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ABSTRACT 

The role of rare missense variants in disease causation remains difficult to interpret. We explore 

whether the clustering pattern of rare missense variants (MAF<0.01) in a protein is associated 

with mode of inheritance. Mutations in genes associated with autosomal dominant (AD) 

conditions are known to result in either loss or gain of function, whereas mutations in genes 

associated with autosomal recessive (AR) conditions invariably result in loss of function. Loss-

of-function mutations tend to be distributed uniformly along protein sequence, while gain-of-

function mutations tend to localize to key regions. It has not previously been ascertained whether 

these patterns hold in general for rare missense mutations. We consider the extent to which rare 

missense variants are located within annotated protein domains and whether they form clusters, 

using a new unbiased method called CLUstering by Mutation Position (CLUMP). These 

approaches quantified a significant difference in clustering between AD and AR diseases. 

Proteins linked to AD diseases exhibited more clustering of rare missense mutations than those 

linked to AR diseases (Wilcoxon P=5.7x10-4, permutation P=8.4x10-4). Rare missense mutation 

in proteins linked to either AD or AR diseases were more clustered than controls (1000G) 

(Wilcoxon P=2.8x10-15 for AD and P=4.5x10-4 for AR, permutation P=3.1x10-12 for AD and 

P=0.03 for AR). Differences in clustering patterns persisted even after removal of the most 

prominent genes. Testing for such non-random patterns may reveal novel aspects of disease 

etiology in large sample studies.   
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INTRODUCTION 

  

 Hermann Muller was the first geneticist to posit the existence of different classes of 

functional mutations effective at the protein level, mutations that he termed nullomorphs 

(complete loss of function), hypomorphs (reduced function), hypermorphs (increased function), 

antimorphs (antagonistic to wild-type) and neomorphs (new function) (1, 2). These classes of 

mutation can cause human disease, as well as phenotypic variability in general. Nullomorphs and 

hypomorphs are generally referred to today as loss-of-function mutations, and there has been 

speculation that they are not preferentially located at specific amino acid residue positions (2-4). 

This is because loss-of-function is often caused by destabilization of the hydrophobic protein 

core (5), or by frameshifts and premature stop codons that lead to the nonsense mediated decay 

(NMD) of truncated transcripts (6). On the other hand, hypermorphic, antimorphic and 

neomorphic mutations are generally referred to as gain-of-function mutations and are more likely 

to occur at specific amino acid residue positions, such as at sites of post-translational 

modification, ligand binding, or protein-protein interaction (5). To our knowledge, we present 

the first study to systematically assess and quantify the extent to which these clustering patterns 

are also applicable to rare missense mutations causing human inherited disease. 

 

 Single-gene diseases in which the causal mutations lie in genes residing on the autosomes 

are generally recognized to display either dominant (1 copy required) or recessive (2 copies) 

inheritance. These diseases can be caused by mutations in any of the classes mentioned above. 

There is a unique set of autosomal dominant diseases that are recognized to exhibit mutations in 

a highly restricted set of amino acid residue positions with very specific effects on protein 
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function.  By contrast, with autosomal recessive diseases, mutations are often loss-of-function 

and result in no or little usable protein product.   Examples of specific protein functional effects 

include the autosomal dominant diseases Cherubism (SH3BP2 mutations) (7) and 

Achondroplasia (FGFR3 mutations) (8). In Cherubism, mutations occur at a binding site required 

for proper ubiquitylation and subsequent proteolytic degradation of SH3BP2(9, 10). In 

Achondroplasia, a mutation at residue 380 causes FGFR3 to become constitutively activated 

(11).  

 Based on the realization that mutations are often loss-of-function in recessive disease but 

can be either loss-of-function or gain-of-function in dominant diseases, we hypothesized that: 1) 

rare missense mutations within autosomal dominant (AD) disease genes might be more clustered 

than those in autosomal recessive (AR) disease genes; and 2) rare variants in controls might be 

less clustered than either.  In this work, we define clustering, for a given set of mutations, as an 

event when mutations are closer to each other in primary protein sequence than would be 

expected by chance.  We reasoned that if these mutation patterns generally held true, non-

random clustering of rare missense mutations might provide key insights into the molecular 

mechanisms underlying inherited diseases.  The search for new Mendelian disease genes based 

on whole exome sequencing is often focused on loss-of-function variants and deleterious 

missense variants (12).  By examining non-random clustering, it becomes possible to detect 

regions that are critical to protein function, regardless of whether the clustered mutations are 

deleterious or result in gain of function. 

