
 

Title: Rapid antibiotic resistance predictions from genome sequence data for 
S. aureus and M. tuberculosis. 

Authors:  Phelim Bradley1, N. Claire Gordon2, Timothy M. Walker2, Laura Dunn2, Simon 
Heys1, Bill Huang1, Sarah Earle2, Louise J. Pankhurst2, Luke Anson2, Mariateresa de Cesare1, 
Paolo Piazza1, Antonina A. Votintseva2, Tanya Golubchik2, Daniel J. Wilson1,2, David H. 
Wyllie2, Roland Diel5, Stefan Niemann6,7, Silke Feuerriegel6,7, Thomas A. Kohl6, Nazir Ismail8, 
Shaheed V. Omar8, E. Grace Smith4, David Buck1, Gil McVean1, A. Sarah Walker2,3, Tim E.A. 
Peto2,3, Derrick W. Crook2,3,4, Zamin Iqbal1* 

Affiliations: 
1Wellcome Trust Centre for Human Genetics, University of Oxford, UK. 
2Nuffield Department of Medicine, University of Oxford, UK. 
3NIHR (National Institutes of Health Research) Oxford Biomedical Research Centre, Oxford, 
UK 
4Public Health England, UK. 
5Institute for Epidemiology, University Medical Hospital Schleswig-Holstein, Kiel, Germany. 
6Research Centre Borstel, Borstel, Germany. 
7German Centre for Infection Research, Partner Site Borstel, Borstel, Germany 
8National Institute for Communicable Diseases, Johannesberg, South Africa. 

 
 

*To whom correspondence should be addressed: zam@well.ox.ac.uk  
 

Abstract:  
Rapid and accurate detection of antibiotic resistance in pathogens is an urgent need, affecting 
both patient care and population-scale control. Microbial genome sequencing promises much, 
but many barriers exist to its routine deployment. Here, we address these challenges, using a de 
Bruijn graph comparison of clinical isolate and curated knowledge-base to identify species and 
predict resistance profile, including minor populations. This is implemented in a package, 
Mykrobe predictor, for S. aureus and M. tuberculosis, running in under three minutes on a laptop 
from raw data. For S. aureus, we train and validate in 495/471 samples respectively, finding 
error rates comparable to gold-standard phenotypic methods, with sensitivity/specificity of 
99.3%/99.5% across 12 drugs. For M. tuberculosis, we identify species and predict resistance 
with specificity of 98.5% (training/validating on 1920/1609 samples). Sensitivity of 82.6% is 
limited by current understanding of genetic mechanisms. Finally, we demonstrate feasibility of 
an emerging single-molecule sequencing technique. 

 
. 
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Introduction 
The dramatic increase in antibiotic use in healthcare and agriculture since the 1940s has driven a 
rise in frequency of drug-resistant bacterial strains, which now present a global threat to public 
health. Clinical isolates resistant to most drugs have now been seen for many species including 
Mycobacterium tuberculosis, Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Neisseria gonorrhoeae, Acinetobacter baumannii and Pseudomonas aeruginosa1. 
Antimicrobial susceptibility testing is therefore now central to the treatment of serious bacterial 
infections diagnosed by culture, and is used to determine the protocols for first-line antibiotic use 
when culture is not available. At present, phenotyping tests take at least 1-2 days to complete for 
rapidly growing bacteria such as S. aureus, and can take weeks in slow growing bacteria such as 
M. tuberculosis.   
Microbial genome sequencing has the potential to substantially increase the speed of antibiotic 
resistance detection for many pathogens2 and in addition provides valuable information on 
relatedness that could contribute to surveillance. The key biological constraint is the extent of 
our understanding of the genotype-to-phenotype correspondence – i.e. the genotype needs to be 
sufficiently predictive of resistance.  Increasingly, this correspondence is high for many 
bacterium/drug combinations.  For example, Gordon et al.3 recently demonstrated that a curated 
panel of mutations and genes known to cause drug resistance in S. aureus was sufficient to 
predict resistance for 12 antibiotics with a sensitivity of 97% (95% confidence interval (CI) 95%-
98%) and specificity of 99% (99%-100%). Thus at least for one species, a genotype-based 
method could deliver results with accuracy suitable for use in a clinical laboratory. 
Here, we focus on the solving the multiple computational challenges that act as barrier to routine 
and rapid deployment of such a system in clinical practice. These include not only the need for 
the tool to be accessible to a user-base who may be unskilled in bioinformatics, but also speed 
and computational hardware requirements.  Finally, and most critically, the system must be 
validated against the results of existing gold standard testing using extensive and clinically 
relevant datasets.   
In considering these aims, we established two design criteria. First, in order to extend to a wide 
range of bacterial species, any method would need to be able to detect various categories of 
resistance-conferring alleles – single-nucleotide polymorphisms (SNPs), indels and entire genes 
– on potentially diverse genetic backgrounds. The second criterion is a consequence of sample 
treatment. At present, samples are usually cultured before sequencing; this increases the volume 
of DNA available for sequencing, at the price of applying a new selective pressure that can result 
in one strain or species flourishing and dominating the sample. Consequently, any future 
improvements in sample preparation and sequencing which reduce the culture time towards zero 
will potentially increase the diversity of the sample. We would therefore want any method to be 
robust to mixed infections. 
Methods using genome sequence data for species identification range from the specific4 to the 
sensitive5, but generally performance is measured globally in terms of detection of species 
presence. However, for clinical use we need considerable flexibility in tuning sensitivity and 
specificity for different species, potentially weighted to minimize clinical risk. For example, 
there may be a species associated with high mortality (e.g. S. aureus) that can occur in samples 
mixed with other species (e.g. coagulase-negative staphylococci, which are common 
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contaminants of blood cultures, being present on the skin through which the blood was taken), 
and that may even share the same resistance genes and thus confound inferences.  

Various methods have been used for genotyping resistance features: mutations and genes have 
been detected by whole genome assembly3, genes by assembly and BLAST6, or SNPs and indels 
by mapping7,8. These methods have been demonstrated to have adequate performance in some 
circumstances. However traditional whole-genome bacterial assembly is fundamentally based on 
the assumption that all data comes from a single haploid genome9, and so is ill-suited for mixed 
samples, and mapping to a single-reference results in error rates that depend on genetic distance 
of the sample from the reference10. There are pre-existing tools for expert users that incorporate 
resistance prediction6,11,12, none of which handle the issue of contaminating related species in 
clinical samples, or minor clones  - we include comparative data below. 
Our goal in this study was to move beyond proof-of-concept of how sequencing might work in 
the clinic, to a general framework for genotype-based antimicrobial resistance prediction, with 
concrete implementations for two species where drug resistance is of global concern: S. aureus 
and M. tuberculosis. We evaluate extensively against clinical gold standards using current 
(Illumina) sequence data, and demonstrate that the method also works with an emerging strand-
sequencing technology (Oxford Nanopore Technologies, MinION). Finally, we will discuss 
below what is needed to apply our framework to subsequent species. 

