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Abstract  

Ribosome profiling is a promising technology for exploring gene expression. However, 

ribosome profiling data are characterized by a substantial number of outliers due to technical 

and biological factors. Here we introduce a simple computational method, Ribo-seq Unit Step 

Transformation (RUST) for the characterization of ribosome profiling data. We show that 

RUST is robust and outperforms conventional normalization techniques in the presence of 

sporadic noise. We used RUST to analyse 28 publicly available ribosome profiling datasets 

obtained from mammalian cells and tissues and from yeast. This revealed substantial protocol 

dependent variation in the composition of footprint libraries. We selected a high quality 

dataset to explore the mRNA features that affect local decoding rates and found that the 

amino acid identity encoded by the codon in the A-site is the major contributing factor 

followed by the identity of the codon itself and then the amino acid in the P-site. We also 

found that bulky amino acids slow down ribosome movement when they occur within the 

peptide tunnel and Proline residues may decrease or increase ribosome velocities depending 

on the context in which they occur. Moreover we show that a few parameters obtained with 

RUST are sufficient for predicting experimental densities with high accuracy. Due to its 

robustness and low computational demand, RUST could be used for quick routine 

characterization of ribosome profiling datasets to assess their quality as well as for the 

analysis of the relative impact of mRNA sequence features on local decoding rates. 
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Introduction 

The advent of ribosomal profiling (ribo-seq) provided the research community with a 

technique that enables the characterization of the cellular translatome (the translated fraction of the 

transcriptome). It is based on arresting translating ribosomes and capturing the short mRNA 

fragments within the ribosome that are protected from nuclease cleavage. The high throughput 

sequencing of these fragments provides information on the mRNA locations of elongating 

ribosomes and thereby provides a quantitative measure of ribosome density across each transcript. 

This local ribosome density depends on a number of variables, one of which is the time that a 

ribosome dwells at each corresponding location. Accordingly, ribosome profiling data contains 

information that could be used to infer the properties that affect ribosome decoding (or elongation) 

rates. Unsurprisingly, a large number of studies analysing ribosome profiling for this purpose have 

been published recently (Tuller et al. 2010a; Tuller et al. 2010b; Ingolia et al. 2011; Stadler and Fire 

2011; Tuller et al. 2011; Dana and Tuller 2012; Li et al. 2012; Qian et al. 2012; Charneski and 

Hurst 2013; Shah et al. 2013; Woolstenhulme et al. 2013; Artieri and Fraser 2014; Dana and Tuller 

2014a; Dana and Tuller 2014b; Gardin et al. 2014; Lareau et al. 2014; Li et al. 2014; Pop et al. 2014; 

Yang et al. 2014).  

There is a considerable discordance among some of the findings in these works. For 

example, some studies report that the availability of tRNAs cognate to the codon in the A-site 

strongly correlates with decoding rates in yeast (Dana and Tuller 2014a; Gardin et al. 2014) while 

others report the lack of such a correlation (Pop et al. 2014). These contradictions are unlikely to be 

wholly caused by differences in the experimental datasets. They may also be attributed to the 

computational methods used for estimating local decoding rates. These methods are often based on 

elaborate models of translation that use certain assumptions regarding the process. The abstraction 

required for modelling necessitates the generalization of the process across all mRNAs, although we 

are aware of numerous special cases. Even if the generalized models provide a reasonably accurate 

representation of the physical process of translation in the cell, they do not model the ribosome 
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profiling technique itself, which may introduce various technical artefacts. Oft-cited potential 

artefacts include the method used to arrest ribosomes (the result is affected by the choice (Lareau et 

al. 2014) and the timing (Ingolia et al. 2011; Gerashchenko and Gladyshev 2015; Jackson and 

Standart 2015) of antibiotic treatment), the sequence preferences of enzymes involved in the library 

generation (Artieri and Fraser 2014) and the quality of alignment. These artefacts may distort the 

output and it may not be easily to disentangle their effects in the presence of biologically functional 

and sporadic alterations in translation. 

We set out to design a simple computational technique for the characterization of ribosome 

profiling data that would be based on the minimal number of assumptions regarding the process. 

We reasoned that it is important that such a technique would be resistant to the sporadic noise 

(deterministic or stochastic) imposed by the process of sequence library generation and by the 

erratic presence of strong biologically motivated distortions in the signal. With this in mind we 

developed a smoothing method for ribo-seq profile data which we term RUST (Ribo-seq Unit Step 

Transformation).  

Here we describe the method, its performance and the impact of mRNA features on the 

distribution of ribosome densities in ribosome profiling data estimated with RUST. We evaluated 

the method on both simulated and real data and show that RUST is resistant to sporadic noise. We 

applied this method to 28 publicly available ribosome profiling datasets obtained from biological 

samples (cells or tissues) in human (Guo et al. 2010; Stadler and Fire 2011; Hsieh et al. 2012; Lee 

et al. 2012; Stern-Ginossar et al. 2012; Liu et al. 2013; Loayza-Puch et al. 2013; Rooijers et al. 2013; 

Shalgi et al. 2013; Stumpf et al. 2013; Gonzalez et al. 2014; Rubio et al. 2014; Andreev et al. 2015) 

and mice (Ingolia et al. 2011; Thoreen et al. 2012; Howard et al. 2013; Shalgi et al. 2013; Reid et al. 

2014), as well as in yeast (Ingolia et al. 2009; Brar et al. 2012; Artieri and Fraser 2014; Lareau et al. 

2014; McManus et al. 2014; Pop et al. 2014). We found a considerable protocol dependent 

discordance between the inferred local decoding rates in these datasets. Consistent with a previous 

report (Martens et al. 2015) sequences near the ends of ribosome protected fragments strongly 
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influence the distribution of ribosomes suggesting a substantial effect of sequencing biases, which 

we find to vary substantially among different datasets. In addition, we found that the experimental 

protocol has a major influence on ribosomal footprint distribution across different codons and even 

on whether the A-site codon or the P-site codon is a major determinant of footprint densities. This is 

consistent with earlier reports that the footprint density in ribosome profiling studies does not reflect 

local decoding rates adequately (Dana and Tuller 2012).  

