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ABSTRACT

Determining the methylation state of regions with high copy numbers is

challenging for second-generation sequencing, because the read length is in-

sufficient to map reads uniquely, especially when repetitive regions are long

and nearly identical to each other. Single-molecule real-time (SMRT) sequenc-

ing is a promising method for observing such regions, because it is not vulner-

able to GC bias, it performs long read lengths, and its kinetic information is

sensitive to DNA modifications. We propose a novel algorithm that combines

the kinetic information for neighboring CpG sites and increases the confidence

in identifying the methylation states of those sites. Both the sensitivity and

precision of our algorithm were ∼93.7% on CpG site basis for the genome

of an inbred medaka (Oryzias latipes) strain within a practical read coverage

of ∼30-fold. The method is quantitatively accurate because we observed a

high correlation coefficient (R = 0.884) between our method and bisulfite se-

quencing, and 92.0% of CpG sites were in concordance within 0.25. Using this

method, we characterized the landscape of the methylation status of repetitive

elements, such as LINEs, in the human genome, thereby revealing the strong

correlation between CpG density and unmethylation and detecting unmethy-

lation hot spots of LTRs and LINEs. We could uncover the methylation states

for nearly identical active transposons, two novel LINE insertions of identity

∼99% and length 6050 base pairs (bp) in the human genome, and sixteen Tol2

elements of identity >99.8% and length 4682 bp in the medaka genome.

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2015. ; https://doi.org/10.1101/018531doi: bioRxiv preprint 

https://doi.org/10.1101/018531


1 BACKGROUNDS

There has been a great deal of interest in identification of genome-wide epigenetic

DNA modifications in recent years, because DNA modifications play an essential

role in cellular and developmental processes (Weaver et al., 2004; Anway et al.,

2005; Jirtle and Skinner, 2007; Miller, 2010; Zemach et al., 2010; Schmitz et al.,

2011; Molaro et al., 2011; Smith et al., 2012; Qu et al., 2012). Some of human

transposable elements, such as long interspersed nuclear elements (LINE), are re-

ported to transpose actively within somatic cells along differentiation of neural

tissues, and to be partly regulated by DNA methylation (Muotri et al., 2005, 2010).

Each family of human transposable elements is in a variety of methylation sta-

tuses according to tissue type by looking at the mixture of methylation information

on the consensus sequence of TEs in the same family (Xie et al., 2013). Many

human diseases are also associated with DNA methylation states of transposable

elements. In particular, unmethylation of repetitive elements, such as LINE-1 el-

ements, has been related to some cancers (Wilson et al., 2007; Ross et al., 2010).

Although only a few LINE-1 elements exhibit activity in the human genome (Beck

et al., 2010), transpositions of these elements have been reported in various can-

cer genomes (Lee et al., 2012; Goodier, 2014), and importantly, it has been re-

ported that transpositions are correlated with unmethylation of the promoter region

of LINE-1 elements (Tubio et al., 2014). Therefore, it is essential to develop an

experimental framework that can characterize the methylation state of repetitive

elements in a genome-wide manner.

The advent of second-generation sequencing technology has increased the effi-

ciency of the generation of precise genome-wide methylation maps at a single-base
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resolution using bisulfite treatment (Cokus et al., 2008; Lister et al., 2008; Meiss-

ner et al., 2008; Lister et al., 2009; Harris et al., 2010); however, these sequencing-

based technologies have difficulty in characterizing the methylation status of CpGs

in regions that are highly similar to other regions. Bisulfite-treated short reads

from these regions often fail to map uniquely to their original positions; instead,

they are likely to be aligned ambiguously to multiple genomic positions. More-

over, first/second-generation sequencing technology often fails to sequence DNA

regions with a GC content >60% (Aird et al., 2011; Ross et al., 2013) and may ex-

hibit bias against GC-rich regions. These inherent problems of second-generation

sequencing may result in underrepresentation of methylation information on spe-

cific DNA regions, such as transposable elements and low-complexity repeat se-

quences (Lister et al., 2009; Harris et al., 2010; Bock et al., 2010; Gifford et al.,

2013; Jiang et al., 2013). Especially, the younger and more active transposons are

thought to retain higher fidelity and are therefore difficult to address using short

reads.

In the PacBio RS sequencing system, DNA polymerase is used to perform

single-molecule real-time (SMRT) sequencing (Korlach et al., 2008; Eid et al.,

2009), and this system is capable of sequencing reads of an average length of >10

kb. SMRT sequencing is also able to sequence genomic regions with extremely

high GC contents. A striking example is a previous report of the sequencing

of a >2-kb region with a GC content of 100% (Loomis et al., 2012), indicating

that SMRT sequencing is less vulnerable to sequence composition bias than is

first/second-generation sequencing. SMRT sequencing of bisulfite-treated DNA

fragments may allow identification of DNA methylation within long regions; how-

ever, this approach is not promising because bisulfite treatment divides DNA into
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short fragments <1000 bp (Miura et al., 2012).

Instead, we explored another advantage of SMRT sequencing to detect DNA

modifications. In SMRT sequencing, we can observe the base sequence in a sin-

gle DNA molecule as each corresponding nucleotide is incorporated using the time

course of the fluorescence pulses. From this time course information, we can deter-

mine the inter-pulse duration (IPD), which is defined as the time interval separating

the pulses of two neighboring bases. Importantly, the IPD of the same genomic po-

sition varies and has a significant and predictable response to DNA modifications

due to the sensitivity of DNA polymerase kinetics to DNA modifications and dam-

age (Flusberg et al., 2010).

Consequently, the IPD ratio (IPDR), the ratio of the average IPD in DNA tem-

plates with modifications to that in control templates, tends to be perturbed system-

atically, allowing identification of DNA modifications (Fig. 1A). Indeed, SMRT se-

quencing methods have been used to detect changes in 5-hydroxymethylcytosine (Flus-

berg et al., 2010), N4-methylcytosine (Clark et al., 2012), and N6-methylademine (Flus-

berg et al., 2010; Fang et al., 2012; Feng et al., 2013; Greer et al., 2015), as well

as damaged DNA bases (Clark et al., 2011) in bacteria and mitochondria; how-

ever, estimation of 5-methylcytosine (5-mC) residues using low-coverage reads

is prone to errors and requires extensive coverage at each position to clarify the

base-wise 5-mC state and therefore becomes costly (Flusberg et al., 2010; Fang

et al., 2012; Schadt et al., 2012). Clark et al. attempted to improve the detection

of microbial 5-mC in the Escherichia coli and Bacillus halodurans genomes us-

ing Tet1-mediated oxidation to convert 5-mC into 5caC in SMRT reads of ∼150x

coverage per DNA strand (Clark et al., 2013). Therefore, kinetic information from

low-coverage SMRT reads at a single CpG site is not reliable for predicting the
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methylation status.

In this study, we exploited the facts that unmethylated CpG dinucleotides are

rare (∼10%) in vertebrates and generally do not exist in isolation but often range

over long unmethylated regions (Qu et al., 2012; Gifford et al., 2013; Eckhardt

et al., 2006; Bock et al., 2008; Shoemaker et al., 2010; Nautiyal et al., 2010; Xie

et al., 2013). Su et al. reported that the average length of unmethylated regions

in five human cell types is ∼2 kb (Su et al., 2012b). Thus, estimating regions of

unmethylated CpG sites is informative in most cases. Similarly, integrating ki-

netic information for many CpG sites in a long region can increase the confidence

in detecting methylation when the status of those sites is correlated and shows

promise for predicting the methylation status in a block using low-coverage SMRT

reads. We examined the feasibility of the approach and present a novel computa-

tional algorithm that integrates SMRT sequencing kinetic data and determines the

methylation statuses of CpG sites.