 

 To test the first hypothesis, we used data from The Human Gene Mutation Database 

(HGMD) (13), which comprises a collection of inherited mutations causing human genetic 
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disease. To our knowledge, these data have not been previously assessed for a relationship 

between patterns of rare missense mutation clustering and mode of disease inheritance. To test 

the second hypothesis, we compared the rare missense mutations in these AD and AR genes to 

rare missense variants in these genes found in individuals from the 1000 Genomes Project. 

 

 First, we applied a biased approach that considered the fraction of missense mutations (or 

variants) in a given protein that occurred within annotated protein domains from the Human 

Protein Reference Database (HPRD) (14) (domain occupancy score). However, the assumption 

that rare missense mutations of large effect will only occur in protein domains, regions of regular 

secondary structure whose function is known and that occur paralogously in multiple proteins, is 

potentially problematic. Thus, we developed a new unbiased clustering method to score 

clustering of missense mutations in protein sequence. The method makes no a priori assumptions 

about the importance of these positions or the number of clusters.   

 

 We performed statistical testing to assess whether rare missense mutations in AD genes 

and AR genes exhibit different clustering patterns than in controls and from each other. AD 

genes were found to exhibit significantly higher protein domain occupancy than AR genes and 

controls, and both AD and AR genes had significantly higher occupancy than controls. When we 

removed the domain bias from our analysis by applying an unsupervised clustering algorithm we 

developed (CLUMP), we found that collectively AD genes exhibited significantly lower 

CLUMP scores (associated with greater clustering) than AR genes and that AD genes and AR 

genes had significantly lower CLUMP scores than controls. These trends persisted even after 18 
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outlier genes with the highest statistical significance were removed from the analysis, supporting 

the generality of the clustering patterns.   

 

RESULTS 

Generation of high quality mutations dataset and AD/AR annotations 

By searching the Human Gene Mutation Database (HGMD) and using a customized 

pipeline (Figure 1) we generated a rare missense mutation dataset for AD genes (6,337 mutations 

underlying 162 diseases involving 181 genes and AR genes (6,493 mutations underlying 195 

diseases involving 159 genes).  A rare missense mutation was defined by a minor allele 

frequency < 0.01 in European controls from the 1000 Genomes Project.  

 

Known disease-causing mutations are more likely to fall in domains 

 The general trends observed in our domain occupancy analysis are evident in (Figure 

2A). The empirical cumulative distribution functions (CDFs) of domain occupancies for AD 

disease, AR disease, and controls (1000GP) show that the three sets are distinct and that the trend 

for AR disease lies midway between AD disease and controls. These trends can be further 

quantified by means of a non-parametric Wilcoxon test. Rare missense mutations associated with 

AD diseases are significantly more likely to occur within domains than are rare missense variants 

seen in the 1000 Genomes (p= 2.8x10-15, Wilcoxon test, AD median = 55%, AD mean = 55%, 

1000G median = 23%, 1000G mean = 31%). Rare missense mutations associated with AR 

diseases also exhibit this pattern (p= 4.5x10-4, Wilcoxon test, AR median = 40%, AR mean = 

41%) although significantly less so than those associated with AD diseases (p= 5.7x10-4, 

Wilcoxon test). In addition to these tests of mutations in individual proteins, a global analysis of 
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all mutations shows that rare missense mutations more often reside in domains in AD diseases 

(total AD mutations in domains = 2,728, total AD mutations =6,337, percent AD mutations in 

domains = 43.0%) than in AR diseases (total AR mutations in domains = 1,771, total AR 

mutations=6,493, percent AR mutations in domains = 27.3%) (Fisher one-sided p=9.2x10-79).  

Generally, as previously documented (15-17) disease mutations (AD union AR) more often 

reside in domains than in controls (total control mutations in domains = 24,663, total control 

mutations=113,547,  percent control mutations in domains = 21.7%) (Fisher one-sided p=6.7x10-

233). 