 
 

 
Results  

Using population genome graphs for genotyping  
We show in Fig. 1a a cartoon of the genetic diversity in a bacterial species and two options for 
building a reference variation structure. In option i) we show the standard approach, where we 
select an arbitrary strain (Strain 1) to be the reference genome, along with one copy of each 
plasmid gene. In this work we have developed an alternate approach, shown in option ii). We 
start with a curated knowledge-base of resistant/susceptible alleles, and assemble a de Bruijn 
graph 13 of them on different genetic backgrounds, along with many exemplars of resistance 
genes. This forms our reference graph. In Fig. 1b we show the corresponding analyses of a 
mixed sample. The traditional approach is shown in option i), whereby sequence reads are 
mapped to the reference genome and genes, requiring the mapping and inference to cope with the 
divergence between sample strains and the reference. Our approach (option ii) directly compares 
the de Bruijn graph of the sample with the reference graph. This results in statistical tests for the 
presence of resistance alleles that are unbiased by choice of reference or assumptions of 
clonality.  Moreover, these tests will improve as the catalogue of diversity in the species grows.  
Our approach is implemented in a software framework called the Mykrobe predictor. See 
Methods for details. 
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Fig. 1.: a) Reference construction methods. Left: strains of a bacterial species, showing 
chromosomes with SNPs (black circles) and genes (coloured blocks). Option i) pick Strain 1 to 
be reference, plus one example of each plasmid resistance gene. Option ii) our method is to build 
the de Bruijn graph of all strains, restrict to loci of interest, and annotate resistance (red) and 
susceptible (green) alleles. For SNPs, local graph topology is determined by adjacent SNPs 
(black dots) and indels (black blocks).  b) Left: sequence data from a clinical sample harboring 
major (90%) and minor (10%) strains. Right: Option i) map the reads to the reference genome to 
detect SNPs and genes. Option ii) Our approach: construct the de Bruijn graph of the sample and 
compare with the reference graph. We see a specific SNP is present both in the sample and the 
reference graph (marked X,Y). Both the resistant (red) and susceptible (green) alleles are present 
in the sample, and within-sample frequency is estimated from sequencing depth on each allele. 
 

 
S. aureus – species identification 

We used dataset St_A (datasets described in Supplementary Fig. 1, Supplementary Table 
1), consisting of 532 S. aureus and 199 coagulase-negative staphylococci (CoNS) (see Methods, 
and Supplementary Fig. 1) as a training set to design several panels of probes, used to detect the 
presence of S. aureus, S. epidermidis, S. haemolyticus, or other coagulase-negative 
staphylococci. We evaluate our predictions on a separate validation set (St_B) and show the 
results in Fig. 2a. This confirms an appropriately low rate of missing a true S. aureus sample 
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(0/492, upper 97.5% CI 0.7%). We studied the 3 non-S. aureus samples that appear to be 
misclassified as S. aureus, and concluded that they were mis-labelled in the NCBI Short Read 
Archive (SRA), as both BLAST and OneCodex (http://beta.onecodex.com) agreed with Mykrobe 
predictor. We also created in silico mixtures of S. epidermidis/S. aureus and S. haemolyticus/S. 
aureus (Simulation 1) and obtained 100% power to detect presence of S. epidermidis and 
S.haemolyticus minor infections at frequencies above 0.7% (see Supplementary Fig. 2, 
Supplementary Methods). 
 

 
Fig. 2. Species and susceptibility predictions for S. aureus. a) Species classification results on 
species validation set St_B. Red shading of box indicates errors we wish to minimize. 
Abbreviations: S.aur: S. aureus, S.epi: S. epidermidis, S.hae: S. haemolyticus, O.st : other 
staphylococcus, Non-st: Non staphylococcal. b) Phylogeny of S. aureus samples used in 
evaluating resistance prediction, with tips marked orange/blue to show if sample in training set 
(St_A1) or validation set (St_B1). Drug resistance in concentric rings around the outside; 
plasmid-mediated resistance (erythromycin (purple), tetracycline (black)) is distributed across 
the whole tree. The two multidrug resistant clades are in UK hospital clonal complexes CC22 
and CC30. c) Proportion of resistant S. aureus samples (St_B1) called as resistant for Mykrobe 
(yellow), disc test (dark blue) and Phoenix (light blue) compared with consensus, with false 
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negatives in red. Note the break in the y-axis between 80 and over 300 in order to show 
penicillin on same plot. d) As c) but for calling true susceptible samples as susceptible – false 
positives in red. A small number of failed disc tests for fusidic acid in panel c) result in a lower 
bar. 

 
 

S. aureus resistance prediction. 
We use a training set (St_A1) of 495 samples and a validation set (St_B1) of 471 (samples and 
phenotyping described in Methods, Supplementary Fig. 2). We show in Fig. 2b a phylogeny 
(construction described in Methods) of these samples, showing that both the training set (orange 
tips of tree) and validation set (blue) are distributed across the entire phylogeny. We also 
confirmed also that all major clonal complexes were represented (Supplementary Fig. 3).  

All validation samples were phenotyped using two methods: a BSAC disc test14 and the Phoenix 
Automated Microbiology System (BD Biosciences, Sparks, MD, USA), except for trimethoprim, 
for which only disc testing was performed. A “consensus” phenotype was defined to be that 
called by disc/Phoenix where they agreed, and the result of an Etest and/or nitrocefin (for 
penicillin) where disc and Phoenix were discrepant. This allowed us to estimate error rates for 
disc and Phoenix as well as for Mykrobe.  