We brought forward the ribo-seq study (Andreev et al. 2015) for more detailed analysis of 

sequence characteristics determining footprint densities. We chose this dataset because it is one of 

the two with the lowest sequence bias at the ends of footprints. The other dataset is from (Rubio et 

al. 2014). We found for (Andreev et al. 2015) study that the major factor contributing to the 

distribution of ribosome densities is the identity of the amino acid (rather than of the codon) in the 

ribosome A-site. Four of the five slowest decoded amino acids are polar charged. Mutual 

synergistic affects from adjacent residues that have an appreciable influence on ribosome decoding 

rates are observed, but are very rare. Such interactions usually contain Proline and are observed 

close to the peptidyl transferase center. Finally, we demonstrate that we can reconstruct 

experimental ribosome density profiles of individual mRNAs with high accuracy using the 

parameters extracted with RUST. An important caveat is that we do not know the extent of 

protocol-dependent distortion of local decoding rates in this study. Nonetheless, we believe that 

owing to its simplicity and resistance to noise, RUST is a useful technique for the characterization 

and comparison of ribosome profiling studies. 

 

Results 

Ribo-seq Unit Step Transformation (RUST). 

The number of ribosomes decoding a particular codon of an mRNA (and by extension the 

expected number of corresponding ribo-seq reads in a library) depends on three variables: the 
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mRNA expression level, the translation initiation rate for the corresponding open reading frame 

(ORF) and the time that the ribosome spends at that codon (dwell time). The latter (as an invert) is 

usually described as a codon elongation rate or a codon decoding rate. Note that this may include 

not only the time required for the accommodation of a cognate tRNA, but also may include the time 

required for the peptidyl transferase reaction and translocation. Setting aside (for now) technical 

factors involved in the generation of libraries, estimating the true decoding rates with ribo-seq is 

made difficult by the absence of precise measurements of initiation rates. A frequent and intuitive 

approach of circumventing this problem is the normalisation of the local ribo-seq signal by the 

average signal across the coding region (Li et al. 2012; Dana and Tuller 2014a). This approach has 

been described as conventional (Dana and Tuller 2014a) and we will refer to it as CN for 

conventional normalization. It is based on a simple and to some extent reasonable assumption that 

the transcript expression levels and ORF initiation rates are the same for all codons from that ORF. 

Supposing that ORFs have only one initiation and one termination site, then CN has two major 

shortcomings: it is very sensitive to outliers which frequently occur due to functional ribosome 

pauses (Dana and Tuller 2014a) (Fig. 1A) and it typically is applied only to the transcripts with high 

ribosome coverage, as the relative impact of a single read alignment on CN is excessive with sparse 

profile data (Fig. 1A). 

We reasoned that a practical approach for the analysis of ribosome profiling data should be 

(i) simple; (ii) robust to outliers and sporadic noise; (iii) able to use all available data (i.e. no 

restriction to genes with high read coverage). This could be achieved with the smoothing of 

ribosome profiling densities. For this purpose we use a procedure that we term Ribo-seq Unit Step 

Transformation (RUST). In this procedure the ribosome densities (the number of reads 

corresponding to the position of the A-site codon) are converted into a binary step unit function 

(also known as Heaviside step function) where codons are given a score of 1 or 0 depending on 

whether the density exceeds the average for the corresponding ORF (Fig. 1A). 

The average RUST value across all mRNAs for each putative determinant of decoding rates 
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may be compared to the expected value (which would occur if ribosome footprints were distributed 

across coding regions equiprobably) to measure its effect. Upon RUST conformation every site has 

a limited influence on the final score, thus it is influenced primarily by the consistent presence of 

reads at numerous sites. For example no differentiation is made between a stall site where the 

ribosome density just exceeds the average to one where the average is grossly exceeded (Fig. 1A,B). 

The potential disadvantage of this approach is a homogenization of the profiles which may obscure 

weak but real determinants of decoding rates. The method therefore is conservative and the features 

detected with RUST are likely to affect decoding rates considerably and consistently. 

To explore whether this reasoning holds in practice we tested RUST on real and simulated 

data and compared it with the conventional normalization (CN).  

 

Evaluation of RUST with simulated data. 

 As we do not know the true decoding rates, we cannot directly test the performance of 

different methods on real data. In order to evaluate RUST (and CN) we proceeded to simulate data 

by setting the decoding rates and sporadic noise then test their ability to estimate these rates (see 

Methods). Usually alignment data from only highly expressed genes are used with the CN method, 

therefore we also decided to explore how this affects the performance of the CN method. For this 

purpose we used the CN method on all transcripts with aligned footprints which we will refer to as 

CN>0, whereas on the transcripts with an average footprint density of >1 read/nt, we will refer to as 

CN>1. 

 The simulated alignment data were modelled using real human mRNA sequences obtained 

from the RefSeq database and with the average transcript read density similar to that of real 

ribosome profiling data obtained from HEK293T in a recent study (Andreev et al. 2015). We 

simulated the data under the simplistic model where the local decoding rate depends exclusively on 

the identity of a decoded codon (A-site codon). The number of footprints at each codon position 
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was determined by sampling from the following Poisson probability mass function: 

��,�,� � � ����

∑ ��,���������…			

�� � ���
�

∑   ��,���������…			


�!                      	1� 
Where pm,c,d is the probability of finding d number of footprints at a specific location at mRNA m at 

a codon c from the set of 61 sense codons C. Dm is the total number of footprints aligning to mRNA 

m; nc,m is the number of codons c in the coding region of mRNA m; and tc is the relative dwell time 

for the codon c. To model the irregular noise representing sporadic ribosome pauses, technical 

sequencing artefacts and misalignments, the number of reads at a certain percentage of randomly 

selected coordinates was substituted with a 3x value of the highest footprint density for the original 

simulated profile (see Methods).  

 The only unknown parameters in the equation [1] are tc values for each of the 61 codons. We 

conjectured that the accuracy of the normalisation approaches may depend on codon specific 

properties, such as their frequency or average read density. Therefore we simulated the data under 

three different sets of tc parameters. In the first two simulations the range of tc values were set to 

rank-correlate with the codon usage (see Methods), i.e. the lowest tc was set for the rarest codon and 

the highest rc for the most abundant codon. In one set the tc range spans one order of magnitude and 

in the other, two orders of magnitude. In the third set, the tc parameters were set to anticorrelate 

with the codon usage.  