To demonstrate a possible application of our method, we investigated methyla-

tion status of individual occurrences of transposable elements in the human genome.

Only a few studies have addressed this. In one study, the authors designed a mi-

croarray specifically to characterize changes in transposon methylation of cancer

cells (Szpakowski et al., 2009), and other study utilized a bisulfite sequencing

dataset (Su et al., 2012a). These methods, however, cannot observe the repeti-

tive elements which have not diverged enough to be distinguished by short reads,

or those which are novel insertions and simply absent from the reference genome.

Therefore, we examined the possibility of determining the methylation statuses

of highly similar occurrences of transposable elements in human and medaka fish

(Oryzias latipes), which could be investigated only by using long reads.
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2 RESULTS

2.1 Bisulfite data benchmark and SMRT sequencing

It is necessary to take into account allele-specific DNA methylation in the analysis

of the methylomes of diploid genomes (Shoemaker et al., 2010; Chandler et al.,

1987; Yamada et al., 2004; Zhang et al., 2009; Kerkel et al., 2008; Schilling et al.,

2009; Hellman and Chess, 2010), because we may observe an intermediate DNA

methylation level resulting from the mixture of different methylation states from

two haplotypes (Lister et al., 2009; Deng et al., 2009). To assess the ability of

SMRT sequencing to monitor the DNA methylation status, DNA extracted from a

haploid cell line would serve as an ideal template, avoiding situations in which two

alleles are differentially methylated. In nonhuman model organisms, inbred strains

also provide a clean resource, because the two haplotypes are almost identical in

sequence, suggesting that the methylation statuses of the two haplotypes may also

match. Therefore, we used the medaka model system (Kasahara et al., 2007),

because six medaka methylomes are available from early embryos, testes, and liver

in two inbred strains (Qu et al., 2012) by way of Illumina bisulfite sequencing,

which outperforms three other frequently used sequence-based methods in terms

of the genome-wide percentage of CpGs covered (Harris et al., 2010). As CpG

methylation status reference data, we used the testes methylome of the medaka Hd-

rR inbred strain. In this dataset, most of the CpG sites in the medaka genome are

either unmethylated or methylated, and methylation at non-CpG sites is very rare

(∼0.02%) (Qu et al., 2012), allowing us to focus on CpG sites only. We collected

31.06-fold coverage SMRT subreads from the testes of medaka Hd-rR (assuming

an estimated genome size of 800 Mb) using P6-C4 reagents. We also collected
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22.45-fold and 13.06-fold coverage SMRT reads from human peripheral blood of

two Japanese individuals. Thus, we have 3 datasets in total, 1 for medaka and 2

for human. For sequencing two human samples, we employed the P6-C4 reagents

and the P4-C2 or C2-C2 reagents, respectively. In total 2848641, 7279594, and

19115712 subreads were anchored to the medaka genome and the human genome,

respectively. The mean mapped subread lengths were 8722 bases for medaka and

9254 and 2049 bases for 2 human samples (Supplemental Table 1).

2.2 Prediction of the methylation state from kinetic data

Figure 1A shows a schematic representation of the basic concept of our method.

First, as a raw ingredient for prediction, we defined the IPDR profile of a CpG site

as an array of IPDR measurements of 21 bp surrounding the CpG site. With low

coverage, the IPDR profiles at individual CpG sites are noisy and insufficient for

determining whether the focal CpG site is unmethylated or methylated. However, if

we could somehow identify the boundaries of unmethylated/methylated regions, it

would be possible to take the average of the IPDR profile for the CpGs within each

region and would allow better prediction of the methylation state of each region

from its average IPDR profile, which has less noise than the profile of a single

CpG site.

We implemented our method using linear discrimination of the vectors of (av-

erage) IPDR profiles around the focal CpG sites. We represented the vectors as

points residing in the Euclidean space of the appropriate dimension and attempted

to separate the points by a decision hyperplane. For better accuracy, we optimized

two parameters of the decision hyperplane, the orientation and intercept. Supple-

mental Fig. S1A shows the optimized orientation. As unmethylated regions are
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∼2 kb in size (on average) and contain ∼50 CpG sites in vertebrate genomes (Su

et al., 2012b), in the prediction, we first assume unmethylated regions to have at

least 50 CpG sites and integrate the IPDR profiles to make predictions, which is ef-

fective in reducing noise in the IPD measurements. We will later examine whether

we can reduce the number of CpG sites, denoted by b, while preserving the accu-

racy. Our method divides the genome into regions containing ≥ b CpG sites, such

that each region is either unmethylated or methylated. An example of our predic-

tion for the human genome is shown in Fig. 1B, in which our method is able to

estimate unmethylation of long duplicated regions while the bisulfite sequencing

provides little information. Supplemental Fig. S1C illustrates another example in

which both methods are consistent in showing unmethylation in gene promoters.

While setting lower bound b to 50 is supported by the plausible heuristics with

biological grounds, a looser bound (b < 50) allows us to detect shorter regions. We

therefore examined whether we could use a smaller value of b (= 30, 35, 40, 45)

without degrading the accuracy of prediction. To evaluate the accuracy of our

method, we used the chromosome 1 of length 34,959,811 bp in the medaka genome

(version 2) that we assembled from SMRT subreads. For predicting CpG methy-

lation accurately, we guaranteed that each CpG site was covered by at least three

subreads, which slightly reduced the original average read coverage, 31.06-fold,

to 29.9-fold on the chromosome 1. To examine the coverage effect, we used five

subread sets of coverage 20%, 40%, 60%, 80%, and 100% of 29.9-fold. We calcu-

lated various accuracy measures, such as sensitivity (recall), specificity (1−false-

positive rate), and precision by comparing our prediction on each CpG site with the

methylation level determined in a bisulfite sequencing study (Qu et al., 2012). As

most CpG sites in the medaka genome are methylated consistently, there are only a
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small number of positive examples of unmethylated CpGs, and therefore, precision

is more informative than specificity in evaluation. We made the trade-off between

sensitivity and precision through the selection of the intercept of the decision hy-

perplane (Supplemental Fig. S2-3). When we used 100% of 29.9-fold subreads,

setting b to 35 outperformed the other values (Supplemental Fig. S3), and for better

readability, Figure 1C illustrates the sensitivity and precision curve for b = 35 only.

Our prediction achieved 93.7% sensitivity and 93.9% precision, or 93.0% sensitiv-

ity and 94.9% precision, depending on the selection of the intercept. In contrast, for

a smaller coverage, a wider window (a larger value of b) was favored; for example,

for coverages of 20% and 40% of 29.9-fold, setting b to 50 performed best (Supple-

mental Fig. S3). Both sensitivity and precision were ∼ 90% for b = 45 even if the

coverage is relatively small, 60% of 29.9-fold (Supplemental Fig. S3C). Overall,

sensitivity and precision of our method are substantially high using a reasonable

coverage of SMRT subreads.