Our prediction algorithm (described in Methods) internally classifies a sample as consisting of a 
clonal susceptible, a minor resistant or major resistant population, and predicts a resistant 
phenotype for both the minor and major cases. Note that for drugs where resistance is mediated 
by genes on variable copy-number plasmids (erythromycin and tetracycline) a minor population 
with high copy number of a resistance-carrying plasmid may sometimes be called as major 
resistant. After using the training set data to estimate parameters for our statistical model (see 
Methods, and Supplementary Table 2) we applied the Mykrobe predictor to the validation set. 
Figure 2, panels c) and d) show in red the false negative calls (panel c) and false positive calls 
(panel d) for Mykrobe and the two laboratory methods: disc and Phoenix. If we consider Fig. 2c 
first, and focus on the 7 drugs with more than 10 resistant samples, then Mykrobe misses fewer 
resistant calls than the other individual phenotypic methods for all drugs except ciprofloxacin. 
The FDA requires a diagnostic test have a false negative rate below 1.5% when compared with a 
reference-lab method15. Compared with the consensus phenotype, Mykrobe achieved such 
accuracy for 6 of 7 drugs, with an error rate of 0% for 5 drugs (penicillin, methicillin, fusidic 
acid, clindamycin and tetracycline), 1.3% for erythromycin and 4.5% for ciprofloxacin. We were 
unable to determine the reason for the missed ciprofloxacin-resistant predictions, although we 
note that disc and Phoenix had similar problems, and that this drug has at least one 
uncharacterized mechanism for resistance16 . The data underlying this plot are presented in Table 
1. The corresponding results for the Disc and Phoenix tests are in Supplementary Tables 3-4. 
 

The equivalent plot for false positive calls is shown in Fig. 2d. For all drugs except penicillin and 
methicillin, all methods have low false positive rates, below the FDA threshold of 3%. All 
methods had unacceptably high error rates for penicillin (11.7% for Mykrobe, 15.1% for disc, 
16.0% for Phoenix). However, it is known that for penicillin, phenotyping methods may under-
call resistance17-19, and so the apparent high false positive rate is likely to be artefactual – i.e. 
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under-calling resistance by disc, Phoenix and nitrocefin might lead to an (incorrect) consensus 
susceptible call. Indeed in Gordon et al (2014)3 it was found that for some samples with weak 
beta-lactamase activity (exhibited by a very slowly developing nitrocefin test), resistance was not 
called by one of disc/Phoenix. Mykrobe had an acceptable false positive rate for methicillin of 
0.0%, compared with disc (0.5%) and Phoenix (18.9%). This high false positive rate for Phoenix 
was unexpected; either both disc and Etest under-called resistance (they are both diffusion 
methods and might have correlated errors), or these were indeed false calls from Phoenix.  
 

Table 1. Mykrobe resistance prediction results for validation set. 

 
Drug	
   FN(R)	
   FP(S)	
   VME	
  (95%	
  CI)	
   ME	
  (95%	
  CI)	
  
Penicillin	
   0	
  (377)	
   11	
  (94)	
   0.0%	
  (0.0%-­‐1.0%)	
   11.7%	
  (6.0%-­‐20.0%)	
  
Erythromycin	
   1	
  (79)	
   2	
  (392)	
   1.3%	
  (0.0%-­‐6.9%)	
   0.5%	
  (0.1%-­‐1.8%)	
  
Ciprofloxacin	
   3	
  (65)	
   1	
  (406)	
   4.6%	
  (1.0%-­‐12.9%)	
   0.2%	
  (0.0%-­‐1.4%)	
  
Methicillin	
   0	
  (54)	
   0	
  (417)	
   0.0%	
  (0.0%-­‐6.6%)	
   0.0%	
  (0.0%-­‐0.9%)	
  
Fusidic	
  acid	
   0	
  (41)	
   4	
  (430)	
   0.0%	
  (0.0%-­‐8.6%)	
   0.9%	
  (0.3%-­‐2.4%)	
  
Clindamycin	
   0	
  (25)	
   2	
  (97)	
   0.0%	
  (0.0%-­‐13.7%)	
   2.1%	
  (0.3%-­‐7.3%)	
  
Tetracycline	
   0	
  (17)	
   2	
  (454)	
   0.0%	
  (0.0%-­‐19.5%)	
   0.4%	
  (0.1%-­‐1.6%)	
  
Rifampicin	
   0	
  (5)	
   0	
  (466)	
   N/A	
   0.0%	
  (0.0%-­‐0.8%)	
  
Gentamicin	
   1	
  (3)	
   0	
  (468)	
   N/A	
   0.0%	
  (0.0%-­‐0.8%)	
  
Mupirocin	
   0	
  (2)	
   0	
  (348)	
   N/A	
   0.0%	
  (0.0%-­‐1.1%)	
  
Trimethoprim	
   0	
  (1)	
   1	
  (188)	
   N/A	
   0.0%	
  (0.0%-­‐2.9%)	
  
Vancomycin	
   0	
  (0)	
   0	
  (471)	
   N/A	
   0.0%	
  (0.0%-­‐0.8%)	
  

 

Table 1: Resistance prediction results for Mykrobe predictor on the S. aureus validation set 
(St_B1), treating the consensus phenotype as gold standard except for trimethoprim, which 
Phoenix does not test, where the disc test was used as truth. FN: False negative calls. R: total 
number of resistant samples. FP: false positives. S: total number of susceptible samples. VME: 
very major error rate (false negative rate), only shown where R>10. ME: major error rate (false 
positive rate), only shown where S>10. Error rates meeting the FDA requirements are in bold. 
 

For comparison with a commercial software package, we also ran SeqSphere6 on the validation 
set, which made predictions for six drugs (methicillin, erythromycin, clindamycin, gentamicin, 
mupirocin and vancomycin) where resistance was gene-based. SeqSphere predicted all 471 
samples to be resistant to erythromycin and clindamycin, so we excluded these drugs (after 
discussing with the author, D. Harmsen). Other results were broadly comparable to Mykrobe 
predictor and the phenotyping methods. See Supplementary Table 5 and Supplementary Figs. 4-
5 for full results.  

Finally, our strong prior expectation was that there would be limited within-sample 
diversity, due to blood culture followed by storage processes, and removal of contaminated 
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samples (see Methods). Mykrobe predictor confirmed this expectation and made no minor calls. 
However we noted with interest that for the four samples where Mykrobe made false positive 
(major) resistant calls that were not made by Disc or Phoenix, re-running the disc test resulted in 
contradictory results. Two changed to resistant (ciprofloxacin, erythromycin) and 2 produced 
heteroresistant phenotypes (erythromycin, tetracycline, see Fig. 3). This behavior is consistent 
with a disc test presented with mixed strains or with variable plasmid loss (which would explain 
the 3 erythromycin/tetracycline results). All 4 samples had low levels of chromosomal diversity 
(between 12 and 25 “heterozygous” SNPs, Supplementary Methods), ruling out contamination 
unless by a closely related strain. 
 