 Figure 1C compares the performance of the three methods (CN>0, CN>1 and RUST) for 

three different sets of tc parameters and different levels of sporadic noise. When the codon decoding 

dwell times have a range that spans 1 order of magnitude and an optimal (unadulterated) signal, all 

three approaches infer tc values accurately (Fig. 1C, top plots). As may be expected, their accuracy 

is reduced as the number of coordinates affected by sporadic noise increases. While they all 

underestimate tc values in the presence of the noise, the performance of RUST, however, is the least 

affected by the increased noise. For the scenario where the range of decoding rates spans two orders 
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of magnitude (Fig. 1C, middle and bottom plots) the effect of noise on the accuracy of tc inference 

is much higher. Counterintuitively CN>0 performs similar or even better than CN>1 and suggests 

that the requirement for a minimal ribo-seq coverage threshold may not be necessary and could be a 

even harmful step during conventional normalization under conditions of high noise. The probable 

reason for CN>0 superiority over CN>1 is the signal aggregation from a larger number of 

transcripts, which provides a more consistent signal despite the nonsensical results within a context 

of individual mRNAs. Nonetheless, in all scenarios RUST is less affected by the noise in 

comparison with CN methods (Fig. 1C). 

 Encouraged by the performance of RUST on simulated data we carried out RUST analysis 

on real data with the purpose to infer the sequence features of mRNAs that affect local decoding 

rates and to see if we can predict experimental densities from data parameters extracted with RUST. 

 

Technical artefacts result in significant variation in the composition of footprint libraries. 

 The velocity of a ribosome could be influenced by the sequence of mRNA in several ways 

(outlined in the scheme in Fig. 2A).Codons in the E-, P- and A-sites of the ribosome determine the 

identity of corresponding tRNAs (and amino acid) inside the ribosome. The mRNA sequence in the 

cavity between subunits could affect ribosome movement by directly interacting with its 

components. Such interactions and their effect on ribosome progression are well documented in 

bacteria (Li et al. 2012; O'Connor et al. 2013). In addition, the sequence upstream of the A-site 

codon (up to 90 nucleotides) could influence the progressive movement of the ribosome through the 

interactions between the peptide it encodes and ribosome peptide chanel. There are many examples 

of ribosome pausing mediated by the nascent peptide (Ramu et al. 2009; Ito et al. 2010; Yanagitani 

et al. 2011; Wei et al. 2012; Woolstenhulme et al. 2013). Lastly, the sequence downstream of the 

ribosome could alter its velocity through the formation of stable RNA secondary structures (Kontos 

et al. 2001; Tholstrup et al. 2012) or the presence RNA-protein complexes (including other 
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ribosomes). 

 In addition to these intrinsic factors affecting ribosome velocities, there are technical factors 

that influence the distribution of sequencing reads in ribo-seq datasets. First, particular drugs used 

to block elongating ribosomes could act on ribosomes only at a specific conformation (Lareau et al. 

2014). Second, the timing of antibiotic treatment could also alter the distribution of ribosomes along 

mRNAs, i.e. when cells are pre-treated with cycloheximide progression of recently initiated 

ribosomes is blocked by elongating ribosomes already arrested on mRNA (Gerashchenko and 

Gladyshev 2014). Third, various enzymes used to cleave mRNA and generate and sequence cDNA 

libraries of ribosome footprints could result in the enrichment of reads with specific sequence 

constraints especially at the 5’ and 3’ boundaries of ribosome footprints where RNase cleavage and 

ligation reactions occur (Artieri and Fraser 2014). Fourth, the alignment step relies on how well the 

reference sequence matches to the genotype of the experimental system. The accuracy of alignment 

also depends on the existence of paralogs and transcript sequence complexity and the way how 

ambiguous alignments are treated. 

 We used an approach similar to the one recently used by Artieri and Fraser (Artieri and 

Fraser 2014)to analyse how much various mRNA positions (relative to the ribosome) affect ribo-

seq read density. We calculated RUST scores for 60 codons for each codon position within a 

window of 60 codons (from -40 to +20 relative to the A-site) and compared these scores to the 

values that would be expected if footprint distribution across coding regions was equiprobable (see 

Methods and Supplemental Fig. S1). To measure the contribution of local mRNA positions to the 

density of footprints correspondingly derived from a ribosome decoding a particular A-site codon, 

we measured the relative entropy at each codon position using the Kulback-Leibler (K-L) 

divergence: 

�	 � 
 ���	∑ ���	
��


…����
���� ����	 ∑ ���	
��


…����

���� ∑ ���
��


…����
� �           	2�

�

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2015. ; https://doi.org/10.1101/018762doi: bioRxiv preprint 

https://doi.org/10.1101/018762
http://creativecommons.org/licenses/by/4.0/


Where Dl is the K-L at location l, rocl is the observed RUST value for codon c at location l and rec 

is the expected RUST value for codon c. The higher the K-L, the less uniform the distribution of 

RUST values is in the corresponding position. Thus, K-L indicates how much the corresponding 

position relative to the A-site contributes to the abundance of footprints.  

Figure 2B shows the relative entropy and normalized ro/re RUST ratios for each individual 

codon for some of the ribosomal profiling datasets explored in this work. By analogy with metagene 

profiles we refer to the plots of ro/re RUST ratios as metafootprint profiles. It can be seen that the 

areas of reduced entropy are mostly contained within a window of 10 codons upstream and 

downstream of the A-site, approximately matching to the position of the actual ribosome footprint 

itself. This is observed in all ribo-seq datasets (Supplemental Figs S2 and S3). In almost all cases 

three local K-L maxima are observed, one corresponding to the position of the A-site or the P-site 

codon (indicated as -1 in Figure 2B), the other two maxima roughly corresponding to the 5’ and 3’ 

ends of ribosome footprints. The same procedure carried out on mRNA-seq libraries reveals 

decreased entropy in the same area but only with two maxima corresponding to the mRNA 

fragment ends (Fig. 2B). This strongly suggests that the main contributing factors to footprint 

composition in the library are the identity of the codons in the A- and/or P-sites and the sequence-

specificity of the enzymes used during library construction. The degree of variation in the relative 

impact of these factors among different datasets is surprising. In some of the ribo-seq datasets, the 

density of footprints depends more on the identity of the codon at the ends of footprint more than on 

the identity of the codon in the A- or P-sites.  