 

Disease vs. control comparison of domain occupancy reveals proteins with significant 

differential clustering 

 Next, we considered whether domain occupancy could be applied to analysis of 

individual proteins to differentiate clustering patterns of rare missense disease mutations and 

control variants. We applied Fisher's Exact test to each protein in the AD and AR sets and 

compared mutation clustering patterns in disease vs. controls (1000G). We identified four genes 

with a significant number of domain mutations in the autosomal dominant dataset and two genes 

in the autosomal recessive dataset, and these genes appear as outliers in a quantile-quantile (QQ) 

plot of raw P-values (Figure 2B). AD genes were NOTCH3 in cerebral autosomal dominant 

arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL, p= 2.77x10-3, 

Benjamini-Hochberg (BH) correction), KRT14 in epidermolysis bullosa simplex (p= 4.24x10-3, 

BH), TP63 in ankyloblepharon-ectodermal defects-cleft lip/palate (AEC syndrome, p= 6.29x10-3, 

BH), and RUNX2 in cleidocranial dysplasia (p=6.57x10-3). AR genes were EYS in retinitis 

pigmentosa (p=3.9x10-3, BH) and CFTR in cystic fibrosis (p=0.03, BH) (Figure 2B).  The 
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general trends seen in the Wilcoxon test persisted even after these outliers were removed (AD vs 

1000G P=9.4x10-14, AR vs 1000G P=1.0x10-3, AD vs AR P=1.0x10-3) 

 

CLUMP analysis reveals increased clustering of autosomal dominant disease mutations 

 Whereas rare missense variants that occur in domains are more likely to have more 

influence on protein activity than those occurring outside of domains, many proteins do not have 

complete domain annotations (18). We further considered whether the mutation clustering trends 

defined by domain occupancy would persist if clustering was defined by an unbiased approach. 

To this end, we generated CLUMP scores for all proteins in the AD, AR and 1000 Genomes 

data. The empirical CDFs of CLUMP scores for AD disease, AR disease, and controls (1000G) 

show a similar trend to the domain occupancy scores, although the three sets are not as well 

separated across the full range of CLUMP scores (Figure 2C). However, the differences between 

the three sets remained statistically significant. Proteins with AD mutations exhibited lower 

scores (more clustering) than 1000 Genomes (P=3.1x10-12) and AR (P=8.4x10-4, Wilcoxon) 

proteins and AR proteins are themselves more localized than 1000 Genomes (P=0.03, 

Wilcoxon).   

 

Disease vs. control comparison of CLUMP scores reveals proteins with significant 

differential mutation clustering 

 

To assess the statistical significance of CLUMP scores, we applied permutation testing to each 

protein in the AD and AR sets and compared CLUMP scores in disease vs. controls (1000G). 

This analysis identified 9 genes with significantly lower CLUMP scores (increased clustering) in 
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the autosomal dominant dataset and 5 genes in the autosomal recessive dataset. Two of the AD 

genes were also identified in the domain occupancy analysis (TP63 and RUNX2). All significant 

genes appear as outliers in a quantile-quantile (QQ) plot of raw P-values (Figure 2D). AD genes 

were RUNX2 in cleidocranial Dysplasia, SH3BP2 in cherubism, TP63 in ectrodactyly, 

ectodermal dysplasia, clefting (EEC) syndrome, SCN9A in primary erythermalgia, NOD2 in Blau 

syndrome, CHD7 in CHARGE syndrome, FBN1 in aortic aneurysm, APOB in 

hypercholesterolaemia, and GJB2 in keratitis-ichthyosis-deafness syndrome. AR genes were 

DYSF in limb girdle muscular dystrophy, USH2A in Usher Syndrome, CRB1 in Leber congenital 

amaurosis, SMARCAL1 in Schimke immuno-osseous dysplasia, and PAH in phenylketonuria 

(Figure 2D). For CLUMP scores, the general trends seen in the Wilcoxon test also persisted after 

outliers were removed (AD vs. 1000G P = 2.5x10-10, AR vs. 1000G P= 0.06, AD vs. AR P = 

2.3x10-3). 

 

For some of these AD genes, evidence of specific protein function affected by a mutation cluster 

has been previously recognized.  In cleidocranial Dysplasia, mutations in the transcription factor 

RUNX2  cluster in the Runt domain, interfering with DNA binding (19); in EEC syndrome, 

mutations in the transcription factor TP63 cluster in the DNA binding domain , disrupting DNA 

binding (20); and in Blau syndrome, mutations in NOD2 cluster at its ATP-binding site and 

within its helical domain, dysregulating hydrolysis and autoinhibition, respectively (21).     

