆𝑖𝑗𝑘are synergy indexes for tripeptide ijk and ro/re are corresponding RUST ratios. std is 

the standard deviation of the differences observed at regions from -40 to + 18 relative to the A-

site.  

 

The comparison of predicted and real footprint densities 

When information from all footprint codons, plus two surrounding ones (-6 to +6 relative to the P-

site/A-site boundary) was used to model ribo-seq densities, the predicted profile can be represented 

as a discrete probability density function 

𝑝𝑘 =
∏

𝑟𝑜𝑖𝑘
𝑟𝑒𝑖𝑘

𝑁
𝑖=1

∑ (∏
𝑟𝑜𝑖𝑗

𝑟𝑜𝑖𝑗

𝑁
𝑖=1 )𝑀

𝑗=1

  [5] 

Where pk is the probability of finding a footprint at the position k of the mRNA coding region 

consisting of M codons. roik/roik is the RUST ratio for the codon at the site i (relative to the codon 

k) from the total of N sites used. For instance, if RUST ratios of AAA in the P-site and A-site are 

0.339 and 1.646 respectively, the expected RUST ratio for di-codon AAA-AAA is 0.557 

(0.339*1.646). Instead of di-codons in our simulation the RUST ratio is obtained with 12 codons, 

this corresponds to the numerator in equation [5]. The denominator corresponds to the sum of 

RUST ratios across the coding region and remains constant for all codons of each transcript. 

The comparison between the expected and experimental profiles was carried out on 

transcripts with a density greater than 1 read/nucleotide. (Transcripts with a lower density were 
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not used as they have insufficient data to correlate with the predicted profile).   

The python package matplotlib55 was used to produce the figures. 

 

Code availability 

  

.  

 

 

Supplementary Software is a compressed archive of user friendly executable scripts to run RUST 

(version 1.2). Its source code is accessible and it includes several implementations of RUST that 

search for enrichment of codons, amino acids, dipeptides, tripeptides and nucleotides. 

“rust_synergy” searches for synergistic effects between adjacent amino acids. 

“rust_predict_profiles” returns a csv file that records the Pearson’s and Spearman’s correlation 

coefficient between the observed and predicted footprint densities for individual transcripts. 

“rust_plot_transcript” plots the observed and predicted footprint densities. This (and updated 

versions in the future) are also available at http://lapti.ucc.ie/rust/. In addition, Supplementary 

Software includes “RUST_script.py” a 2nd shorter, non-executable version of the RUST 

implementation on codon enrichment. This script is a pseudocode intended as an explanatory aid 

for understanding RUST algorithm. . RUST is also available via the RUST package at 

RiboGalaxy54 (http://ribogalaxy.ucc.ie). 

 

Data availability 

The NCBI SRA accessions numbers for the datasets processed in this study is listed in Table 1 
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Table 1. Ribosome profiling protocol conditions for the studies described in this work  
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   Human         

Andreev 2562176427 SRR1173909 

SRR1173910 

HEK293T no 1.5 250 NaCl CHX Detergent I GR Lysate 

Cenick 2629748628 SRR1803149 LCL no 5 150 NaCl CHX Freeze A,T4 CS Lysate 

Gonzalez 2512289329 SRR1562539 Brain no 15 250 NaCl CHX Dounce 

homogenizer, 

freeze 

I GR Lysate 

Guo 2070330030 SRR057512 HeLa 8 5 100 KCl CHX Detergent I GR Lysate 

Hseih 2236754131 SRR403883 PC3 ? ? ? ? ? ? ? ? 