2.3 Handling intermediate or ambiguous methylation states

We have introduced a two-class model of our prediction that assigns all of the CpG

sites into either unmethylated or methylated regions; however, such a dichoto-

mous model is rather unrealistic, and more refined predictions involving multi-

level methylation states or even continuous methylation levels are desirable. For

example, an intermediate level of CpG methylation could result from the distinct

methylation states of two DNA molecules of diploid cells, although each cytosine

must be either methylated or unmethylated in a single DNA molecule. More gener-

ally, a sampled cell population can be epigenetically heterogeneous, which would

possibly show a spectrum of methylation levels according to its composition. Fi-

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2015. ; https://doi.org/10.1101/018531doi: bioRxiv preprint 

https://doi.org/10.1101/018531


nally, prediction allowing intermediate states can represent the ambiguity of the

prediction, and exclusion of such ambiguous predictions is expected to improve

the overall prediction accuracy.

Taking these points into consideration, we extended our method to achieve

more complex and informative multi-class predictions. Figures 1D-E depict the

concept for multi-class prediction using hypothetical data points. We made a clas-

sification using the linear discrimination process involving a separation (decision)

hyperplane and determined the position of the hyperplane using the intercept pa-

rameter denoted by γ (Fig. 1D). Intuitively, the intermediately methylated CpGs

are expected to be distributed more closely to the decision plane, and are there-

fore more ambiguous than CpGs with bona fide methylation states are. Thus, to

output the multi-class prediction, we perturbed the intercept γ around its optimal

value to produce multiple predictions on each CpG site, which is illustrated by the

parallel displaced hyperplanes (Fig. 1E). We then defined the discrete methylation

level (DML) as the fraction of predictions that favored ’methylation’. The robust

predictions on the bona fide methylation states should have extreme DML values,

unlike intermediate or ambiguous predictions.

We checked the accordance between our DML and intermediate or ambiguous

methylation level captured by two other quantitative methods, bisulfite sequencing

and Illumina BeadChip. On the medaka sample, we observed a strong correlation

(R = 0.884) between our DML and methylation level calculated from bisulfite

sequencing, and we confirmed that 92.0% of CpG sites were in concordance within

0.25 (Fig. 1F). We also compared our DML on the human sample to the beta value

(an indicator of methylation level expressed as a value ranging over [0,1]) obtained

from Illumina BeadChip (Fig. 1G). We observed a weaker correlation (R = 0.816)
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and a smaller fraction (75.4%) of CpG sites in concordance within 0.25 presumably

because the beta value is less quantitative than the methylation level calculated

from bisulfite sequencing (Wang et al., 2015). Overall, DML serves to reflect the

quantitative nature of methylation status in the samples.

2.4 Genome-wide methylation pattern of repetitive elements in the

human genome

We investigated how individual occurrences of repetitive elements were methy-

lated in the human genome, as summarized in Table 1. Of note, some occurrences

of repetitive elements contain no or very few CpG sites, and thus we only con-

sider those occurrences with at least 10 CpGs to exclude other less informative

cases. First, we checked whether SMRT reads could address the repetitive re-

gions in a useful manner for methylation analysis. Specifically, we considered a

repeat occurrence to be covered by uniquely mapped SMRT reads if the IPD ratio

was available on ≥50% of CpGs, and found that >96% were covered for every

repeat type. To draw robust conclusions, we further applied a stringent quality

control process to each repeat occurrence such that the read coverage was >5. Al-

though this step reduced the number of repeat occurrences under consideration by

3−18%, this reduction could be mitigated simply by producing more data. Fi-

nally, we treated an occurrence as unmethylated if ≥50% of CpGs were predicted

as unmethylated. Fractions of unmethylated repeat occurrences vary considerably

among different classes of repetitive elements, from ∼1% for L1 and Alu to ∼50%

for MIR and >70% for simple repeats and low-complexity regions. To validate

our prediction regarding the repeat occurrences, we selected 21 regions for bisul-

fite Sanger sequencing, designed primers for nested PCR (Supplemental Table S2),
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and could amplify six regions, indicating the difficulty in observing DNA methyla-

tion of repetitive elements using traditional bisulfite Sanger sequencing. In the six

amplified regions, we confirmed the consistency between our prediction and the

methylation state observed by bisulfite Sanger sequencing (Supplemental Fig. S4).

We then examined the features for characterizing the differences between methy-

lated and unmethylated repetitive elements. First, CpG density was significantly

higher in the unmethylated occurrences in almost all classes of repetitive elements

(p < 1%, Fig. 2A). This observation was consistent with the known association

between CpG-rich regions and unmethylation because methylation leads to deple-

tion of CpG sites through deamination (Cooper and Krawczak, 1989). Second,

sequence divergence from the representative in each repeat class also showed a

correlation with methylation status (Fig. 2B). For most classes, with the apparent

exception of simple repeats, low-complexity regions, and MIR elements, unmethy-

lated occurrences were significantly more divergent than were methylated occur-

rences (p < 1%, Fig. 2B), presumably because younger copies of a repeat element

are less divergent and are likely to be targets of DNA methylation. We also ex-

amined whether the methylation status of repetitive elements could be correlated

partly with sequence features. Kernel principal component analysis (PCA) using

spectrum kernel suggested positive answers for some repeat types (Supplemental

Fig. S5).

Next, we examined whether the unmethylated repeat occurrences were dis-

tributed uniformly or non-uniformly throughout the entire genome. We selected

three major classes (LINE, Alu, and LTR) of repetitive elements for this analy-

sis. We calculated the ratios of unmethylated copies to all repetitive elements in

individual non-overlapping bins 5 Mb in size (Fig. 2C). The non-random distribu-
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tion patterns were more evident for LINE and LTR than for Alu. For example, we

found unmethylated LINEs to be enriched in the p-arm of chromosome 1 and in

chromosomes 17 and 19. There were unmethylation ‘hot spots’ of LTR elements,

e.g., in chromosomes 6 and 9 (Supplemental Fig. S6). It is intriguing that some of

these unmethylation hot spots, such as those in the p-arms of chromosomes 6 and

Y, seem to be shared among different classes of repetitive elements.

We further investigated the methylation states of LINE/L1 elements, the only

active autonomous retrotransposons in mammals (Furano, 2000). Although most

of LINE/L1 insertions contain many mutations, Penzkofer et al. categorize full-

length L1 elements into three classes according to the conservation of two open

reading frames (ORFs) (Penzkofer et al., 2005); namely, L1s with intact in the

two ORFs that are likely to exhibit retro-transposition activity, L1s with an intact

ORF2 but a disrupted ORF1, and non-intact L1s. We obtained the positions of

these human LINE/L1 elements from L1Base (Penzkofer et al., 2005) and analyzed

their methylation states (Supplemental Table 3). Although 0.61% of non-intact

L1s were unmethylated, all of L1s with intact in two ORFs and L1s with an intact

ORF2 were methylated. We also checked the presence of LINE insertions that

were novel to the hg19 reference genome. We assembled the SMRT reads using

FALCON and searched the assembly for novel LINE insertions that matched a

hot L1 element (GenBank: M80343.1) of size 6050 bp with identity > 98.5%.