An important factor in this analysis is the application of the correct offset for inferring the 

position of the A-site from the 5’ end. This is typically estimated with a metagene profile of either 

initiating or terminating ribosomes. This may not always allow a precise estimation of the offset and 

it is possible that initiating or terminating ribosomes do not protect mRNAs in the same way as 

elongating ones. With the premise that the A-site should have the greatest influence on decoding 

rates we set out to estimate the offset using RUST codon metafootprint profiles with different 
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offsets. For one of the datasets (with low sequencing bias) we found that the maximal K-L 

divergence for reads of 32 nucleotides corresponded to the offset determined with initiating 

ribosomes (Supplemental Fig. S4).  

 The estimation of sequencing biases introduced by cDNA library generation protocols is 

comparatively easy, as they act predominantly on positions distant from the A- and P-sites of the 

ribosome. The effect of the lysis protocols and antibiotic treatments is more difficult to estimate. A 

particular codon may be enriched at the A-site of the ribosome because either the ribosome decodes 

this codon slowly or the translation inhibitor blocks the ribosome preferentially at this codon. 

 To explore how specific conditions of the ribosome profiling experiment may affect cDNA 

library compositions we surveyed RUST ratio values for the codons in the A-site for the 28 

ribosome profiling datasets and some of their mRNA-seq controls (Fig. 2C). The conditions of the 

experimental protocols (which we believe may affect the distribution of ribosomes or their 

footprints across the transcriptome) are given in the Table 1. Most apparent is the high 

reproducibility for most ribosomal profiling datasets produced in yeast under cycloheximide 

pretreatment, which is not so surprising given no apparent variations in the protocol (Table 1). The 

variance across the datasets obtained from mammalian sources is more substantial as are the 

differences in the protocols (Table 1).  

 Some of the studies produced the data under very similar protocols with a single parameter 

being different: the samples were either pretreated with cycloheximide before lysis or no drug was 

used (Ingolia et al. 2011; Stadler and Fire 2011; Stern-Ginossar et al. 2012; Lareau et al. 2014). 

Comparing these datasets to each other should, in theory, allow us to estimate the effect of 

individual experimental factors on the composition of footprint cDNA libraries. However, we found 

that ‘Stadler’ and ‘Stern-Ginnoassar’ datasets are similar for both types of treatments, while ‘Lareau’ 

and ‘Ingolia’ are different (Fig. 2C). Supplemental Figure S5 provides the analysis of RUST ratios 

for ‘Lareau’ and ‘Ingolia’ datasets under both conditions, clearly indicating that cycloheximide 
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substantially alters the distribution of footprints on mRNA. The difference is even more pronounced 

when RUST ratios are compared for the P-site codons (Supplemental Fig. S6). This is consistent 

with the observation that cycloheximide blocks ribosomes in a specific conformation and this 

ribosome arrest has certain codon preferences (Lareau et al. 2014). 

 Prior studies explored the effects of different antibiotic treatments in mammalian cells 

(Ingolia et al. 2011) and in yeast (Gerashchenko and Gladyshev 2014; Lareau et al. 2014). The 

effect of buffer conditions on triplet periodicity was also explored to some extent and lower 

concentrations of di- and monovalent ions were found to improve it (Ingolia et al. 2012; Stern-

Ginossar et al. 2012). It is clear, however, that more systematic studies of experimental protocol 

conditions effect on local footprint distributions are needed before we could confidently use ribo-

seq data for inferring local decoding rates from ribo-seq densities. At present it is tempting to 

conclude that there are important factors in the ribosomal profiling experimental protocol that 

researchers do not describe routinely in their research articles and perhaps are even unaware of. 

 

Detailed characterization of sequence-specific factors affecting the composition of ribo-seq 

libraries. 

 (Artieri and Fraser 2014) attempted to correct for technical sequencing biases by adjusting 

ribosome footprint densities to that of mRNA densities. We believe that such an approach only 

partially solves the problem, as the mRNA fragmentation is done under different protocols for 

mRNA-seq and ribo-seq, alkaline digestion for the former and enzymatic digestion for the latter. 

Differences in RNA isolation protocols, ribosome-bound RNA vs polyadenylated RNA may also 

contribute to certain differences. To consider that any bias at the footprint ends to be of a technical 

nature would also be incorrect. The codons at the 5’ end of a footprint could affect the velocity of 

the ribosome through the nascent peptide within the tunnel while the footprint sequence at the 3’ 

end could affect it through RNA secondary structures. 
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 Therefore, in the absence of a straight forward approach for sequence bias correction we 

chose to concentrate on a dataset with a low sequencing bias. We chose the dataset obtained in 

HEK293T under control conditions in the Andreev et al study (Andreev et al. 2015) because the K-

L divergence for the RUST values is high at the decoding center, and low at the footprint ends (Fig. 

3A and Supplemental Figure S2). Interestingly its A-site RUST ratio was also found to strongly 

correlate to the only dataset with a comparable low sequencing bias (Rubio et al. 2014), see Figure 

2C. First we explored in greater detail how the identities of particular codons in the A-site affect the 

density of corresponding footprints. Displayed below the metafootprint profiles on Fig. 3A is the 

relative RUST ratios (with the lowest fixed as 1) for each of the 61 sense codons sorted by the 

amino acids that they encode. The RUST ratios for individual codons vary ~15 fold. The codons 

encoding four of the five polar charged amino acids were found to be the slowest residues, the 

exception was Arg codons which were found to have comparatively low RUST ratios (Fig.3A). The 

highest variation between synonymous codons was observed for Ser codons, ~4 fold difference 

between the slowest and the fastest. We do not observe the previously reported slower decoding of 

wobble base-pair decoded codons (Stadler and Fire 2011) (Fig. 3A). We also explored the 

relationship of RUST ratios of the A-site to codon usage and tRNA availability (dos Reis et al. 2004) 

which were reported to correlate with codon decoding rates on several occasions (Dana and Tuller 

2014a; Gardin et al. 2014). We have not found a correlation between codon usage and RUST ratios 

(Fig. 3B). The codon usage comprise of statistics of codon frequencies in the genes irrespective of 

their level of expression or even whether they are expressed. Therefore we also calculated a 

translatome usage that calculates the frequency of codons in the translatome that takes into account 

transcriptional/translational levels of each gene (see Methods) and in effect is a measure of how 

frequently an elongating ribosome encounters a particular codon. Nonetheless, no correlation was 

observed for this index either, actually the translatome codon usage was very similar to the codon 

usage (Supplemental Fig. S7). We also did not observe a strong correlation between RUST ratios at 

the A-site obtained with amino acids and amino acid usage (Fig. 3B). 
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We explored the potential effect of RNA secondary structure on the density of footprints. 