 

Proteins exhibiting increased clustering in Mendelian diseases 

 Of the genes whose protein products were identified to have significantly increased 

clustering when compared to controls, there were some that were already known to either 
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localize in domains or cluster in a specific region of the protein. This included RUNX2 in 

Clediocranial dysplasia (MIM 119600), the TP63 gene in the AEC and EEC syndromes (MIM 

603273), SH3BP2 in Cherubism (MIM 118400), and KRT14 in Epidermolysis bullosa simplex 

(MIM 148066). Our results also support the presence of a clustering pattern in the first 60 amino 

acid residues of the Keratitis-ichthyosis-deafness syndrome GJB2, which was previously 

observed in a small study of 10 patients (22).   

Autosomal dominant mutations are bioinformatically predicted to be more pathogenic than 

autosomal recessive. 

We have developed and published a bioinformatic variant pathogenicty classifier called the 

Variant Effect Scoring Tool (VEST), which outperformed SIFT or PolyPhen2 on a carefully 

curated benchmark set (five-fold gene holdout cross-validation cite) by a small margin (23). 

VEST scores range from 0 to 1 with the most  having a score of 1. When we ran VEST on AD 

and AR variants we found that AD variants were overall more pathogenic than AR variants 

(Wilcoxon one-sided p=4.2x10-10). In addition, we found the clustered/domain variants to be 

more pathogenic than non-clustered/non domain variants (Wilcoxon one-sided p=3.2x10-3). 

 

DISCUSSION 

 A very large number of rare missense variants are now being discovered by high 

throughput sequencing in an assortment of human disease studies. Identifying those that are 

pathogenic or which contribute to disease remains very challenging. We have previously shown 

that visualizing the distribution of missense variants in a given protein sequence can be 

informative in relation to identifying potentially causal variants (24). However, such 

visualization does not provide quantitative assessment of clustering patterns and it cannot be 

applied in a high-throughput setting. In this work, we present two methods for the rapid 
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determination of mutation clustering patterns and their statistical significance. The first method 

is a domain occupancy score, which considers the fraction of variants in a protein that occur 

within annotated domains. This score is necessarily biased, because it depends on existing 

knowledge of those protein regions considered to comprise functional domains, and it may miss 

functionally important regions that occur outside of domains. The second method is the CLUMP 

score, which performs unsupervised clustering of amino acid residue positions where variants 

occur, without any prior knowledge of their functional importance. Interestingly, we observed 

remarkably similar results with both methods: proteins linked to AD diseases harbor significantly 

more clustering of disease mutations than those linked to AR diseases, and both AD and AR 

disease proteins exhibit more clustering of these mutations than controls from 1000G. Moreover, 

these trends are not driven by a few outliers, since they persist even when the 18 genes with the 

most significant P-values in our Fisher's Exact test and permutation test were removed.   

 

It has been shown in some cases, that loss-of-function mutations (nullomorphs and hypomorphs) 

exhibit less clustering in protein sequence than hypermorphs and neomorphs (3, 4), but to our 

knowledge this is the first study to systematically assess these patterns with respect to rare 

missense mutations causing human inherited disease. The search for new Mendelian genes 

through whole exome or genome sequencing of patients has generally been focused on loss-of-

function mutations (25), which have the advantage of being more readily interpretable. 

Bioinformatics scoring of missense mutation deleteriousness is also widespread in analysis 

pipelines, and features such as inter-species evolutionary conservation at a given mutation 

position implicitly identify amino acid substitutions that are damaging to that protein (26, 27). 

Often, researchers are faced with multiple rare missense variants in a gene of interest, none of 
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which have been assessed to be damaging by popular bioinformatics tools.  Our results support 

the idea that many of these variants may be important to Mendelian disease, but could be 

mutations that cause a protein gain of function and are inherited in an autosomal dominant 

inheritance pattern.  

 

We have confirmed that the clustering patterns of rare missense mutations are systematically 

associated with mode of inheritance, and this pattern was robust with respect to whether 

clustering was defined by occurrence in protein domains of known functional importance or by 

an unbiased clustering approach. Our results are consistent with the notion that autosomal 

dominant disease genes harbor a mixture of deleterious and gain-of-function rare missense 

mutations, whereas autosomal recessive disease genes harbor only deleterious rare missense 

mutations.  