Lee 2292742932 SRR618771 HEK293 30 5 100 KCl CHX Detergent I GR Polysome 

Liu 2329091656 SRR619083 HEK293 1 5 100 KCl CHX Detergent I GR Polysome 

Loayzo-

Puch 

2359452433 SRR627620 BJ fibroblast 8 10 100 KCl CHX Detergent I GR Lysate 

Rooijiers 2430102035 SRR935448 BJ fibroblast 5 10 100 KCl CHX Detergent I GR Lysate 

Rubio 2527384036 SRR1573934 MDA-MB-

231 

no 15 220 NaCl CHX Detergent I CS Lysate 

Shalgi 2329091537 SRR648667 HEK293T 5 5 100 KCl No Freeze I CS Lysate 

Stadler 

CHX. 

2204522814 SRR407637 HeLa no 1.5 140 KCl CHX Freeze I GR Lysate 

Stadleruntr. 2204522814 SRR407643 HeLa no 1.5 140 KCl No Freeze I GR Lysate 

Stern-

Ginossar, 

CHX 

2318085938 SRR609197 human 

foreskin 

fibroblasts 

1 15  250 NaCl CHX Detergent I CS Lysate 

Stern-

Ginossar, 

untr 

2318085938 SRR592961 human 

foreskin 

fibroblasts 

no 15 250 NaCl No Detergent I CS Lysate 

Stumpf 2412066539 SRR970561 Hela 2 5 ? CHX Detergent I CS Lysate 

   Mouse         

Howard 2369664140 SRR826795 Liver no 10 300 KCl CHX Homogenizer I CS Lysate 

Ingolia, 

CHX 

220560417 SRR315601 Embryonic 

stem cell 

1 15 250 NaCl CHX Detergent I CS Lysate 

Ingolia, untr. 220560417 SRR315616 Embryonic 

stem cell 

no 15 250 NaCl No Detergent I CS Lysate 

Reid 2521549241 SRR1066893 Embryonic 

fibroblast 

no 15 100 KoAc CHX Detergent 

(digitonine) 

MN CS Lysate 

Shalgi 2329091537 SRR648667 3T3 5 5 100 KCl No Freeze I CS Lysate 

Thoreen 2255209842 SRR449467 Embryonic 

fibroblast 

5 7.5 300 KCl CHX Detergent I GR Lysate 

   Yeast         

Artieri 252942461 SRR1049093  2 1.5 140 KCl CHX Freeze I GR Lysate 

Brar 2219441343 SRR387871  2 1.5 140 KCl CHX Freeze I GR Lysate 

Gardin 253470646 SRR1506632  no ARTseq ARTseq CHX Freeze I SC Lysate 

Ingolia 1921387744 SRR014374 

SRR014375 

SRR014376 

 2 1.5 140 KCl CHX Freeze I GR Lysate 

Lareau, 

CHX 

248429908 SRR1363415 

SRR1363416 

 yes 1.5 140 KCl CHX Freeze I GR Lysate 
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Lareau, untr. 248429908 SRR1363412 

SRR1363413 

SRR1363414 

 no 1.5 140 KCl No Freeze I GR Lysate 

McManus 2431873045 SRR948555  5 1.5 140 KCl CHX Freeze I CS Lysate 

Pop 2553813912 SRR1688547  2 1.5 140 KCl CHX Freeze I CS Lysate 

 

CHX – cycloheximide, MN – micrococcal nuclease, GR – sucrose gradient, CS – sucrose cushion, 

SC – spin-column chromotography. Additional information is provided in Supplementary Table 

1. ? – not known. 

Figure legends  

Figure 1. Comparison of ribosome profiling normalization approaches  

(a) A stylized footprint density profile for MTIF3 gene transcript from ‘Andreev’ dataset (left) is 

transformed into a binary function with RUST (center). Each sequence feature, such as AAA 

codon in the case shown, could be characterized by its frequency as 1 or 0 (right).  (b) The 

distributions of normalized codon densities for all AAA codons in ‘Andreev’ dataset using 

different approaches, conventional normalization CN (left), ribosome residence time, RRT (top 

right) and logarithmic mean normalization LMN (right). Note that due to intrinsic differences the 

scale of possible normalized densities (axes X) varies among the methods and that due to the 

selection criteria of each approach the number of datapoints used (axes Y) is also variable. (c) 