The hot L1 element was used as the representative according to the procedure of

L1Base (Penzkofer et al., 2005). We identified two novel instances covered by

sufficient depth of SMRT reads that allowed us to call their methylation statuses

confidently. Both of the two LINE insertions were estimated to be methylated,

and the positions of these two occurrences are found in Supplemental Fig. S7.
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These results confirmed putatively active LINE/L1 elements with intact ORFs were

targets of DNA methylation.

2.5 Analysis of the Tol2 transposable element in medaka

The medaka has an innate autonomous transposon known as Tol2, which is one of

the first examples of autonomous transposons in vertebrate genomes and a useful

tool for genetic engineering of vertebrates, such as zebrafish and mice (Kawakami,

2007). The excision activities of Tol2 are promoted when DNA methylation is

reduced by 5-azacytidine treatment, which suggests that DNA methylation is one of

the mechanisms regulating the Tol2 transposition (Iida et al., 2006). Nevertheless,

observing the methylation status of each Tol2 copy using short reads is difficult,

because Tol2 is 4682 b in length, and ∼20 highly similar copies of Tol2 exist in the

genome (Koga et al., 2000).

To elucidate the methylation status of each Tol2 copy, we applied our method

to a new assembly of the Hd-rR genome obtained exclusively from SMRT reads.

We found 17 copies of Tol2 contained entirely within this assembly, all of which

were essentially identical (>99.8% sequence identity). We then called the methy-

lation status of these Tol2. For comparison, we mapped bisulfite-treated short reads

to these contigs and determined the methylation level. The methylation status of

these Tol2, observed by SMRT reads and bisulfite-sequencing, are shown in Fig. 3.

While virtually no Tol2 copies were mapped by bisulfite reads, as expected from

their extremely high fidelity, 16 of 17 copies were anchored by SMRT reads, and

all were predicted to be methylated by our method. For the regions examined by

both SMRT reads and bisulfite-treated short reads, our prediction was consistent

with the methylation level calculated from the bisulfite-treated reads. For example,
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one Tol2 copy was surrounded by unmethylated regions (number 14). From the

bisulfite data, it appeared that the body of Tol2, from which data were missing, was

unmethylated. Nevertheless, our prediction estimated this region to be methylated.

These results demonstrate the ability of our method using SMRT reads to clar-

ify DNA methylation states of highly identical repetitive elements such as active

transposons.

3 DISCUSSION

In this study, we addressed the problem of uncovering the landscape of DNA

methylation of repetitive elements. To this end, we developed a unique applica-

tion of SMRT sequencing to epigenetics. This direction had been already explored

in the research community for bacterial and viral species. However, this application

in large vertebrate genomes has been largely unexplored because of the subtle cyto-

sine methylation signals in the kinetic information. Therefore, we proposed a new

method to utilize relatively small amounts of kinetic information by incorporating a

model reflecting our prior knowledge on the regional patterns of CpG methylation

of vertebrate genomes. We confirmed the validity of our strategy by comparing

the prediction to bisulfite sequencing data on medaka and to BeadChip analysis

on human samples. These two datasets had very different characteristics, which

seemed to be partly because of the methods used (i.e., BeadChip was designed to

observe mainly CpG islands that are often unmethylated, while bisulfite sequenc-

ing is used for genome-wide methylation analysis) and partly because of the nature

of the samples used (i.e., the medaka samples were derived from an inbred strain,

while the human samples were from diploid cells). Despite such differences in
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characteristics, our method using the same parameters performed almost equally

well for both datasets (Fig. 1F,G). These observations suggested that the choice of

parameters is robust for a wide variety of samples, which is a desirable feature for

any method. We also presented an extension of our method to accommodate inter-

mediate methylation states, the discrete methylation level (DML), and confirmed a

high correlation (R = 0.884) between DML and bisulfite methylation level.

We explored the epigenetic landscape of repetitive elements within the human

genome. Using the hg19 reference genome is an apparent limitation. By assem-

bling individual personal genomes instead of the reference genome, new insertions

of these repetitive elements are expected to be found, and such active occurrences

should be of interest. Indeed, we detected two novel LINE insertions that were es-

timated to be methylated. Importantly, the more recent the insertion event, the less

divergent it would be from the original copy, and therefore, there would be less

likelihood of it being anchored by short reads. In such cases, long SMRT reads

shed new light on the ecosystem of active repetitive elements in personal human

genomes.

Finally, our method had important strengths compared with conventional tools

for epigenetic studies, such as bisulfite sequencing or affinity-based assays, with

not only an expected increase in comprehensiveness by virtue of long SMRT reads,

but also in the remarkable reduction of laboratory work. If an epigenetic study

is conducted alongside a resequencing study or a de novo assembly study using

SMRT sequencing, the methylation status could be called solely in silico, and no

additional experiments would be necessary.
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METHODS

Software availability

Our software program AgIn (Aggregate on Intervals) is available at:

https://github.com/hacone/AgIn

Preparation of genomic DNA and SMRT sequencing

DNA was extracted from the testes of Hd-rR medaka with the DNeasy Blood &

Tissue Kit (Qiagen, Hilden, Germany), following the tissue protocol. Genomic

DNA was isolated from peripheral blood leukocytes of two Japanese patients using

standard procedures after informed consent. The DNA featured A280/260 values

of ∼1.8 and formed a clear, sharp band on agarose gel electrophoresis.

For the medaka sample and one human sample, genomic DNA was sheared

using g-Tube devices (Covaris Inc., Woburn, MA, USA), targeting 20 kb frag-

ments at 4300 rpm, 150 ng/µl and purified using 0.45× volume ratio of AMPure

beads (Pacific Biosciences, Menlo Park, CA, USA). SMRTbellTM libraries were

prepared with the DNA Template Preparation Kit 1.0 (Pacific Biosciences, Menlo

Park, CA, USA) using the “20-kb Template Preparation using BluePippin Size Se-

lection System (15 kb Size Cutoff)” protocol. Sequencing primer was annealed to

the template at 0.833 nM concentration. SMRT bellTM templates were sequenced

using magnetic bead loading, C4 chemistry, and polymerase version P6. Sequence

data were collected on the magnetic bead collection protocol, 20 kb insert size,

stage start, and 240 min movies in PacBio RS Remote.

For the other human sample, sequencing was performed as follows. Genomic

DNA was sheared with using g-TUBE devices, targeting 10 kb fragments. SMRTbellTM
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libraries were prepared with the DNA Template Preparation Kit 2.0 (3∼10 kbp)

(Pacific Biosciences, Menlo Park, CA, USA). Briefly, sheared DNA was end-

repaired, and hairpin adapters were ligated using T4 DNA ligase. Incompletely

formed SMRTbellTM templates were degraded using a combination of exonucle-

ases III and VII. The resulting DNA templates were purified using (0.45×) SPRI

magnetic beads (AMPure; Agencourt Bioscience, Beverly, MA, USA). Sequencing

primers were annealed to the templates at a final concentration of 5 nM template

DNA. SMRTbellTM library was sequenced using Magbead loading, C2 chemistry,

and Polymerase version C2 or P4. Sequence data were collected on the PacBio RS

for 120 min.

Regarding two human samples, the latter sample matches the one used for

Illumina BeadChip analysis. We used the sequencing data and methylation state

prediction from this sample solely for the analysis of intermediate methylation state

prediction (Fig. 1G).