 

Futher, these results suggest that sequencing studies of specific disease genes could benefit by 

testing for non-random clustering of rare missense variants.  These clusters may provide insights 

into the molecular basis of inherited diseases, and such testing will become more powerful as 

sample sizes increase. 

 

MATERIALS AND METHODS 

Generation of a high quality list of disease mutations and mode of inheritance. 

 A list of 61,537 missense mutations causing inherited disease (DM) and occurring on 

autosomes was downloaded from the Human Gene Mutation Database (HGMD) Professional 

version 2014.2 on June 10, 2014. In this study, we focused on autosomal diseases and not X-
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linked due to lack of information on sample sex in this dataset. For each mutation, we first 

parsed all abstracts in PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) to identify the mode of 

inheritance associated with the gene in which the mutation occurred, using a custom script and 

BioPython libraries (28). For each entry, we generated a Boolean query of the architecture 

geneName AND diseaseName AND autosomal (example: CFTR AND cystic fibrosis AND 

autosomal). Abstracts that matched the query were then parsed for the keywords “autosomal 

dominant” and “autosomal recessive.” We counted the number of abstracts containing 

"autosomal dominant", "autosomal recessive" or which did not contain either of these terms.  An 

initial assignment of each entry to the autosomal dominant (AD) class, the autosomal recessive 

(AR) class, or as "not determined" (ND) was performed by a vote of abstracts matching these 

keywords, so that 

ei =
AD if #{AD} > #{AR}
AR if #{AR} > #{AD}
ND if #{AD} = #{AR}

!

"
#

$
#

 (Eq 1) 

 

where ei is an entry consisting of a gene/disease pair, #{AD} is the number of abstracts that 

contained the keywords "autosomal dominant", and #{AR} is the number of abstracts that 

contained the keywords "autosomal recessive".  Because our study focuses on Mendelian 

disease, we filtered out any entries with a cancer disease association (containing the keywords 

cancer, sarcoma, carcinoma, leukemia, lymphoma, blastoma, glioma, melanoma, myeloma, 

tumor, tumour, metastasis, adenoma, neoplasia, or cytoma). At this stage, 3539 abstracts 

remained. To obtain high confidence calls, we further required that an entry's classification (Eq 

1)  was supported by at least 12 or more abstracts and that the classification was supported by a 

sizeable majority (75%) of the abstracts.  These criteria filtered out 80% of abstracts identified 
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by our initial queries, yielding a high-quality set of 706 abstracts that was tractable for manual 

inspection. Next, every entry was manually checked for correctness of our class assignment. For 

each entry, we first checked for confirmation in GeneReviews (GeneTests 1999-2014), followed 

by OMIM (http://omim.org/), and the primary literature. Manually confirmed entries were 

retained.  

 

Control dataset 

The 1000 Genomes Project dataset was obtained from ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/ on July 18, 2014. We selected only unrelated individuals of 

European ancestry from the CEU, FIN, GBR, IBS, and TSI populations.   

 

Statistical tests for clustering of mutations and variants 

 To ascertain mutation clustering patterns in a gene product we adopted two approaches; 

the first was designed to look at the fraction of mutations occurring in annotated protein domains 

from the HPRD (domain occupancy score) and the second was the unbiased CLUMP score.  

 

For a protein p, its domain occupancy count is:   

  

!!
Cp = wiXiZi

i=1

n

∑      (Eq 1) 

where Xi  is a mutated amino acid residue position, wi is the count of unique amino acid 

substitutions at that position in the data of interest, Zi is binary random variable that is set to 1 

when Xi is in an annotated protein domain, and 0 otherwise, and the sum is over the n mutated 

amino acid residue positions in the protein.  Likewise,  
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!!

Cp
Controls = wi

ControlsXi
ControlsZi

i=1

nControls

∑

Cp
Disease = wi

DiseaseXi
DiseaseZi

i=1

nDisease

∑   (Eqs 2,3)
 

 

and all variables have the same meaning as in (Eq. 1) but are assigned values based only on 

either variants in the control set or mutations in the disease set. 

 

For a protein p, its domain occupancy score (the fraction of mutations occurring in domains) is:   

  

!
Dp =

Cp

n
     (Eq 4) 

and likewise 

!