 
Fig. 3. Photograph of heteroresistant phenotype seen on re-running Erythromycin disc test on a 
sample where Mykrobe had called a false positive (resistant) that neither Disc nor Phoenix had 
called. 
 

Simulating minor infections with empirical data  
In order to determine the power of our method to detect minor resistant populations, we took 450 
samples from the S. aureus dataset St_B1 that all had at least 100x mean sequencing depth of 
coverage across the genome, and subsampled them randomly to precisely 100x. We then took 
1000 random pairs of samples from this set, and for each pair, combined subsets of their reads so 
as to create 27 different mixtures with ratios ranging from 1:99 to 99:1 – we call this Simulation 
2. We ran the Mykrobe predictor on all 27,000 mixed infections. The results are shown in Fig. 
4a. Our method has greatest power to detect resistance to tetracycline and erythromycin, 
mediated by genes on multi-copy plasmids, reaching 90% by the time the population frequency 
is 2% for tetracycline, and 3% for erythromycin. For other drugs, detection power exceeds 90% 
once the subpopulation exceeds 10% frequency. This sensitivity did not come at the cost of loss 
of specificity - there were only 20 false positive calls out of 189,000 (27,000 mixtures x 7 drugs). 

 
One goal for Mykrobe predictor was to minimize the mis-calling of MRSA caused by mecA from 
undetected contaminating CoNS. We therefore used the simulated mixtures of S. aureus and 
CoNS (Simulation 1), to estimate the discovery power for low frequency CoNS species, and 
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compared with that for low frequency mecA in Simulation 2 - see Fig. 4b. We were able to 
confirm that in these mixtures such miscalls were indeed unlikely – at 1% frequency, the 
estimated power to detect the presence of a CoNS species was 100% (red curve), but power to 
detect mecA was 0 (blue curve). Above 4% frequency, power to detect each was 100%. 

 

 
Fig. 4. a) Simulation 2: power to detect minor resistant population in simulated mixtures of 
empirical data. As above, we do not estimate false negative rates for drugs where we have less 
than 10 resistant samples, as confidence intervals would be unreasonably large. Power is greatest 
for the drugs where resistance genes reside on multi-copy plasmids, erythromycin and 
tetracycline. Abbreviations: Tet: tetracycline, Ery: erythromycin, Meth: methicillin, Pen: 
penicillin, Fuc: fusidic acid, Cip: ciprofloxacin. b) Power to detect low frequency coagulase-
negative species (red, Simulation 1, described above) is consistently higher than power to detect 
mecA (blue, Simulation 2), which causes methicillin resistance in S. aureus. Thus the risk of mis-
calling MRSA due to detecting mecA from undetected contaminating coagulase-negative species 
is limited. 
 

Virulence elements 
Antimicrobial resistance is not the only medically relevant phenotype that might be revealed by 
sequencing. S. aureus has a large number of virulence elements which might prove valuable to 
genotype.  As an example, we considered Panton-Valentine Leukocidin (PVL), a cytotoxin that 
kills leukocytes and is associated with tissue necrosis20. We tested for presence of the PVL genes 
lukPV-S and lukPV-K on 67 samples from an outbreak, and validated by comparison with PCR 
tests for the presence of these genes (23 negative and 44 positive). The results were 100% 
concordant for all samples. 

 
Mycobacterial species identification 
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The second species we applied the Mykrobe predictor to was M. tuberculosis. We focused on the 
use-case where a sample undergoes Mycobacterial Growth Indicator Tube (MGIT) culture, after 
which the most likely species present is a Mycobacterium.  
We combined datasets MTBC_A1 and Myco_SRA to generate probes (described in Methods) 
for detection of 4 MTBC species (M. tuberculosis, M. bovis, M. africanum, M. caprae) and 40 
NTM species including M. abscessus, M. avium and M. intracellulare. If present, co-infection 
with both MTBC and NTM, which is known to occur21,22, would be reported. We also use SNPs 
defined in Stucki (2012)23 to identify lineage within the MTBC. In terms of desired error-profile, 
the main aim would be to minimize misclassifying a MTBC as a NTM, or vice-versa. 
Misidentifying species within MTBC has limited impact on choice of treatment, except that M. 
bovis is known to be intrinsically resistant to pyrazinamide and some Bacille Calmette–Guérin 
(BCG) strains are known to be resistant to isoniazid.  
We then evaluated species prediction on the union of datasets MTBC_A2 (N=1157) and 
Myco_Retro (N=147), where species had been identified by Hain assay, showing results in Fig. 
5a. No samples were misclassified between MTBC and NTM, but there were 4 M. africanum 
and 2 M. tuberculosis samples that were only resolved to MTBC, and 1 M. tuberculosis sample 
misidentified as M. africanum. See Supplementary Table 6 for the full results table. Finally we 
tested our identification of the lineages as defined by Gagneux et al in24 by comparing with the 
lineage as identified by their own tool, KvarQ11 and found 100% concordance. 
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Fig. 5. Species predictions for Mycobacteria and resistance predictions for M. tuberculosis 
complex. a) Species classification results on a validation set (MTBC_A2 + Myco_Retro). 
Colours indicate misclassifications between NTM/MTBC (red), concordance with “truth” (dark 
green), or greater resolution from Mykrobe than PCR (light green).  Abbreviations: M.tb.: M. 
tuberculosis, M.af.: M. africum, M.bv.: M. bovis. b) Phylogeny of M. tuberculosis complex 
samples with phenotype data, with tips marked orange/blue to show if sample in training set 
(MTBC_A) or validation set (MTBC_B), and showing drug resistance in concentric rings around 
outside. Resistance exists across the phylogeny, especially against isoniazid (light blue), with a 
clustering of multi-drug resistance in the Beijing lineage. c) Proportion of resistant M. 
tuberculosis complex samples called as resistant for Mykrobe (yellow) and KvarQ (light blue) 
compared with phenotype - false negatives in red, d) As c) but for calling phenotypically 
susceptible samples as susceptible – false positives in red. 

 
 

M. tuberculosis – resistance predictions 
We use a “training” dataset MTBC_A of 1920 samples from Oxfordshire, Birmingham, Sierra 
Leone and South Africa purely to fit the frequency parameter for the Mykrobe predictor minor-
resistant model (see Methods), and a separate dataset (MTBC_B) of 1609 further samples from 
Uzbekistan, Germany, South Africa and the UK to validate. These samples were all collected for 
an independent study25 on the discovery of mutations predictive of resistance. 