We calculated the RUST ratios for RNA sequences that can form RNA secondary structures with a 

particular free energy as calculated with RNAfold (Lorenz et al. 2011), see Methods. Figure 3C 

shows the distribution of RUST values for RNA secondary structures with 80 nucleotides window 

with different free energy for both mRNA-seq and ribo-seq reads. It can be seen that sequences 

predicted to contain stable structures are avoided (low RUST values) in windows that overlap with 

sequencing reads. This is observed for both ribo-seq and mRNA-seq reads and therefore is likely to 

be an artefact related to cDNA library generation and sequencing. The nucleotide bias is unlikely to 

explain this since according to RUST metafootprint profile shown at Supplemental Figure S8A the 

distribution of individual nucleotides at the footprint location does not deviate significantly from 

locations remote from it (the exception is the location of the A-site). 

To explore the effect of the nascent peptide on footprint densities we analysed RUST ratios 

for 30 amino acids upstream of the A-site codon and found bulky amino acids (large Tyrosine and 

Tryptophan as wells as the inflexible Proline) to have higher RUST ratios than other amino acids 

(Fig. 3D). This was not observed for the mRNA-seq controls (Fig. 3D). 

The nascent peptide interactions with the ribosome components may be facilitated by 

specific physicochemical properties of the peptide. For example it has been proposed previously 

that positively charged amino acids slow ribosome movement (Lu and Deutsch 2008; Charneski 

and Hurst 2013). In this case the RUST ratio of individual amino acids may not provide an accurate 

representation of the of the nascent peptide effect on ribosome movement. For example the 

inhibitory influence of a positive charge in a nascent peptide could be mitigated by an adjacent 

negatively charged amino acid. Therefore we also measured RUST ratios for peptide fragments (as 

a sliding window of 10 residues) with particular physicochemical properties (number of positive 

charges, net charge and number of hydrophobic amino acids). We observed only minor deviations 

for the distributions of these physicochemical properties that may not necessarily be caused by their 

effects on decoding rates (Supplemental Fig. S8B). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2015. ; https://doi.org/10.1101/018762doi: bioRxiv preprint 

https://doi.org/10.1101/018762
http://creativecommons.org/licenses/by/4.0/


 

Synergistic effects of amino acid interactions within the nascent peptide. 

We next set out to examine whether particular di- or tripeptides could affect ribosome 

velocity more significantly than it would be expected from their individual components. We detect 

such synergetic effects by comparing the frequencies of dipeptides and tripeptides to the expected 

values based on the frequencies of corresponding residues at their respective positions by using the 

standard score (Z-score) as the following: 

��� � ����/���� � ������/��������� , ���� � �����/����� � ���������/������������       	3� 
Where ��� and ����are synergy indexes for dipeptide ij or tripeptide ijk and ro/re are corresponding 

RUST ratios. std is the standard deviation of the differences observed at regions from -40 to -30 and 

+7 + 17 relative to the A-site. This is based on the assumption that at these positions the sequence 

of the encoded peptide should not significantly affect velocities. Thus differences between RUST 

ratios for residues and for combinations of residues should represent the level of stochasticity in the 

data. This approach could be carried out for a pair of amino acids at any distance from each other. 

We carried out this analysis for adjacent amino acids only. Out of the 23,600 possible dipeptides 

(20x20 codons at 59 positions in the interval from -40 to +20) the 2ndstrongest synergism was 

observed for the Proline dipeptide, di-P, at positions -1 and -2, i.e. two C-terminal residues of the 

growing peptide. The RUST ratio for di-P is about 25% larger than what would be expected from 

individual contributions of two Proline residues in the corresponding positions (Fig. 4A). We also 

explored synergism for 464,000 tripeptides three codon motifs (20x20x20 residues x 58 positions) 

(Fig 4B, 4C). Only 0.15% (703) of these tripeptides were found to have a standard score greater 

than 5 (Sijk>5 or Sijk< -5). These synergistic interactions were found to occur mostly near the 

decoding center with 26% of them occurring at the positions where the first two residues of the 

tripeptide are the last C-terminal residues of the growing nascent peptide and the last amino acid is 
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the one attached to the A-site tRNA (Fig. 4D).They also had a relatively small influence with the 

majority of interactions having less than a 2 fold change between observed and expected values (Fig 

4E). 

The amino acid Proline was also found to be a mainstay in the positive synergetic 

interactions in tripeptides with it occurring at least once in 16 of the top 20 candidates. Ten of these 

contain di-P, all with the 2ndProline being in the P-site of the ribosome. Proline is a poor substrate 

for peptide bond formation and frequently occurs at known pause sites. Di-P has been found to 

induce ribosome stalling in bacteria which is relieved by EF-P(Peil et al. 2013).Therefore it was 

quite surprising to find that the PPP was found among the top tripeptides of negative synergism 

(decoded faster than what would be expected from individual Proline contributions). Perhaps this is 

because of the action of elongation factor, eIF5A, a functional homologue of EF-P, required to 

relieve the associated pausing at polyproline regions (Gutierrez et al. 2013). 

 

RUST parameters accurately predict experimental footprint densities. 

We know neither the true local decoding rates nor how various technical factors may distort 

the relationship between ribosome densities and observed footprint densities. Therefore the 

performance of a computational method cannot be evaluated based on the prediction of local 

decoding rates. A good characterization of the method would be the ability to accurately reconstruct 

the original dataset from a small number of parameters. 