Performance of five normalization approaches (RUST, CN of transcripts with average gene 

density >1/nucleotide (CN>1) and CN of all expressed transcripts (CN>0), LMN and RRT) at 

estimating codon dwell times The box plots show the distribution of log values of the 

estimated/simulated dwell times for all 61 codons. The deviations of these values from 0 occur 

due to under or overestimation of simulated dwell times. The better methods are those that have 

distributions with a smaller variance. Each subpanel represents a specific scenario. The simulation 

scenarios differ by coverage that reduces from top to the bottom and the level of noise modelled 
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as high peaks of density that increases from left to right, except for the right-most column where 

noise is modelled as missing data at 20% of the coordinates. Asterisks used to indicate insufficient 

data for CN>1. 

 

Figure 2. Evaluation of ribo-seq datasets with RUST  

(a) Anatomy of the ribosome footprint displaying position-specific mRNA sequence influence on 

ribo-seq read density. (b) RUST codon metafootprint profiles of selected ribo-seq and mRNA-seq 

datasets used in this study. The individual RUST ratio values of 61 sense codons across the mRNA 

are displayed. The resulting grey area is a superposition of each 61 curves. The corresponding 

Kullback-Leibler divergence (K-L) is shown in blue. The protocol details for each dataset are 

summarized in Table 1. (c) Heatmap displaying the pairwise similarity of codon RUST ratios at 

the A-site, as measured by the Pearson’s correlation, for ribo-seq datasets of human (green), yeast 

(red) and mouse (orange). Also included are human mRNA-seq data (violet). The datasets are 

indexed by the name of the first author. The clustering was done with Scipy using the “Euclidean” 

distance metric with “single” linkage.  

Figure 3. RUST metafootprint profiles of the 16 human ribo-seq datasets  

 Datasets are indexed by the name of the first author followed by drug treatment and source, see 

Table 1 for more details.  The Kulback-Leibler (K-L) divergence is shown in blue, the coordinates 

of K-L maximum are indicated above the peak in each plot. Zero coordinate corresponds to the 

inferred position of the A-site and is marked with a red line, coordinates are in codons. See 

Supplementary Fig. 4 for non-human studies 
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Figure 4. RUST accurately predict experimental footprint densities 

Top left panel shows distributions of Pearson’s correlation coefficients for experimental and 

predicted footprint densities (green and violet) for individual transcripts as well as correlation 

between two experimental ribo-seq datasets obtained under the same protocol (orange). 

Correlations were measured only for coding regions of highly expressed transcripts from 120 

nucleotides downstream of the start codons to 60 nucleotides upstream of the stop codons. The 

other panels show experimental (solid grey) and predicted (based on RUST values for the codons 

-6 to +6 relative to A-site) ribosome densities (broken purple) for five transcripts, corresponding 

to the 1st, 10th, 100th,, 500th and 714th strongest correlations, the Pearson’s correlation coefficients 

are indicated. Results displayed are for 'Andreev' dataset. 

Figure 5. An example of information provided for each dataset with RUST Software 

RUST metafootprint analysis for codons is shown at the top. Blue indicates Kulback-Leibler (K-

L) divergence for individual codons and green for two adjacent codons.  Zero coordinate 

corresponds to the inferred position of the A-site. Middle left plot shows RUST ratios (Y axis) for 

individual codons ordered by encoding amino acids at the axis X, the size of the disc indicates the 

codon usage. Middle right plot illustrates the ability of RUST parameters to reconstruct 

experimental densities (green – based on identity of the A-site codons and violet is based on all 

codons within footprints). Bottom left plot shows locations of observed synergistic effects between 

amino acids that affect decoding rates, the bottom middle plot shows their strength and the bottom 

right plot illustrates the triplet periodicity signal for footprints of different lengths. This 

information is available for each dataset used in this study at http://lapti.ucc.ie/rust/. 
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