Figure 5b shows a phylogeny of these samples, with the sample membership of training/ 
validation set marked at the leaves of the tree in orange/blue. The validation set does show some 
clustering within the phylogeny, due to the large number of samples from Uzbekistan in the 
validation set. 

Our understanding of the genetic basic for resistance in MTBC is not complete. Common 
resistance mutations are on commercial line probe assays, and explain approximately 85-95% of 
observed resistance to the two primary first line drugs (isoniazid, rifampicin)26-28. These assays 
have lower sensitivity for the fourth first-line drug (ethambutol) and second-line drugs29, and do 
not attempt to predict resistance for the third first-line drug (pyrazinamide), which is poorly 
understood. We built a panel of resistance mutations based on the Hain and AID line probe 
assays, with a small number of additional mutations from the literature (see Methods for details).  
For comparison with a method using a similar panel but without minor calls, we also ran the 
KvarQ tool11, which uses kmer recovery to detect alleles.  
 
Figure 5, panels c,d show the proportion of resistant and susceptible samples that were called 
correctly for each drug. As expected, for first-line drugs rifampicin, isoniazid and ethambutol the 
two methods (Mykrobe and KvarQ respectively) have similar power to detect resistance (93.4%, 
84.3%, 71.6% versus 90.8%, 83.2%, 76.3%) and similar false positive rates (1.6%, 1.4%, 4.2% 
versus 1.0%, 1.4%, 4.5%) - in line with expected performance of the Hain assay (Supplementary 
Fig. 6-7). We discuss below the higher number of false resistant calls in rifampicin made by 
Mykrobe.  
Fewer samples were phenotyped for second-line drugs, but Mykrobe had noticeably higher 
sensitivity for amikacin and capreomycin (89.9% and 83.6% respectively) than KvarQ (74.6% 
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and 70.9%), see below. There were very few false calls for second-line drugs for either method, 
except for a high (7%) error rate for KvarQ for streptomycin. See Supplementary Tables 7-10 for 
the full results on training and validation sets. 
 

Rifampicin false positives 
On examination, we found the 20 false rifampicin-resistant calls may reflect limitations of 
culture-based phenotyping, rather than lack of power in Mykrobe. We show in Fig. 6a the 
estimated within-sample frequency of these calls. Firstly, one subset (n=8) had within-sample 
frequency of 5-10%, and recent tests suggest standard DST can fail to detect resistance at 
frequencies below 10%30,31 – thus these may actually be false negatives by the DST. The 
remainder (n=12) were all major calls, and were either mutations that have been shown to slow 
growth, or are at very nearby sites32-34. The specific mutations are Gln-429-His (n=1), Leu-430-
Pro (n=6), Ser-450-Leu (n=3), Ser-450-Trp (n=1), Leu-452–Pro (n=1) in rpoB, the RNA 
polymerase gene. However, since the proportion method used in M. tuberculosis susceptibility 
tests fundamentally measures growth rate as a proxy for resistance35, this can lead to false 
susceptible DST calls for samples with these mutations31,36-38. In short, false positive calls from 
Mykrobe may actually be resistant in vivo, but called susceptible by gold-standard DST due to 
the nature of the test. 

 

 
Fig. 6. a) Estimated within-sample frequency of Rifampicin false positives, b) Percentage of true 
positive resistant calls due to the minor-population model; confidence intervals are calculated 
using the Clopper-Pearson interval. Drugs with less than 10 resistant samples excluded, to avoid 
overly large confidence intervals. For aminoglycosides and quinolones, detecting minor 
populations increases power to predict phenotypic resistance by greater than 15%. 
Abbreviations: ISO: isoniazid, RIF: rifampicin, ETH: ethambutol, STREP: streptomycin, OFX: 
ofloxacin, AMI: amikacin, CAP: capreomycin. 
 

Minor resistant population calls for M. tuberculosis 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2015. ; https://doi.org/10.1101/018564doi: bioRxiv preprint 

https://doi.org/10.1101/018564
http://creativecommons.org/licenses/by-nc/4.0/


Mykrobe predictor made 75 minor-resistant calls across the 9 drugs and 1609 samples in the 
validation set. Whole genome analysis of these samples (see Methods) found a median of 16 
heterozygous sites per sample, consistent with mixed infections (local transmission or in-host 
evolution)39, although we cannot exclude the possibility of contamination with a closely-related 
strain.  
We show in Fig. 6b the proportion of true positives due to minor-resistant calls, showing a clear 
demarcation between first and second-line drugs. Power to predict phenotypic resistance to 
second-line drugs amikacin and capreomycin was significantly increased by the detection of 
minor populations, from 69% to 84% for capreomycin, 73% to 90% for amikacin and (although 
here the numbers were small (N=13)) 38.5% to 61.5% for ofloxacin.  The increase in sensitivity 
from including minor-resistant predictions did not cause a loss of specificity, except for 
rifampicin, where 8 of the 20 false positives were due to minor calls, increasing the false positive 
rate from 1.0% to 1.6%. However, as discussed above, these calls may have clinical value 
despite discordance with phenotype. Indeed there is evidence that these mutations may be 
associated with poor outcome40,41. 
 

Nanopore sequencing  
We tested Mykrobe predictor on data from the Oxford Nanopore Technologies MinION single-
molecule sequencing machine. Since the per-base error rate is high (between 10-30% per base, 
depending on whether the molecule has been sequenced in one or two directions, termed “1d 
reads”and “2d reads” respectively), we modified the Mykrobe predictor to expect an error rate of 
10%, and to detect a gene if it recovered 50% (rather than 90%). We took a multi-drug resistant 
S. aureus isolate from a clinical sample taken in 2014, and sequenced it with both the Illumina 
MiSeq and a MinION (see Methods for details) and ran the Mykrobe predictor. The MiSeq run 
took 24 hours and produced, after cutting reads at bases with quality below 10, 368x of 122bp 
reads. The MinION run took 24 hours and generated 39x of “2d” reads, with min/mean/max 
length 113bp/4.7kb/48kb. In both cases, Mykrobe correctly predicted the sample was resistant to 
penicillin, methicillin, gentamicin, trimethoprim, erythromycin, ciprofloxacin and clindamycin, 
and susceptible to fusidic acid, rifampicin, tetracycline, vancomycin and mupirocin. All of the 
resistance calls were due to detection of genes, except for ciprofloxacin where a Ser->Leu 
mutation at position 84 in the gene gyr was detected. No false positive resistance SNPs were 
called. Furthermore, by truncating the MinION output file we showed these results could be 
obtained with just 8 hours of sequencing. We conclude that it should be feasible to apply 
Mykrobe to this new strand-sequencing technology. 