Therefore, we decided to test whether we can accurately reconstruct ribosome densities 

using RUST parameters. We started with the simplest 1st order model incorporating the least 

number of parameters corresponding to the most significant factor affecting footprint densities, the 

identity of a codon in the A-site. According to this model the density at a particular codon will be 

predicted to be an average of the footprint density for a specific mRNA multiplied by the RUST 

ratio for the corresponding codon. The 2nd model is based on the same concept except that it uses 
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the paired amino acid information of amino acids in the A and P sites. The third model incorporates 

RUST values for all codon sites along the entire footprint. The predicted profile can be represented 

as a discrete probability density function 

�� � ∏ ����
����
��

���

∑ �∏
����

����
��

��� ��
���

  [4] 

Where pk is the probability of finding a footprint at position k of the mRNA coding region 

consisting of M codons.roik/reik is the RUST ratio for the codon at site i (relative to codon k) from 

the total of N sites used. 

 We compared the results of these models to the actual ribo-seq profiles of genes with read 

density greater than 1 read/nt. It was found to have impressive predictive power (Fig. 5A) 

Predictions made based only on the A-site RUST values correlate with the real profiles (r2=0.451, 

ρ=0.503). Predictions based on the pair of amino acids in the P- and A-sites are slightly more 

powerful (Fig. 5A). Thus, the gain of information on the decoding rates of the P-site appears to 

equate that of replacing the codon information at the A-site to the amino acid. The incorporation of 

RUST ratios for all codon sites in the footprint improves the predictive power even further 

(r2=0.622, ρ=0.640). This improvement most probably is due to better representation of the 

influence of sequence biases on the cDNA library generation and sequencing rather than to 

improvements of estimated ribosomal decoding rates. An example of a profile predicted with this 

model is shown in Figure 5B. 

 

Discussion 

In this work we described a simple computational technique RUST for the characterization 

of ribosome profiling data based on a simple smoothing transformation of ribosome density profiles 

into a binary function. Using simulated data we show that this technique is robust in the presence of 

sporadic noise and outperforms conventional methods for normalisation of ribosome profiling data. 
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Using experimental data, we show that the characteristics of ribosome profiling data extracted with 

RUST can be used for the accurate prediction of experimental ribosome footprint densities. 

We applied this technique to almost thirty publicly available ribo-seq datasets (yeast, 

mammalian cultured cells and tissues) and uncovered substantial protocol dependent variability 

among them. The most similar datasets are those obtained with cycloheximide pre-treatments of 

yeast cells and probably reflects the low variation among protocols in these studies. A strong 

reproducibility does not necessarily indicate that ribosome footprint densities accurately reflect 

decoding rates of the ribosomes as can be suggested based on strong dissimilarity with the dataset 

obtained with no cycloheximide pre-treatment. For the datasets obtained in mammalian systems we 

found substantial variation that is likely to be related to the timing of cycloheximide treatments as 

well as conditions of buffers used for lysis and nuclease digestion. The position specificity of 

sequencing biases (they affect the boundaries of ribosome footprints) enabled us to discriminate (at 

least partially) the influence from genuine decoding rate differences from that of sequence biases. 

These technical biases may have a limited effect on ribosome profiling experiments when those are 

applied for gene expression analysis, since they are independent of physiological conditions in 

which the experiments are carried out. However, they could have a very large effect on the 

distribution of footprints within the same transcripts and thus could complicate the analysis of local 

decoding rates. We found that sequence biases related to cDNA library generation and sequencing 

varies substantially among datasets. In some datasets, the identity of the codon at the position of a 

footprint boundary is a stronger predictor of footprint occurrence in the library than the identity of 

the codon in the A-site. 

RUST allows for the estimation of the degree of technical bias across different datasets. We 

selected a dataset with a low sequencing bias to further explore the sequence factors that influence 

local decoding rates. We found that the identity of the codon in the ribosomal A-site is the most 

powerful predictive factor of the local decoding rates. Similar to previous studies(Lareau et al. 

2014), the variation observed for non-synonymous codons is substantially higher (~10 fold) than 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2015. ; https://doi.org/10.1101/018762doi: bioRxiv preprint 

https://doi.org/10.1101/018762
http://creativecommons.org/licenses/by/4.0/


what is observed for synonymous codons (~3 fold). Moreover, we showed that the identity of the 

amino acids in the P- and A-sites is as powerful a predictor of decoding rates as the identity of the 

A-site codon. If we assume that experimental conditions did not affect the distribution of the 

ribosomes on the transcriptome, this may suggest that the speed with which tRNAs are 

accommodated into the ribosomes is affected by the identity of amino acids participating in the 

peptidyl transferase reaction. We also found that large (tyrosine and tryptophan) and bulky (Proline) 

amino acids in the nascent peptide slow down ribosomes. The synergetic effects between neighbour 

amino acids in the nascent peptide are rare, insubstantial and frequently involve Proline residues.  

Our results suggest that sites other than at the decoding center have a relatively minor 

influence the decoding rate in general. This is perhaps not too surprising when we consider that the 

primary function of mRNA is to encode a protein. If there were pervasive and significant inhibitory 

interactions from multiple sources, the productivity of elongating ribosomes would be significantly 

decreased. It may also constrain the possible codon combinations that may be decoded. This would 

significantly outweigh the advantages that may be gained from such a system such as translational 

regulation. Our results do not suggest that local decoding rates could not be affected significantly by 

other factors. Rather, they suggest that such factors are not general. They could be highly specific. 

Indeed, we know many examples where RNA secondary structures (Somogyi et al. 1993; Tholstrup 

et al. 2012) or nascent peptide signals cause exceptionally long pauses. Such signals could even 

alter the standard decoding, see (Baranov et al. 2002; Namy et al. 2004) for reviews. Moreover 

RUST could be used to find such specific signals by comparing the real footprint densities to those 

predicted based on general factors. 

In conclusion, we believe that RUST will be a valuable tool for characterizing ribosome 

profiling data due to its simplicity and resistance to sporadic noise (technical and biological). RUST 

metafootprint analysis can be used effectively to estimate the degree of sequencing bias in ribo-seq 

datasets and we hope it will help to improve and standardise ribosome profiling protocols. In 

addition RUST can be used for determining sequence factors affecting local decoding rates. 
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Methods 

Ribosome profiling datasets used in this study and their processing 

The datasets (and SRA repository accession numbers) are summarized in Supplemental Table S1. 