Normalization of beta values of Illumina BeadChip

The respective beta values of an unmethylated CpG and a methylated CpG are

not always equal to 0 and 1. Indeed, in our data, the distribution of raw beta

values of Illumina BeadChip had bimodal peaks at 0.04 and 0.89. To compare beta

values with our DML data (Fig. 1G), we treated 0.04 and 0.89 as unmethylated

and methylated states respectively and normalized raw beta values by setting x ≤

0.04 to 0, 0.89 ≤ x to 1, and 0.04 < x < 0.89 to (x − 0.04)/(0.89 − 0.04),

proportionally.
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Raw IPDR and read coverage

We used the PacBio RS SMRT pipeline to process raw kinetic data from SMRT

sequencing to obtain the mean IPDR and read coverage at each genomic position.

ri and r′i denote the mean IPDR associated with position i of the forward and

reverse strands, respectively, and ci and c′i denote the read coverage at position i

of the forward and reverse strands, respectively. To remove outlier noise inherent

in raw data, mean IPDRs >10 were Winsorized to 10 and positions with less than

three reads were excluded from the data (the latter was handled by SMRT Pipe).

In bisulfite sequencing, CpG sites with ≥ 10 reads that mapped to C of either

strand were considered covered. CpG sites that have a ≥ 1 position within a 21 bp

window with ≥ 3 SMRT reads were counted as covered.

Estimating the methylation status at individual CpG sites

Suppose that the focal genome has n CpG sites. We can assign identifiers rang-

ing from 1 to n to individual n CpG sites and denote the genomic position of

C of the i-th CpG site by pi. For example, the second CpG site at the 10th ge-

nomic position is denoted by “p2 = 10.” Our goal was to predict the methyla-

tion status, unmethylated or methylated, at pi using information on read coverage

and IPDR at positions surrounding pi. We used positions within 10 bases around

pi because these neighboring positions have proven to be effective in predicting

5-hydroxymethylcytosine, N4-methylcytosine, and N6-methylademine in bacteria

genomes in previous studies (Flusberg et al., 2010; Clark et al., 2011, 2012; Fang

et al., 2012). Neighboring positions are denoted by pi + j for j = −10, . . . ,+10

in the plus strand. For example, the positions 5 bases upstream and downstream of
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pi are pi − 5 and pi + 5, respectively.

To achieve a better prediction, we derived a modified IPDR vector from raw

read coverage and IPDR within 10 bases around pi. For this purpose, we took

into account the property that any CpG site in one strand is reverse complemen-

tary to the CpG in the other strand, and the methylation status of Cs at a pair

of CpG sites in both strands is consistent in most cases, making it meaningful

to combine IPDR information for both strands to predict the methylation status.

To represent positions in the minus strand, we note that since we set the posi-

tion of C of the focal CpG in the plus strand to pi, the position of C of the CpG

in the minus strand is pi + 1, and the surrounding positions are pi + 1 − j for

j = −10, . . . ,+10. In addition, we attached more importance to IPDR values as-

sociated with a higher read coverage and we quantified this as cpi+j × rpi+j in the

plus strand (c′pi+1−j×r′pi+1−j in the minus strand). We then took the sum of all the

products and normalized it by dividing it by the total number of reads. Finally, we

obtain the 21-dimensional modified IPDR vector for 21 genomic positions around

CpG site pi:

X̂(pi)j =
cpi+jrpi+j + c′pi+1−jr

′
pi+1−j

cpi+j + c′pi+1−j

(j = −10, . . . ,+10).

We are now in a position to define a classifier that uses X̂(pi) as explanatory

variables and predicts the methylation status at pi, which is also estimated inde-

pendently by bisulfite sequencing (Qu et al., 2012). We attempted to use linear

discriminant analysis (LDA) with the discriminant function

F(pi) = β · X̂(pi) + γ,
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where we optimized values of the coefficient vector β and variable γ using bisul-

fite sequencing data as the training data set to improve the prediction. Supple-

mental Fig. S1A shows the optimized vector β that we used in this study. If the

sign of the discriminant function, F(pi), is positive, the methylation status at pi is

defined as ‘methylated’; otherwise, it is defined as ‘unmethylated.’ We note that

according to previous studies (Flusberg et al., 2010; Fang et al., 2012; Schadt et al.,

2012), estimating 5-methylcytosine residues with low read coverage, for example

cpi+j + c′pi+1−j < 100, is prone to errors, demanding hundreds of reads, which is

extremely costly to achieve.

Predicting the methylation status of CpG blocks

In vertebrates, unmethylated CpG dinucleotides are rare (∼10%) and do not always

exist in isolation, but they are likely to range over long unmethylated regions. This

motivated us to integrate low-coverage reads around CpGs in a region to yield high-

coverage for estimating the methylation status in the entire region, rather than at

a single-base resolution. Let A denote a region. The following formula expresses

the average IPDR vector for 21 genomic positions around all of the CpG sites in

region A and its associated discriminant function:

X̂(A)j =

∑
pi∈A(cpi+jrpi+j + c′pi+1−jr

′
pi+1−j)∑

pi∈A(cpi+j + c′pi+1−j)
(j = −10, . . . ,+10).

F(A) = β · X̂(A) + γ

In processing a longer region with more CpG sites, the accuracy of methylation

status prediction can improve, although smaller regions may be overlooked. In our

analysis, we impose the constraint that each region has at least b CpG sites. For
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example, we can set b to 50 because Su et al. report that the average length of

unmethylated regions in five human cell types is approximately 2 kb (Su et al.,

2012b) and the average distance between neighboring CpG sites in the medaka

genome is 53.5 bases, although this constraint should be adjusted according to

each individual situation.

The possibility of the methylation (unmethylation, respectively) of A increases

with a larger positive (negative) value of F(A), as well as for a larger total number

of reads

w(A) =
∑

pi∈A,j=−10,...,+10

(cpi+j + c′pi+1−j).

Thus, region A associated with a larger value of w(A)F(A) is better.

Decomposing the genome into unmethylated/methylated CpG blocks

Now, we must consider how to decompose n CpG sites in the whole genome into

methylated regions {Mλ∈Λ} and unmethylated regions {Uµ∈M} such that all re-

gions are disjoint from each other, their union covers all CpG sites, and the two

types of region occur alternatingly along the genome. To obtain better regions,

we calculated the optimal decomposition of regions that maximizes the following

objective function:

∑
λ∈Λ

w(Mλ)F(Mλ) +
∑
µ∈M

−w(Uµ)F(Uµ).