 
Software performance and usability  

Mykrobe predictor memory use is comparable with that typically used by a web browser such as 
Chrome with multiple tabs open, and CPU requirements are low; Mykrobe has been run on a 
Google Nexus 10 tablet, a Samsung Core Duos phone and a Raspberry Pi Model B. It scales 
across multiple CPUs on a multi-core server or on a compute cluster. We give in Table 2 some 
basic performance statistics for S. aureus (abbreviated Sa) and M. tuberculosis (abbreviated Mtb) 
data.  
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Table 2. Performance and feature comparison 
 

 Mykrobe (Sa) SeqSphere (Sa) Mykrobe (Mtb) KvarQ (Mtb) 

RAM 100Mb 8Gb 100Mb 30Mb 

Time/sample on 
laptop 

1.5 mins  - 2.75 mins 40 mins 

Time/sample on 
server 

44 sec 19 mins 47s 23 mins 

CPU time (Mtb 
validation set) 

- - 1 day 30 days 

CPU time (Sa 
validation set) 

5.8 hours 6.2 days - - 

Speciation of 
clinical samples 

Yes No Yes No (MTBC only) 

 
Table 2. Performance and feature comparison. We show elapsed time for one sample on a laptop 
(Macbook Air with 8GB RAM) and a server (Dell PowerEdge R820 with 32 cores, 1Tb RAM), 
and then for the entire S. aureus and M. tuberculosis validation sets. We ran KvarQ on 1 thread 
for ease of parallelization and comparison, as recommended by the authors. However we ran 
SeqSphere on 4 threads because to use 1 would have taken a prohibitively long. 

 
Discussion  
 
Rapid determination of antimicrobial resistance profile is of critical importance to patient care 
for many serious bacterial infections and has wider implications for determination of treatment 
protocols and national surveillance. We have developed a generic framework, extensible to many 
species, called the Mykrobe predictor, which can identify species, resistance profile and other 
genomic features such as virulence elements and phylogenetic lineage, within 3 minutes on a 
standard laptop. We have provided two implementations, for S. aureus and M. tuberculosis, 
validated extensively against clinical gold-standards. Our results for S. aureus (overall sensitivity 
and specificity above 99%) are comparable with or better than phenotyping methods (BSAC disc 
test, Phoenix).  For M. tuberculosis, specificity is high (98.5%) and sensitivity of 82.5% matches 
the line probe assays from which our resistance panel was constructed, but still is below that of 
the gold-standard of DST based on Lowenstein-Jensen culture. However, as new resistance-
causing mutations are determined, Mykrobe predictor can be updated and tested extremely 
easily, and unlike a line-probe assay or the automated Xpert-Mtb/Rif (Cepheid) assay, is 
unaffected by size of resistance panel.   
 
In terms of time from bedside to result, for S. aureus, using latest Illumina MiSeq reagents with a 
16.5 hour sequencing run, a sequencing-plus-Mykrobe workflow would be approximately 4.5 
hours faster than the current clinical workflow (see Supplementary Fig. 8), taking 31.5 hours 
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(although in this large retrospective study we used a HiSeq for higher throughput). For M. 
tuberculosis, most clinical isolates become MGIT positive within two weeks; if sample 
preparation and sequencing is completed within 2 days of positivity42, one can get results in 2 
weeks, rather than approximately 6 weeks for standard DST.  
 
For both species, the major time bottleneck is culture. Improvements in sample preparation and 
sequencing from populations with low quantities of pathogen DNA and/or high quantities of 
other bacterial DNA, will result in shorter culture times and less biased sampling of the within-
host population. Such improvements are not possible for traditional susceptibility tests, as they 
rely fundamentally on the input sample being clonal and of a fixed inoculum size. We have 
demonstrated that simple minor resistant infection detection, assuming at most 2 strains are 
present, can be achieved in a robust and automated fashion. We are unaware of any other 
resistance prediction tool that allows this. In our study, we specified for M. tuberculosis a 20% 
frequency for the minor resistant model, and found that 4.7% (75/1609) of our validation 
samples had minor resistant populations. However, we chose 20% purely in order to give 
resistance predictions that matched culture-based DST; dropping the value to 10% would have 
called a further 19 samples (median coverage 127x) with minor resistant populations (median 
frequency 7.5%), but which corresponded exclusively to DST-susceptibility. Even after culture, 
these low frequency resistant alleles are clearly present in an appreciable fraction (94/1609) of 
clinical samples but do not survive culture-based DST. Large-scale collection of this information 
that Mykrobe predictor provides, combined with treatment and patient outcome information, 
may enable us to determine whether they are of clinical consequence despite failing DST, as has 
been suggested for some rifampicin resistance mutations40,41.  
 
For TB, initial treatment is with the preferred set of 4 "first-line" drugs until it is identified that a 
drug-resistant strain is present, when treatment is changed to the less-effective, more complicated 
to administer (injectable rather than oral) and more toxic "second-line" drugs.  The spread of 
MDR (multi-drug resistant) TB43, defined as resistant to the key first-line drugs rifampicin and 
isoniazid, places greater pressure to use second-line drugs, and therefore also to be able to detect 
resistance to them. Heteroresistance to second-line drugs has been previously reported44-46 as a 
matter of concern, consistent with our finding that minor population detection gives Mykrobe 
increased power for predicting resistance to amikacin, capreomycin and ofloxacin.   
 
Recognizing that lack of bioinformatics expertise is a barrier to clinical adoption, we provide 
drag-and-drop Windows and Mac applications (see screenshot Supplementary Fig. 9-11) and a 
linux version that could for example enable a cloud service. Our demonstration that Mykrobe can 
work on low-specification hardware such as a mobile phone or Raspberry Pi is intended to 
enable future applications of resistance determination in the field, in low-resource settings with 
no internet access. Along these lines, the advent of portable single molecule sequencing 
machines which deliver long-read information in real-time will change the face of clinical 
microbiology. The ability to sequence a single sample removes the need to batch samples until 
an Illumina MiSeq or HiSeq sequencing run is justified, reducing bedside-to-treatment time, and 
the long reads could provide vital information on mixed infection composition. Our N=1 test of 
the Oxford Nanopore MinION machine offers little more than proof-of-principle, but we were 
struck that with only 13x coverage we were able to get fully concordant results for both gene and 
SNP-driven resistance, without the high error rate causing any false SNP calls. Since Mykrobe 
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can test the de Bruijn graph and assess confidence of resistance/susceptibility approximately an 
order of magnitude faster than MinION reads arrive, this could be done as the reads come in 
from the machine, enabling a real-time decision to be made as to whether to stop sequencing. In 
this case we could have stopped after 8 hours of sequencing, half the time needed for an Illumina 
MiSeq run. 
 