The processing of the reads consisted of clipping the adapter sequence and removal of ribosomal 

RNA reads followed by the alignment of the mammalian reads to the RefSeq transcriptome and the 

yeast reads to the sacCer3 genome. The Human RefSeq catalogue was downloaded on 13th Aug 

2014 and the mouse RefSeq catalogue was downloaded on 18th March 2014 from the NCBI ftp 

website ftp://ftp.ncbi.nlm.nih.gov/refseq/ (Pruitt et al. 2014). The sacCer3 genome and annotation 

data were downloaded on 13th Aug 2014 from the UCSC genome browser website http://genome-

euro.ucsc.edu (Karolchik et al. 2014). 

Bowtie version 1.0.0 was used to carry out the alignments(Langmead et al. 2009). The mammalian 

reads were aligned to the RefSeq catalogue using the same approach as in (Andreev et al. 

2015).Reads were aligned using bowtie to the entire human or mouse catalogue with the following 

parameters (-a, -m 100 –norc ).The reads that mapped unambiguously to a gene (but not necessarily 

to a single transcript) were brought forward for further analysis. For the yeast datasets, reads were 

aligned to the yeast genome allowing only unambiguous alignments (-a, -m 1).   

Ribo-seq simulation 

The simulated ribo-seq profiles were designed such that the final ribo-seq density was similar to 

that observed in (Andreev et al. 2015). The dwell times tc for the 61 sense codons were set to span 

either a 10 or 100 fold range with equal increments of 0.15 or 1.5, (the fastest codon was given a 

score of 1, the slowest was 10.15 or 101.5). In order to create noisy alignment data, a number of 

codons were randomly selected and the number of alignments to them was replaced with a constant. 

The number of codons selected was calculated as a percentage (either 1.5% or 10%) of the number 
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of codons with a mapped read.  

Normalisation approaches 

The alignment data to the longest coding transcript of every expressed gene was used. Owing to 

possible atypical translation at the beginning or end of the coding regions, the analysis was carried 

out on coding regions with the A-site position within 120 nucleotides (40 codons) downstream of 

the start codon and 60 nucleotides upstream of the stop codon. Generally the analysis was carried 

out solely by using reads of 32 nucleotides in length for the human and mouse datasets and 30nt for 

the yeast dataset. An offset of 17 nucleotides was used to indicate the A-site. The exclusive 

selection of reads of one length was done to minimise the attenuation of the enrichment signal at 

specific sites of the ribosome such as the termini. In this analysis all reads were used irrespective of 

the subcodon position to which they aligned. The exclusive selection of reads that align to a 

particular subcodon position may further improve the signal at the expense of sequencing depth.  

 An implementation of our RUST algorithm is provided in a custom script written in python 

(“RUST_script.py” in supplemental material).  

Indexes of usage and adaptiveness of codons 

Codon usage frequency and relative codon usage frequency were obtained from the GenScript 

website (http://www.genscript.com/cgi-bin/tools/codon_freq_table). The wi or relative adaptiveness 

value of codon was obtained from supplementary table S1 from(Tuller et al. 2010a).  

 The translatome codon usage was calculated as a measure of the demand of each codon to 

translating ribosomes based on ribo-seq data. For each codon it was taken to be the cumulative 

value of the average read density across the coding region in each coding region of each transcript. 

RNA structure free energy prediction 

The computational prediction of RNA binding free energy was predicted using RNAfold in the 
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ViennaRNA package(Lorenz et al. 2011). Using a sliding window of 80 nucleotides and a step size 

of 10 nucleotides the free energy was recorded across each transcript. The quantitative free energy 

value calculated for every window was classified based on whether it was lower than -40.1, -32.8 or 

-29.0 kcal/mol which correspond to the 1st, 5th and 10th percentiles. This classification was applied 

to all 10 nucleotides in one step size. 

The comparison of predicted and experimental footprint densities. 

The comparison was carried out on 3,319 transcripts with density greater than 1 read /nt. To 

maximise read density the ribo-seq profile reads of length 29 to 35 inclusive were used to produce 

the real profile. Only unambiguously mapped reads were used. For genes with multiple transcript 

isoforms, this analysis was carried out on the transcript isoform with the longest coding region. A 

custom script, “Profile_prediction.py” is provided in supplementary files enabling the prediction of 

ribosome profiles using data obtained from “RUST_script.py” with codons -6 to +6. 
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Table 1. Ribosome profiling protocol conditions for the studies described in this work. CHX – 
cycloheximide, MN – micrococcal nuclease, GR – gradient, CS –cushion. 
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   Human         
Andreev 25621764 SRR1173909 

SRR1173910 
HEK293T no 1.5 250NaCl CHX Detergent I GR Lysate 

Gonzalez 25122893 SRR1562539 Brain no 15 250 NaCl CHX Dounce 
homogenizer, 
freeze 

I GR Lysate 

Guo 20703300 SRR057512 HeLa 8 5 100 KCl CHX Detergent I GR Lysate 
Heish* 22367541 SRR403883 PC3         
Lee 22927429 SRR618771 HEK293 30 5 100 KCl CHX Detergent I GR Polysome 
Liu 23290916 SRR619083 HEK293 1 5 100 KCl CHX Detergent I GR Polysome 
Loayzo-
Puch 

23594524 SRR627620 BJ fibroblast 8 10 100 KCl CHX Detergent I GR Lysate 

Rooijiers 24301020 SRR935448 BJ fibroblast 5 10 100 KCl CHX Detergent I GR Lysate 
Rubio 25273840 SRR1573934 MDA-MB-

231 
no 15 220 NaCl CHX Detergent I CS Lysate 

Shalgi 23290915 SRR648667 HEK293T 5 5 100 KCl No Freeze I CS Lysate 
Stadler 
CHX. 