To solve this problem, we here mention one important characteristic of SMRT

sequencing. Read coverage is not affected by the sequence composition in SMRT

sequencing (Bashir et al., 2012; Zhang et al., 2012; English et al., 2012; Koren
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et al., 2012; Loomis et al., 2012). Thus, we assume that the sum of reads at the j-th

position around all CpG sites in region A is a constant c̄(A) independent of j:

∑
pi∈A

(cpi+j + c′pi+1−j) = c̄(A) for j = −10, . . . , 10

This allows us to transform w(A) into a simpler form:

w(A) =
∑

pi∈A,j=−10,...,+10

(cpi+j + c′pi+1−j) = 21c̄(A)

Subsequently, we can also simplify the objective function:

w(A)F (A)

= w(A)(β · X̂(A) + γ)

= 21c̄(A)

 ∑
j=−10,...,+10

βj

∑
pi∈A(cpi+jrpi+j + c′pi+1−jr

′
pi+1−j)

c̄(A)

+ γw(A)

= 42

∑
j

βj

∑
pi∈A

(cpi+jrpi+j + c′pi+1−jr
′
pi+1−j)

2


+

∑
pi∈A,j

γ(cpi+j + c′pi+1−j)

= 42
∑
pi∈A

∑
j

(
βj

(cpi+jrpi+j + c′pi+1−jr
′
pi+1−j)

2
+ γ

cpi+j + c′pi+1−j

42

)
= 42

∑
pi∈A

si,

where si denotes
∑

j

(
βj

(cpi+jrpi+j+c′pi+1−jr
′
pi+1−j)

2 + γ
cpi+j+c′pi+1−j

42

)
in the sec-

ond last formula because the value only depends on read coverage and IPDR values

at 21 genomic positions surrounding pi. Consequently, our objective function to
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optimize became a linear combination of si:

∑
λ∈Λ

w(Mλ)F(Mλ) +
∑
µ∈M

−w(Uµ)F(Uµ) =
∑
λ∈Λ

∑
pi∈Mλ

si +
∑
µ∈M

∑
pi∈Uµ

(−si)

Although we set si to a score calculated from weighted IPDR information, we can

set si to a log-likelihood function of the form - log Qi for some likelihood function

Qi.

This simple form motivated us to design a dynamic programming algorithm for

calculating the optimal value efficiently. We considered the subproblem involving

the first i CpG sites among all n sites, and let SM
i and SU

i be the maximum value

of the objective function when the last i-th CpG site was methylated and unmethy-

lated, respectively. SM
i and SU

i meet the following recurrences:

SM
i+1 = max{SM

i + si+1, SU
i−b+1 +

i+1∑
k=i−b+2

sk}

SU
i+1 = max{SU

i − si+1, SM
i−b+1 +

i+1∑
k=i−b+2

(−sk)}

The first max term implies extension of the running region by one CpG site, while

the second term means a switch from the previous methylation status and the ini-

tiation of a new region with ≥ b CpG sites. For example, we can set b to 50, but

one can change the requirement for the minimum number of CpG sites in a re-

gion by making an appropriate adjustment to the second term. Of SM
n and SU

n ,

the larger value gives the maximum value, and tracing back the optimal path from

the maximum value provides all the boundaries between neighboring methylated
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and unmethylated regions. To calculate regions satisfying the constraint on the

minimum number of CpG sites, we generalized the dynamic programming idea

proposed by Csűrös (Csűrös, 2004).

Thus far, we have assumed two possible methylation statuses, methylated or

unmethylated, because this situation is true in most cases in our inbred strain sam-

ple (Qu et al., 2012). In human cells, however, many partially methylated cytosines

have been reported (Lister et al., 2009). To consider such situations, we need to

extend our algorithm to involve scores for three methylation statuses, methylated,

unmethylated, and partially methylated. One can redesign the score function and

the recurrence for each class. For example, making the parameters, β, γ, and b,

depend on the class to which the i-th CpG site belongs, we can redefine the new

recurrences for three classes:

SM
i+1 = max{SM

i + sMi+1, max{SU
i−bM+1, S

P
i−bM+1}+

i+1∑
k=i−bM+2

sMk }

SU
i+1 = max{SU

i + sUi+1, max{SP
i−bU+1, S

M
i−bU+1}+

i+1∑
k=i−bU+2

sUk }

SP
i+1 = max{SP

i + sPi+1, max{SM
i−bP+1, S

U
i−bP+1}+

i+1∑
k=i−bP+2

sPk },

where P denotes “partially methylated,” bC indicates the minimum region length

for each class C ∈ {M,U,P}, and

sCi =
∑
j

(
βC
j

(cpi+jrpi+j + c′pi+1−jr
′
pi+1−j)

2
+ γC

cpi+j + c′pi+1−j

42

)
.
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One might wonder if the hidden Markov Model (HMM) can be used for com-

puting unmethylated and methylated regions; however, it is not obvious that using

HMM guarantees the requirement that each range has ≥ b CpG sites.

Computing discrete methylation levels

For calculating more quantitative methylation level named discrete methylation

levels, we performed prediction using the set of 10 perturbed intercept values (γ

ranging from -12% to +24% by 4%) so we obtain 10 predictions on each CpG site.

Then, on each CpG site, the number of predictions that favored methylation were

divided by 10, yielding the discrete methylation level ranging over [0, 1].

Methylation status calculated from bisulfite sequencing

We evaluated the prediction accuracy of our integration method using methylation

scores calculated from bisulfite-treated Illumina reads as the answer set. Let S

be the set of bisulfite-treated Illumina reads covering the i-th CpG site, x be the

number of methylated CpGs in S at i, and y be the coverage of S at i (the size of

S). We defined the methylation score at i as x/y. We then defined the methylation

status as ‘unmethylated’ if the score was less than 0.5; otherwise, it was defined as

‘methylated’.

We need to carefully constrain the value of the coverage y. Allowing a lower

value of y is likely to produce more erroneous methylation scores, while using

y greater than a higher threshold would reduce the number of CpGs associated

with their methylation scores. The average coverage was 9.40-fold in our bisulfite-

treated reads collected from testes of the Hd-rR medaka inbred strain; however, the

coverage at individual CpG sites varied to some extent. We defined the methylation
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score only when the CpG site was covered by 10 or more reads (i.e., y ≥ 10) so

that make sure the scores are robust enough.

Prediction accuracy of our method at individual CpG sites

We predicted the methylation status of each CpG site by checking whether the

CpG site was located in an unmethylated or methylated region according to the

output of our integration method. We measured the accuracy of the prediction by

checking the consistency between the prediction and the methylation score asso-

ciated with each CpG site. CpG sites without methylation score (due to the lack

of bisulfite-treated reads) were ignored. We treat a unmethylated status as positive

and a methylated status as negative, because we are more interested in identify-

ing rare unmethylated regions accounting for a small portion (e.g., ∼10%) of CpG

sites.

Methylation analysis of human repetitive elements

We started the analysis by listing repetitive elements using the Repeat Library

“20140131” (Smit, A., Hubley, R. & Green, P. Repeatmasker open-4.0 at http://www.repeatmasker.org).

Only repetitive elements containing at least 10 CpG sites were considered. We cal-

culated the methylation levels of CpG sites as discrete methylation levels (DML),

and CpG sites with a DML<0.4 were considered as unmethylated. To further

reduce the degree of unmethylation assigned false-positively, we filtered out repet-

itive elements with an average read coverage on CpG sites of <5.0. Finally, we

treated repetitive elements as unmethylated if more than half of the CpG sites were

unmethylated; otherwise, they were considered as methylated.
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The relationships between methylation state and CpG density or divergence

were tested for statistical significance using the Mann-Whitney U test. To draw

ideograms in Figure 2C, we counted the numbers of unmethylated and methylated

repeats in every 5 Mb bin and then used the Ideographica web server (Kin and Ono,

2007) to generate the images. In Supplemental Figure S4, Kernel PCA analysis was

performed using spectrum kernel. As the magnitude of sequence divergence among

occurrences was markedly variable for different types of repetitive elements, it was

necessary to optimize the k-mer size for each type of repetitive element to achieve

better visualization.