In terms of the path to clinical use, the next steps for the Mykrobe predictor for S. aureus and M. 
tuberculosis are further clinical testing, and then obtaining regulatory approval. We will be 
running Mykrobe in parallel with the clinical workflow in hospitals in Oxford, Leeds and 
Brighton for 3 months this year, as part of a Health Innovation Challenge Fund project. It is 
relatively simple to extend the Mykrobe predictor to other species by using a panel of known 
sites and genes as we did in this study. However more generally, for a species where resistance 
mechanisms are poorly characterized, one would need to use a large training set with both 
whole-genome sequence data and phenotype information for hypothesis-free discovery of causal 
mutations or purely predictive markers. Some such studies have been done47,48, and we expect 
many more.  
 
There are two main limitations to the current implementation. First, we suspect that 
incorporating a more general model of mixtures, rather than simply major/minor clones, will be 
of value when analyzing M. tuberculosis samples direct from sputum. Secondly, for M. 
tuberculosis our sensitivity (82.5% across all drugs) is low compared with traditional DST, and 
completely excludes the first-line drug pyrazinamide since known mutations are poorly 
predictive. This issue, shared by all molecular assays, can only be resolved by large-scale 
sequencing and phenotyping studies. 
 
   
 

Methods 
 

Study Design:  
The objectives of this study were: 

a) To show that our software program could deliver automated antimicrobial resistance 
predictions for 2 species given a pre-specified genotype-to-drug-resistance mapping. The 
limitations of the pre-specified mapping would place an upper bound on sensitivity - for 
S. aureus that upper bound was above 99%, but for M. tuberculosis we followed the 
HAIN and AID assays, expecting sensitivity of around 82%. To achieve this, we used 
independent training and validation sets previously obtained in other studies3,25. For both 
species, the number of samples with resistant phenotypes was limiting, and we only 
estimated false negative rates where there were sufficiently many (>10) resistant samples 
in the validation set, reporting confidence intervals calculated using the Clopper-Pearson 
interval. 

b) To handle contamination and mixture issues seen in clinical samples. We used 
independent datasets for design of probes and validation. In order to include some 
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realistic sampling of species, the validation set for mycobacteria included the set 
Myc_Retro consisting of all samples sent to the laboratories at the Oxford John Radcliffe 
Hospital between 2 June 2013 and 29 January 2014. 

c) To observe whether minor resistant population detection could increase predictive power 
of phenotypic resistance without compromising specificity in the datasets collected.  

All datasets used are described in Supplementary Fig. 2, and Supplementary Table 1 with full 
sample information in Supplementary Data Files 1-2. 
 

Phenotyping and sequencing of S. aureus datasets 
Initial phenotyping of the training and validation sets was described in detail in Gordon et al 
(2014)3. The training set was phenotyped using either the Vitek automated system (bioMerieux) 
or the Stokes method disc diffusion49, whereas all validation samples were phenotyped using two 
methods: a BSAC disc test14 the Phoenix Automated Microbiology System (BD Biosciences, 
Sparks, MD, USA). For trimethoprim only disc testing was performed. 

We removed 6 samples from the training dataset and 20 samples from the validation set that 
were contaminated (See Supplementary Methods for details). All samples where there was 
discordance between Phoenix and Disc for any drug in Gordon et al3 were rerun on Phoenix (for 
all drugs) and previous results from Gordon et al3 were discarded.  

Samples were sequenced on Illumina HiSeq 2000 platform, with mean read length (after cutting 
reads at bases with quality score below 10) of 87 bp and mean depth of 87, as described in3. We 
double-checked, and by chance the previous two numbers are indeed both, independently, 87. 
Species identification in general 

We developed a system for designing a hierarchy of markers (contigs) which first separated two 
phylogroups (S. aureus from coagulase-negative Staphylococci, or MTBC from NTM), and then 
identified species present within a phylogroup. We first build a Bruijn graph by pooling several 
hundred species from both phylogroups, and pull out all unique and unambiguous contigs 
(“unitigs”) and calculate the frequency of each contig in each phylogroup. We choose the most 
highly differentiated contigs to form marker panels to distinguish the groups. This process could 
then be run again to find contigs informative at the species level. 
Species id for S. aureus 

The above process was applied to 731 Staphylococci in training set St_A, using Cortex13 with 
kmer-size 15, to produce probes (contigs) for phylogroups (S. aureus versus coagulase negative 
staphylococci) and species (S. aureus, S. epidermidis, S. haemolyticus, other coagulase-negative 
species. We assume a positive Gram stain has been obtained, and use 33 alleles of catalase gene 
(Supplementary Table 11) to confirm presence of staphylococci. Proportion of probe panel in 
each training sample (“recovery”) was plotted, and extreme outliers were ignored as possible 
errors in the SRA metadata; detection thresholds were chosen based on recovery in the training 
set: 90% for S. aureus, 30% for S. epidermidis and S. haemolyticus, 10% for other 
Staphylococcus and 20% for the catalase gene.  
 

S. aureus resistance panel 
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Starting from the variant catalogue introduced in Gordon et al.3 we made the following 
alterations. B434N in fusA was changed to D434N. Q456K in rpoB was removed as Q was not 
the amino acid at position 456 of the referenced rpoB gene. We added rpoB N474K from Villar 
(2009)50. We also considered the 10 novel mutations reported in Dordel (2014)51. We found 3 of 
the mutations (PBP1 H499Y, PBP2 T31M, PBP2 D156Y) in our derivation set. These were 
found in samples phenotypically susceptible to methicillin so none of the variants from this paper 
were included in the final catalogue. Variants that changed predicted MIC but did not confer 
resistance on their own were not included. For resistance genes we took all versions/alleles of the 
gene from NCBI that were not explicitly annotated as existing in a susceptible strain, and did not 
have stop codons. The full list of chromosomal mutations, genes, accession id’s can be found in 
Supplementary Tables 12-14. 
 

Data structures for genotyping 
We implemented two versions of Mykrobe predictor. The first builds a whole genome de Bruijn 
graph of the sample, and then takes the intersection of this with the de Bruijn graph of all (alleles 
of) genes and mutations on different genetic backgrounds (the “target graph”). This requires 
approximately 300 Mb of RAM for a typical Illumina dataset, but could in principle grow for 
very large datasets. In order to control memory use, the second approach builds the target graph 
first, and then only loads sample data that intersects it, reducing RAM use to 100Mb. Both 
methods give absolutely identical results, and we ran all analyses for this paper using the second 
approach.  
 