22045228 SRR407637 HeLa no 1.5 140 KCl CHX Freeze I GR Lysate 

Stadleruntr. 22045228 SRR407643 HeLa no 1.5 140 KCl No Freeze I GR Lysate 
Stern-
Ginossar, 
CHX 

23180859 SRR609197 human 
foreskin 
fibroblasts 

1 15  250 NaCl CHX Detergent I CS Lysate 

Stern-
Ginossar, 
untr 

23180859 SRR592961 human 
foreskin 
fibroblasts 

no 15 250 NaCl No Detergent I CS Lysate 

Stumpf* 24120665 SRR970561 Hela         
   Mouse         
Howard 23696641 SRR826795 Liver no 10 300 KCl CHX Homogenizer I CS Lysate 
Ingolia, 
CHX 

22056041 SRR315601 Embryonic 
stem cell 

1 15 250 NaCl CHX Detergent I CS Lysate 

Ingolia, 
untr. 

22056041 SRR315616 Embryonic 
stem cell 

no 15 250 NaCl No Detergent I CS Lysate 

Reid 25215492 SRR1066893 Embryonic 
fibroblast 

no 15 100 KoAc CHX Detergent 
(digitonine) 

MN CS Lysate 

Shalgi 23290915 SRR648667 3T3 5 5 100 KCl No Freeze I CS Lysate 
Thoreen 22552098 SRR449467 Embryonic 

fibroblast 
5 7.5 300 KCl CHX Detergent I GR Lysate 

   Yeast         
Artieri 25294246 SRR1049093  2 1.5 140 KCl CHX Freeze I GR Lysate 
Brar 22194413 SRR387871  2 1.5 140 KCl CHX Freeze I GR Lysate 
Ingolia 19213877 SRR014374 

SRR014375 
SRR014376 

 2 1.5 140 KCl CHX Freeze I GR Lysate 

Lareau, 
CHX 

24842990 SRR1363415 
SRR1363416 

 yes 1.5 140 KCl CHX Freeze I GR Lysate 

Lareau, 
untr. 

24842990 SRR1363412 
SRR1363413 
SRR1363414 

 no 1.5 140 KCl No Freeze I GR Lysate 

McManus 24318730 SRR948555  5 1.5 140 KCl CHX Freeze I CS Lysate 
Pop 25538139 SRR1688547  2 1.5 140 KCl CHX Freeze I CS Lysate 
 

* These authors did not provide protocol conditions in the original publications and did not respond  to a specific query regarding the 
protocols used. 
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Figure legends 

Figure 1. Shortcomings of conventional normalisation lessened with RUST. (A) Ribo-seq 

alignment profile (top center) and its normalisation profiles with either conventional normalisation 

(CN) (left) or RUST (right). The addition of one high density peak (bottom center) to the profile 

influences the normalised footprint counts (NFC) considerably with CN whereas this is less 

pronounced with the RUST protocol. The value of the peak produced with CN is indicated with text 

highlighted in red background. (B) The comparatively large influence of such peaks at individual 

mRNA sites is illustrated by the skewness of the NFC frequency distribution for the AAA codon 

with CN of real human data (top) whereas every site has an equal influence in the RUST frequency 

distribution (bottom). (C) Relationship between the actual and observed codon dwell times on 

simulated ribosome profiling data with three approaches; RUST, CN of transcripts with average 

gene density >1/nt (CN>1) and CN of all expressed transcripts (CN>0). The input parameters 

(relationship dwell times with codon usage as well as the fold difference of dwell times) are shown 

on the left, and the response to increasing noise in the data are on the right. 

Figure 2. Evaluation of ribo-seq alignment data with RUST. (A) Anatomy of the ribosome 

footprint displaying position-specific mRNA influence on ribo-seq read density. (B) RUST codon 

metafootprint profiles of selected ribo-seq and mRNA-seq datasets used in this study. The 

individual RUST ratio values of 61 sense codons across the ribosome are displayed in grey. The 

corresponding Kullback-Leibler divergence (K-L) is shown in blue. The position relative to the A-

site with the greatest K-L is also indicated. See Supplemental Figure S2 and S3 for the 

metafootprints of the other datasets. The datasets are described as in Table 1. (C) Heatmap 

displaying the pairwise similarity of codon RUST ratio at the A-site, as measured by the Pearson’s 

correlation, for ribo-seq datasets of human (green), yeast (red) and mouse (orange). Also included 

are human mRNA-seq data (violet). The associated dendrogram was created with scipy using 

“Euclidean” distance metric with “average” linkage clustering.  
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Figure 3. Detailed characterization of sequence-specific factors affecting the composition of ribo-

seq libraries. (A) RUST codon metafootprint profiles of a selected dataset. The normalised RUST 

ratios of the A-site (below) is also displayed; codons are grouped according to the amino acid that 

they encode, those requiring wobble base interactions are displayed in cyan and their relative codon 

usage is indicated with the size of each dot. (B) Relationships between normalised A-site codon 

RUST ratios and relative adaptiveness of codons (wi) and codon usage. Also shown is the 

relationship between the normalised A-site amino acid RUST ratios and the amino acid usage. (C) 

The RUST metafootprint profile of regions predicted to contain strong RNA structures. Each 

position of the metafootprint profile indicates the start of a 80 nucleotides (nt) window. (D) RUST 

amino acid metafootprint profiles. 

Figure 4. Synergistic effects of amino acids interactions within the nascent peptide. (A) 

Comparison of expected and observed metafootprint profiles at di-P with the observed profile of 

Proline. (B) Examples of strongest cases of positive or negative synergism detected with tripeptides. 

The position of the first amino acid of the tripeptide is indicated. (C) Stronger candidates of 

tripeptide synergism including the position of the synergetic interaction and the ro/re fold change 

(see Supplemental Table S1). (D) The relative frequencies of synergism detected across different 

positions of the ribosome. The position of the first residues is indicated (E) The fold change 

between the expected and observed RUST ratio for cases of synergism with tripeptides. 

Figure 5. RUST parameters accurately predict experimental footprint densities. (A)Distributions of 

Pearson’s correlation coefficients for experimental and predicted footprint densities for individual 

transcripts.  Correlations were measured only for coding regions of highly expressed transcripts 

from 120 nucleotides downstream of the start codons upstream of the stop codons. (B) An example 

of experimental (solid grey) and predicted (based on RUST values for the codons -6 to +6 relative 

to A-site) ribosome densities (broken purple) for the same transcript.   
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