Validation of our prediction by bisulfite Sanger sequencing

Bisulfite conversion of genomic DNA was performed using a commercially avail-

able kit (MethlEasy Xceed Rapid DNA Bisulphite Modification Kit; Human Ge-

netic Signatures, NSW, Australia). Briefly, 5 µg of DNA was denatured by 0.3

M NaOH for 15 minutes at 37◦C. Subsequently, the samples were incubated with

bisulfite solution for 45 minutes at 80◦C. After purification, the eluted samples

were incubated for 20 minutes at 95◦C. The converted DNA was stored at -20◦C

for PCR amplification.

To perform targeted PCR on the 21 regions selected for validation, we designed

primers for nested PCR to amplify 111∼622bp fragments of bisulfite-converted

DNA (Supplemental Table S2). Primer pairs were purchased from Life Tech-

nologies (Supplementary Information). PCR was performed in a volume of 50

µL containing 1 × EpiTaq PCR Buffer, 2.5 mM MgCl2, 0.3 mM dNTP mix, 20

pmol primers, 1.25 units TakaraEpiTaq HS polymerase (Shiga, Japan), and 50 ng

bisulfite-converted DNA. PCR conditions were 40 cycles of 98◦C for 10 seconds,
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55◦C for 30 seconds, and 72◦C for 1 minute. To check the quality of the PCR prod-

ucts, 2% agarose gel electrophoresis was used in 1 × TAE buffer at 50 volts for 15

minutes. The amplified products were visualized using a LED transilluminator, and

the product bands were purified using the NucleoSpin Gel and PCR Clean-up kit

(Macherey-Nagel GmbH & Co. KG, Dueren, Germany). Targeted PCR products

were sequenced directly using ABI3730 sequencers with BigDye v3.1 chemistry

(Applied Biosystems, Foster City, CA, USA).

Finally, we processed the obtained sequencing data using the QUMA online

tool (Kumaki et al., 2008) for analysis and visualization of the methylation patterns

(Supplemental Fig. S3).

Methylation analysis of medaka Tol2 elements

In Figure 3, we applied our method to observe the methylation state of a new

medaka assembly. For comparison, we also called the methylation state on every

100-bp window using Bismark software and the publicly available bisulfite-treated

reads from the testes of the Hd-rR strain. Among the assembly, we identified 17

contigs containing Tol2 elements by BLAST search.

Other data sources and data visualization

Figure 1B and Supplemental Figures S5-S6 were produced using the UCSC Genome

Browser (http://genome.ucsc.edu/) (Karolchik et al., 2014). We used human bisul-

fite sequencing data and unmethylated regions available in the GEO database (Song

et al., 2013).
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The sequence data (SMRT reads) from the medaka sample are deposited at the

NCBI Archive (Accession No. SRP020483). Sequence data from a Japanese

individual are available under controlled access through the National Bioscience

Database Center (NBDC, accession number JGAS00000000003).
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FIGURE LEGENDS

Figure 1. Outline of our integration method

A. The top three distributions show the typical Inter-Pulse Duration Ratio (IPDR)

profiles within 10 bp of the CpG sites in the raw data. The IPDR profiles of in-

dividual CpG sites were treated as points in the 21-dimensional feature space.

Red-colored unmethylated CpGs and blue-colored methylated CpGs are difficult

to separate using a hyperplane. Therefore, initially, we had little knowledge about

the methylation status of each CpG site from the raw data, as illustrated by the ques-

tion marks at the CpG sites. Our algorithm predicts the boundary of unmethylated

and methylated CpG sites. The average IPDR profiles of the two regions, which

have clearly distinct IPDR profiles, are shown below the two regions separated

by the boundary (see the detailed IPDR profiles in Supplemental Fig. S1B). Red

circles and blue boxes represent unmethylated and methylated CpGs, respectively,

predicted by our algorithm (annotated as ’predicted regions’) and were observed

by bisulfite sequencing (labeled ’answer’). In the feature space, red and blue disks

represent the IPDR profiles of predicted regions. B. Comparison of our prediction

with the available human genome methylome data. From top to bottom, black bars

indicate unmethylated regions predicted from SMRT sequencing data using our

method. Yellow and black bars show the methylation level and read coverage ob-

tained from public bisulfite sequencing data, respectively, and blue boxes show un-

methylated regions predicted from the bisulfite data. Green bars below indicate the

alignability of short (100-bp) reads. The bottom row shows repeat masker tracks.

Both methods are consistent in showing unmethylation on the three blue-colored

regions. No read counts of the bisulfite data are available in long duplicated regions
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where the alignability is quite low, but our method can estimate unmethylation in

these regions. C. The sensitivity and precision (proportion of true-positives among

the predicted positives) of our integration method are evaluated on individual CpG

sites when we change the intercept of the hyperplane and set the minimum number

of CpG sites in a region, b, to 35. See the curves for b = 30,40,45, and 50 in Sup-

plemental Fig S3. D. IPDR profiles of CpGs are represented as points in the feature

space. Predictions are made using a decision hyperplane determined by its inter-

cept γ, and individual CpGs are classified as methylated (blue) or unmethylated

(red). E. Multiple predictions using a set of different intercept parameter values

define the discrete methylation level (DML) on each CpG site. Specifically, after

decomposing DNA into unmethylated and methylated regions for different inter-

cept values of γ, we compute the ratio of methylated regions that cover each CpG

site, and treat the ratio as the methylation level of the CpG site. F. DML (x-axis)

and methylation level monitored by bisulfite sequencing (y-axis) in our medaka

sample. The colors are based on the log of the number of CpG sites having corre-

sponding DML value and bisulfite methylation level. These values were strongly

correlated (R = 0.884) and the difference was within 0.25 for 92.0% of CpG sites.

Most of the CpG sites were methylated because we observed CpG methylation in

a genome-wide manner. G. DML (x-axis) correlated (R = 0.732) with the nor-

malized beta values of BeadChip (y-axis) for the CpG sites in our human sample,

and 75.4% of CpG sites are in concordance within 0.25. The majority of CpG sites

are unmethylated, because most CpG sites on the BeadChip are designed on CpG

islands.
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Figure 2. Epigenetic landscape of repetitive elements in the human genome

A-B. Distribution of CpG density (a) and sequence divergence from the representa-

tive in each repeat class (b) for methylated (cyan) and unmethylated (pink) repeat

occurrences. The asterisks indicate statistical significance (p < 1%) determined

by the U test. C. Genome-wide distribution of unmethylated repetitive elements.

The ratio of unmethylated repeat occurrences to all occurrences in each 5-Mb bin

is indicated by color shadings. Prediction of the methylation state was performed

after quality control as described in the text.

Figure 3. Methylation analysis of Tol2, a 4682-bp long autonomous transpo-

son, in medaka

The new genome assembly of SMRT reads had 17 regions (contigs) that contained

complete Tol2 copies. The circles show our prediction of the methylation state of

CpG sites, while the rectangles show the methylation states within each 100 bp

window obtained from bisulfite sequencing. For both tracks, open/red indicates

unmethylation and filled/blue indicates methylation. The arrow above indicates

the region of Tol2 insertions. As the eleventh region was located at the extreme

of the contig, Tol2 was not observed successfully by either SMRT sequencing or

bisulfite sequencing. For the other 16 regions, methylation of Tol2 was observed

consistently by SMRT sequencing, while virtually no information was available on

the Tol2 region from bisulfite sequencing.
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Hsu, C.-H., Aravind, L., He, C., and Shi, Y., et al., 2015. Dna methylation on n

6-adenine in c. elegans. Cell, 161(4):868–878.