Dp
Controls =

Cp
Controls

nControls

Dp
Disease =

Cp
Disease

nDisease
  (Eqs 5,6)

 

 

We compute 
!
Dp

Controls  for all proteins in the control set and
!
Dp

Disease for all proteins in the disease set, 

and we apply a one-sided Wilcoxon test to ascertain whether the scores of proteins in the disease 

set are significantly higher than those in the control set. Next, to assess whether domain 

occupancy is significantly higher in the disease set than in the control set, for each protein we 

compute a one-tailed Fisher's Exact test, comparing counts of 
!
Cp

Disease , (
!
nDisease −Cp

Disease ), 
!
Cp

Controls , 
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and (
!
nControls −Cp

Controls ). Multiple testing correction was performed with the Benjamini-Hochberg 

algorithm and corrected P-values < 0.05 were considered significant. 

 

The CLUMP score applies the partitioning around medoids (PAM) clustering algorithm (29) to a 

list of (integer-indexed) amino acid residue positions. We use the pamk implementation in the 

fpc package in R. The number of clusters k is not specified in advance but is estimated by 

varying k over multiple PAM runs and selecting the k* that yields the maximum average 

silhouette width. Thus, both the number of clusters and a "medioid" or representative member of 

each cluster are estimated by the algorithm. Next, for each cluster i , we compute the distance 

between each member of the cluster and its mediod and take a log sum of these distances over all 

clusters. The final CLUMP score Sp for a protein p is: 

!!
Sp =

ln |Xij −mi|+1( )
nij=1

ni

∑
i=1

k*

∑
                (Eq 7) 

 

where Xij is the position of mutation j in cluster i, mi is the position of the mediod of cluster i, ni 

is the number of mutations in cluster i, and k* is the total number of clusters in the gene. The 

maximum clustering possible is when all observed mutations in all clusters occur at the same 

position as the cluster mediod, yielding a score of 0. In general, a protein with highly localized 

mutations will have a low score, while a protein with mutations spread across its protein 

sequence will have a high score.  

 

 To assess the statistical significance of Sp (Eq 7), we compute for each gene's protein 

product p, 
!
Sp
Controls  and 

!
Sp
Disease  as 
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!!

Sp
Controls =

ln |Xij
Controls −mi

Controls|+1( )
ni
Controls

j=1

ni
Controls

∑
i=1

k*Controls

∑

Sp
Disease =

ln |Xij
Disease −mi

Disease|+1( )
ni
Disease

j=1

ni
Disease

∑
i=1

k*Disease

∑ (Eqs 8,9)
 

where all variables have the same meaning as in (Eq. 7) but are assigned values based only on 

either variants in the control set or mutations in the disease set, i.e., !ni
Controls is the total number of 

variants observed in the protein in the control set, !ni
Disease  is the total number of mutations 

observed in the protein in the disease set, etc.   

 

We compute 
!
Sp
Controls  for all proteins in the control set and 

!
Sp
Disease for all proteins in the disease set, 

and we apply a one-sided Wilcoxon test to determine if the scores of proteins in the control set 

are significantly higher than those in the disease set. Next, to assess whether
!
Sp
Controls  is 

significantly higher than 
!
Sp
Disease  for individual proteins, we use the test statistic 

!
ΔSp = Sp

Controls − Sp
Disease  . 

 

We simulate a null distribution of values 
!
ΔSp

∅  that would be expected when the difference 

between 
!
Sp
Controls  and 

!
Sp
Disease is due to random chance, by repeatedly sampling with replacement 

!ni
Controls positions in protein p (assuming that each position is equally likely under the null 

hypothesis) and computing 
 !!
ΔSp

∅ !1 ,ΔSp
∅ !2 ,!,ΔSp

∅ !N , where in this work N=10,000. The estimated P-
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value for 
!
ΔSp  is then the fraction of times a value equal to or greater than 

!
ΔSp  is seen under the 

null. Finally we use the Benjamini-Hochberg method (30) to correct for multiple testing. 
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LEGENDS TO FIGURES 

Figure 1: Workflow of this study. Included are details on the generation of high quality 

inheritance datasets for all missense variants in autosomal dominant (AD) and autosomal 

recessive (AR) diseases. Also depicted are our two main approaches to assess mutation 

clustering within proteins. 

 

Figure 2: Statistical test of rare missense variant or mutation clustering within proteins. 

