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Abstract

Genetic architecture is a general terminology used and discussed very often in

complex traits genetics. It is related to the number of functional loci involved in

explaining variation of a complex trait and the distribution of genetic effects across

these loci. Understanding the complexity level of the genetic architecture of com-

plex traits is essential for evaluating the potential power of mapping functional loci

and prediction of complex traits. However, there has been no quantitative measure-

ment of the genetic architecture complexity, which makes it difficult to link results

from genetic data analysis to such terminology. Inspired by the “Gini index” for

measuring income distribution in economics, I develop a genetic architecture score

(“GA score”) to measure genetic architecture complexity. Simulations indicate that

the GA score is an effective measurement of the complexity level of complex traits

genetic architecture.
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Introduction
Genetic architecture has been widely adopted as a general

terminology that defines how a complex trait is regulated

by the genome. Interestingly, although the concept is eas-

ily defined, we know little about the genetic architecture

of any complex trait. Uncovering the underlying genetic

architecture, step by step, therefore becomes the main

goal of quantitative genetics research.

Although the genetic architecture of each measured com-

plex trait is unknown, it is always needed to further un-

derstand the estimates derived from the data (e.g. heri-

tability) based on potential genetic architecture complex-

ity. For instance, two complex traits that have the same

estimated narrow-sense heritability (h2) may have very

different genetic architecture, as the number of genetic

variants contribute to such an h2 value may differ sub-

stantially. In general, the more polygenic a trait is, the

more difficult it is to map functional loci using genome-

wide association studies (GWAS) [1].

Thus, it is particularly useful to develop a general statistic

that measures the complexity of a complex trait, given its

phenotypic measurements and genotypes in a population.

The genetic architecture complexity describes how poly-

genic a trait is, namely, how evenly the genetic variance is

distributed across all the genotyped variants. Given a cer-

tain null hypothesis, mimicking the well-known economic

concept “Gini index” [2] that measures the distribution of

income in a population, developed here is a score that

measures the complexity level of genetic architecture as

the distribution of genetic variance in a genome. Simu-

lations indicate that the developed score is an effective

measurement.

Methods

Statistical modeling

Prior to the development of the GA score, the genetic ar-

chitecture complexity of a quantitative trait needs to be

defined using the phenotype and genome-wide genotype

data. Consider the linear whole-genome regression model

yi = µ+
m
∑

j=1

x i, j b j + ei (1)

where yi is the phenotypic value of individual i, x i, j its

genotypic value of SNP j coded as −2 f j , 1− 2 f j , 2− 2 f j

( f j is the allele frequency of SNP j), b j the SNP effect, and

ei the residual. The weights of different SNP effects can

be modeled as

b j ∼ N(0,λ j) (2)

Such a hierarchical model defined by eq. (1) and (2) is ac-

tually a double hierarchical generalized linear model [3]

for high-throughput genetic markers [4]. The main idea

of most current whole-genome regression methods is to

optimize the estimation of the weights λ j ’s, as the mark-

ers are ought to be re-weighted differently for different

traits due to different genetic architectures.

Genetic architecture score

Let us define the genetic architecture complexity level as

the weight distribution of genome-wide SNP effects, so

that

• The highest complexity: λ j is uniformly distributed

across all the markers;

• The lowest complexity: λ j > 0 and λ j′( j′ 6= j) = 0, i.e.

only one marker is predictive of the trait.

Based on a null hypothesis of the highest complexity, we

have

H0 : b j ∼ N(0,σ2
b) (3)

Eq. (1) becomes a ridge regression, a.k.a. SNP-BLUP

model [5, 6]. Under the null hypothesis, every marker is

predictive of the trait, so that for SNP j, after training the

SNP-BLUP model in a training set, the variance explained

by SNP j in a test set is proportional to its expected value.

Namely, we have

r2
j ∝ 2 f j(1− f j)b̂

2
j (4)
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where r2
j is the variance captured by SNP j in the test set,

f j the allele frequency of SNP j in the test set, and b̂ j the

estimated SNP effect in the training set.

Due to shrinkage estimates in high-dimensional genotype

data, one cannot simply add up 2 f j(1− f j)b̂2
j from SNP-

BLUP for multiple SNPs to obtain the cumulative expected

variance explained by a group of SNPs. Nevertheless, it is

possible to mimic the Gini index definition: Ranking the

SNPs, from the lowest to the largest expected variance ex-

plained, one can calculate the observed cumulative vari-

ance explained by the first k SNPs is

V O
k = maxk

(

r2

 

ỹ,
k
∑

j∗=1

x̃· j∗ b̂ j∗

!)

(5)

where j∗ represents the rank, ỹ and x̃ are the phenotype

and genotype vectors in the test sample, and r stands for

correlation coefficient. Under the null, V O
k ∝ s, where s

is the number of SNPs included as predictors. A deviation

from the null hypothesis will result in a function V O =

g(s) deviating from the straight line V O = cs (Figure 1),

where c = V O
m /m. Therefore, the area between the curve

V O = g(s) and the line V O = cs measures the genetic

architecture complexity.

A genetic architecture (GA) score can be defined as an

area ratio of 1− A/B illustrated in Figure 1, i.e.

θ = 1−
2

mV O
m

∫ m

0

[g(s)− cs]ds (6)

which ranges from 0 (lowest complexity: “monogenic”)

to 1 (null: highest complexity).

Results
Three phenotypes were simulated based on the simulated

genotypes announced by the Genetics Society of Amer-

ica (GSA) [7], for both the training set (n = 2 000) and

validation samples (simulated young generations, n = 1

500). All the three phenotypes had exactly the same sim-

ulated narrow-sense heritability (h2 = 0.5) but different

numbers of causal variants (50, 5 000, 50 000, respec-

tively). The whole genome contains 57 458 genotyped

Figure 1. Illustration of the GA score definition. The
black curve is plotted with V O

k /V
O
m against V E

k /V
E

m . The
GA score is defined as the ratio (B − A)/B, where the
area A varies from zero (null: highest complexity) to
B = 0.5 (lowest complexity: “monogenic”).

markers in total.

A SNP-BLUP model was fitted for each phenotype using

the bigRR package [6] in the training population. The es-

timated SNP effects were passed onto the validation set to

compute the GA score θ . The estimated GA scores were

0.42, 0.85 and 0.93 for the 50-, 5 000- and 50 000-causal-

variants architectures, respectively. So the estimated GA

score grows, although not linearly, with the number of

causal variants.

Discussion
The GA score developed here measures the genetic ar-

chitecture complexity in terms of the distribution of ge-

netic variance over the genome. Nevertheless, the esti-

mated scores are more useful when comparing multiple

phenotypes. An interesting additional study is to corre-

late a score as such to the sample size required in GWAS

meta-analysis of a certain trait, so that one can predict the

chance of new discoveries in GWAS prior to data collec-

tion.
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Figure 2. GA score applied on three different scenarios
of the GSA simulated data. A narrow-sense heritability
of 0.50 was simulated in all scenarios. 50 (A), 5 000
(B), and 50 000 (C) causal markers were simulated,
respectively.
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