Resistance calling at mutations 
We use three competing models: pure susceptible, minor resistant (frequency=10% for S. aureus, 
20% for M. tuberculosis), major resistant (we used frequency=75%, but we expect values from 
60%-100% would all result in identical model choice). In this and subsequent sections, a 
subscript MAJ, MIN or S refers to the Major Resistant, Minor Resistant or Susceptible models. 
We use the following uninformative priors: 

 

!!

PrS =1!
PrMAJ = I(perc(R)>70%)
PrMIN = I(perc(S)=100%!AND!perc(R)=100%)

  

where !!perc(R)  and !!perc(S)  are respectively the percentage of the kmers in the 
resistant/susceptible alleles that are seen in the sample, and !I  is an indicator function. We use the 
following a simple Poisson model for the likelihoods for all 3 models 
Susceptible model: Likelihood specified by Poisson coverage on S allele, plus errors driving both 
coverage loss on S allele and coverage on R allele. 

!!
Cov(S !allele)~Pois(D(1−ε )k )
Cov(R!allele)~Pois(Dε(1−ε )k−1 /3)

 

Major and Minor Resistant models: Poisson coverage on both alleles scaled by frequency: 
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!!
Cov(S !allele)~Pois(D(1− f )(1−ε )k )
Cov(R!allele)~Pois(Df (1−ε )k )

 

where !!Cov()  is a function returning median coverage on an allele, !D  is the depth of coverage, 
ε  is the per-base error rate, !k  is  the kmer-size, and the frequency !f of the resistance allele is 
0.75 for the resistant model, and 0.1/0.2 for the Mixed model for S. aureus/M. tuberculosis.  

The vast majority of mutations in the panel are amino acid changes in a gene, but some 
are promoter changes. When we refer to genetic background, we simply mean mutations present 
in the population within one kmer-length of the site of interest.  For all mutations in the panel, 
we run through all genetic backgrounds, and if appropriate, all possible nucleotide changes that 
would generate the specified amino acid change, and find the highest coverage resistant allele 
and susceptible allele. These are then passed into the three models. The Maximum A Posteriori 
model is chosen. 

 
 

Resistance calling at genes 
The expected proportion of kmers in a gene which are observed is 

!!γ =1−Pr(gap)=1−exp(−Df (1−ε )k )  

We use the following priors

 

!!

PrS =1
PrMAJ ,MIN = I Gi

maxperc(Gi )>γ K(G)⎡
⎣

⎤
⎦

 

where each gene !G  has multiple exemplars !Gi representing diversity of that gene, !I  is an 
indicator function, and!!perc() is a function returning the percentage of kmers present in the 
sample. !K is a constant depending on the gene, set based on the levels of diversity seen in the 
training set: 

!!

K =0.3!for!blaZ
K =0.6!for!fusB , fusC
K =0.8!otherwise

 

The likelihoods for Major and Minor models are the product of two factors: the probability of 
having the observed median coverage across the gene, and the probability of having observed !g  
gaps. If dpois refers to the probability density of a Poisson distribution, and the observed median 
coverage across the gene is m, then the likelihood for the Major and Minor Resistant models are 
given by 

!!L~dpois(rate= Df (1−ε )
k ,value=m).exp(−Df (1−ε )k g)  

The likelihood for the Susceptible model is as in the mutation model – all coverage is due to 
errors. 
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Species identification – M. tuberculosis 

We chose to identify 4 MTBC species (M. tuberculosis, M. africanum, M. bovis, M. caprae) and 
40 NTM species (including M. avium, M. abscessus, M. intracellulare – see Supplementary 
Methods for a full list). Marker panels were generated for MTBC and NTM as well as for 
individual species within those groups, using the same method as for staphylococci based on 
training set MTBC_A1 + Myco_SRA.  The required detection threshold for each of the complex 
was set as 70% for MTBC, 25% for the NTM panel, and 30% for all species panels.  

We also used the lineage-informative SNPs defined in Stucki (2012)23 to assign M. tuberculosis 
lineage: Beijing/East Asia, East Africa / Indian ocean, Delhi/Central Asia, European/American, 
West Africa 1 & 2, Ethiopian. 
 

M. tuberculosis phylogeny 
We used the underlying phylogeny of samples in sets MTBC_A and MTBC_B, which was 
constructed using RAxML (version 8.0.5) using a GTRCAT model. For this study, we combined 
this tree with dataset membership and phenotypic resistance metadata using the R APE 
package52 to produce Fig. 2b. 
 

Resistance panel – M. tuberculosis 
We used a panel of MTBC resistance variants from the HAIN28, Cepheid53 and AID54 assays 
supplemented by others from the literature 55-57 see Supplementary Table 15. All possible SNPs 
that would account for amino acid or DNA variant associated with resistance were introduced on 
multiple susceptible backgrounds. These backgrounds were selected as follows. Two samples 
were chosen from each of the 6 M. tuberculosis lineages. For those samples, paired-end reads 
were mapped by Stampy (version 1.0.17)58 to the H37Rv (GenBank NC000962.2) reference 
genome. SNP calls were made with SAMtools59 mpileup (version 0.1.18), requiring a minimum 
read-depth of 5 and at least one read on each strand. We looked for variants in the 20 bases on 
either side of each resistance mutation in each of those 12 samples – these, along with the 
reference, defined a set of genetic backgrounds.  
Since the underlying panel is almost identical, we expect Mykrobe to perform equivalently to the 
HAIN test. Comparing on MTBC_A1+MTBC_A2, Mykrobe and HAIN have similar power to 
detect resistance (85.5%, 94.1%, 76.5% versus 85.5%, 93.5%, 76.5%) for first-line drugs 
rifampicin, isoniazid and ethambutol respectively  - see Supplementary Figs. 5-6.  
We chose an underlying frequency of 20% for the minor resistant model as this gave 
appropriately low false positive rates when comparing with phenotypes in the training set (table 
S7).  

 
Software 

The Mykrobe predictor software is available (open-source) at www.github.com/iqbal-
lab/Mykrobe-predictor for academic and research use only under a license from Isis Innovation, 
the technology transfer company of the University of Oxford, that is free for non-commercial 
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use. We provide a Linux command-line version and desktop “drag-and-drop” applications for 
64-bit Windows and Mac OS X (see screenshot Supplementary Fig. 9-11). 
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