(A) Empirical cumulative distribution function of proportion of mutations residing in a domain 

per protein. (B) Quantile-quantile (QQ) plot of raw P-values for Fisher Exact testing to examine 

enrichment of mutations within domains in disease versus in controls. (C) Empirical cumulative 

distribution function of CLUMP scores per protein. (D) QQ plot of raw P-values for permutation 

testing to examine lower CLUMP scores in disease versus controls. Genes listed are those that 

attained a level of significance after Benjamini Hochberg correction. 

 

Figure 3: Mutations in the SH3BP2 gene in cherubism show significant clustering. (A) 

Shown are all mutations in 1000 Genomes controls and in cherubism. (B) Zoom in of the region 

where the majority of mutations reside as well as the number of different amino acid changes at 

each position. The cherubism mutations are significantly more clustered than the control data (p 

< 1x10-4). 
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TABLES 

Table 1: Proteins with significant enrichment of autosomal dominant and recessive rare, 

missense mutations in domains. Shown are counts in annotated HPRD domains or not in 

domains of rare (minor allele frequency < 0.01 based on controls) missense variants. The control 

data are from the 1000 Genomes European ancestry data. (★=autosomal dominant, ✚=autosomal 

recessive). 

 

Protein Gene Total Control 
Mutations (% 
in domain) 

Total Disease 
Mutations (% 
in domain) 

Disease p-value (BH 
corrected p-
value) 

NP_000426.2 NOTCH3 20 (25%) 209 (99%) CADASIL★ 5.78x10-5 

(2.77x10-3) 
NP_000517.2 KRT14 5 (0%) 24 (92%) Epidermolysis bullosa simplex★ 1.77x10-4 

(4.24x10-3) 
NP_003713.3 TP63 5 (0%) 25 (88%) AEC syndrome★ 3.93x10-4 

(6.29x10-3) 
NP_001019801.3 RUNX2 6 (17%) 52 (88%) Cleidocranial dysplasia★ 5.48x10-4 

(6.57x10-3) 
NP_001136272.1 EYS 17 (18%) 20 (85%) Retinitis pigmentosaa 5.56x10-5 

(3.89x10-3) 
NP_000483.3 CFTR 31 (48%) 533 (77%) Cystic fibrosis✚ 9.68x10-4 

(0.03) 
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Table 2: Proteins with significantly lower CLUMP scores in autosomal dominant and 

recessive rare, missense mutations than in controls. Shown are differential CLUMP scores 

between controls and disease variants of rare (minor allele frequency < 0.01 based on controls) 

missense variants. The control data are from the 1000 Genomes European ancestry data. (★

=autosomal dominant, ✚=autosomal recessive). 

 

Protein Gene Differential 
CLUMP 
Score 

Dataset p-value (BH corrected 
p-value) 

NP_001139328.1 SH3BP2 2.86 Cherubism★ <1x10-4  (<1x10-4) 

NP_001019801.3 RUNX2 2.38 Cleidocranial dysplasia★ <1x10-4  (<1x10-4) 

NP_003713.3 TP63 1.72 EEC syndrome★ <1x10-4 (<1x10-4) 

NP_002968.1 SCN9A 3.5 Erythermalgia, primary★ 3.00x10-4 (4.73x10-3) 

NP_071445.1 NOD2 3.62 Blau syndrome★ 4.00x10-4 (5.04x10-3) 

NP_060250.2 CHD7 2.6 CHARGE syndrome★ 1.70x10-3 (0.02) 

NP_000129.3 FBN1 -0.4 Aortic aneurysm★ 2.10x10-3 (0.02) 

NP_000375.2 APOB 3.72 Hypercholesterolaemia★ 2.60x10-3 (0.02) 

NP_003995.2 GJB2 1.52 Keratitis-ichthyosis-deafness syndrome★ 5.40x10-3 (0.04) 

NP_996816.2 USH2A 3.81 Usher syndrome✚ <1x10-4 (<1x10-4) 

NP_001124459.1 DYSF 3.05 Muscular dystrophy, limb girdle✚ <1x10-4 (<1x10-4) 

NP_957705.1 CRB1 1.44 Leber congenital amaurosis✚ 1.10x10-3 (0.03) 

NP_001120679.1 SMARCAL1 2.3 Schimke immuno-osseous dysplasia✚ 1.20x10-3 (0.03) 

NP_000268.1 PAH -0.32 Phenylketonuria✚ 2.00x10-3 (0.03) 
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