Harris, R. A., Wang, T., Coarfa, C., Nagarajan, R. P., Hong, C., Downey, S. L.,

Johnson, B. E., Fouse, S. D., Delaney, A., Zhao, Y., et al., 2010. Comparison

of sequencing-based methods to profile dna methylation and identification of

monoallelic epigenetic modifications.

Hellman, A. and Chess, A., 2010. Extensive sequence-influenced dna methylation

polymorphism in the human genome. Epigenetics Chromatin, 3(1):11.

Iida, A., Shimada, A., Shima, A., Takamatsu, N., Hori, H., Takeuchi, K., and Koga,

A., 2006. Targeted reduction of the DNA methylation level with 5-azacytidine

promotes excision of the medaka fish Tol2 transposable element. Genetical re-

search, 87(3):187–93.

Jiang, L., Zhang, J., Wang, J.-J., Wang, L., Zhang, L., Li, G., Yang, X., Ma, X.,

Sun, X., Cai, J., et al., 2013. Sperm, but not oocyte, {DNA} methylome is

inherited by zebrafish early embryos. Cell, 153(4):773 – 784.

38

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2015. ; https://doi.org/10.1101/018531doi: bioRxiv preprint 

https://doi.org/10.1101/018531


Jirtle, R. L. and Skinner, M. K., 2007. Environmental epigenomics and disease

susceptibility. Nat Rev Genet, 8(4):253–62.

Karolchik, D., Barber, G. P., Casper, J., Clawson, H., Cline, M. S., Diekhans,

M., Dreszer, T. R., Fujita, P. a., Guruvadoo, L., Haeussler, M., et al., 2014.

The UCSC Genome Browser database: 2014 update. Nucleic acids research,

42(Database issue):D764–70.

Kasahara, M., Naruse, K., Sasaki, S., Nakatani, Y., Qu, W., Ahsan, B., Yamada,

T., Nagayasu, Y., Doi, K., Kasai, Y., et al., 2007. The medaka draft genome and

insights into vertebrate genome evolution. Nature, 447(7145):714–719.

Kawakami, K., 2007. Tol2: a versatile gene transfer vector in vertebrates. Genome

Biol, 8(Suppl 1):1–10.

Kerkel, K., Spadola, A., Yuan, E., Kosek, J., Jiang, L., Hod, E., Li, K., Murty, V. V.,

Schupf, N., Vilain, E., et al., 2008. Genomic surveys by methylation-sensitive

snp analysis identify sequence-dependent allele-specific dna methylation. Nat

Genet, 40(7):904–8.

Kin, T. and Ono, Y., 2007. Idiographica: a general-purpose web application

to build idiograms on-demand for human, mouse and rat. Bioinformatics,

23(21):2945–6.

Koga, A., Shimada, A., Shima, A., Sakaizumi, M., Tachida, H., and Hori, H., 2000.

Evidence for recent invasion of the medaka fish genome by the tol2 transposable

element. Genetics, 155(1):273.

Koren, S., Schatz, M. C., Walenz, B. P., Martin, J., Howard, J. T., Ganapathy, G.,

39

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2015. ; https://doi.org/10.1101/018531doi: bioRxiv preprint 

https://doi.org/10.1101/018531


Wang, Z., Rasko, D. a., McCombie, W. R., Jarvis, E. D., et al., 2012. Hybrid

error correction and de novo assembly of single-molecule sequencing reads. Na-

ture Biotechnology, 30:693–700.

Korlach, J., Marks, P. J., Cicero, R. L., Gray, J. J., Murphy, D. L., Roitman, D. B.,

Pham, T. T., Otto, G. a., Foquet, M., and Turner, S. W., et al., 2008. Selec-

tive aluminum passivation for targeted immobilization of single dna polymerase

molecules in zero-mode waveguide nanostructures. Proceedings of the National

Academy of Sciences of the United States of America, 105:1176–81.

Kumaki, Y., Oda, M., and Okano, M., 2008. Quma: quantification tool for methy-

lation analysis. Nucleic acids research, 36(suppl 2):W170–W175.

Lee, E., Iskow, R., Yang, L., Gokcumen, O., Haseley, P., Luquette, L. J., Lohr,

J. G., Harris, C. C., Ding, L., Wilson, R. K., et al., 2012. Landscape of somatic

retrotransposition in human cancers. Science, 337(6097):967–971.

Lister, R., O’Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry, C. C., Millar,

A. H., and Ecker, J. R., 2008. Highly integrated single-base resolution maps of

the epigenome in arabidopsis. Cell, 133(3):523–536.

Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini,

J., Nery, J. R., Lee, L., Ye, Z., Ngo, Q. M., et al., 2009. Human dna methy-

lomes at base resolution show widespread epigenomic differences. Nature,

462(7271):315–22.

Loomis, E. W., Eid, J. S., Peluso, P., Yin, J., Hickey, L., Rank, D., McCalmon,

S., Hagerman, R. J., Tassone, F., and Hagerman, P. J., et al., 2012. Sequencing

40

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2015. ; https://doi.org/10.1101/018531doi: bioRxiv preprint 

https://doi.org/10.1101/018531


the unsequenceable: Expanded cgg-repeat alleles of the fragile x gene. Genome

Res, .

Meissner, A., Mikkelsen, T. S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A.,

Zhang, X., Bernstein, B. E., Nusbaum, C., Jaffe, D. B., et al., 2008. Genome-

scale dna methylation maps of pluripotent and differentiated cells. Nature,

454(7205):766–70.

Miller, G., 2010. Epigenetics. the seductive allure of behavioral epigenetics. Sci-

ence, 329(5987):24–7.

Miura, F., Enomoto, Y., Dairiki, R., and Ito, T., 2012. Amplification-free whole-

genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic acids

research, 40(17):e136–e136.

Molaro, A., Hodges, E., Fang, F., Song, Q., McCombie, W. R., Hannon, G. J., and

Smith, A. D., 2011. Sperm methylation profiles reveal features of epigenetic

inheritance and evolution in primates. Cell, 146(6):1029–41.

Muotri, A. R., Chu, V. T., Marchetto, M. C., Deng, W., Moran, J. V., and Gage,

F. H., 2005. Somatic mosaicism in neuronal precursor cells mediated by l1

retrotransposition. Nature, 435(7044):903–910.

Muotri, A. R., Marchetto, M. C., Coufal, N. G., Oefner, R., Yeo, G., Nakashima,

K., and Gage, F. H., 2010. L1 retrotransposition in neurons is modulated by

mecp2. Nature, 468(7322):443–446.

Nautiyal, S., Carlton, V. E., Lu, Y., Ireland, J. S., Flaucher, D., Moorhead, M.,

Gray, J. W., Spellman, P., Mindrinos, M., Berg, P., et al., 2010. High-throughput

41

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2015. ; https://doi.org/10.1101/018531doi: bioRxiv preprint 

https://doi.org/10.1101/018531


method for analyzing methylation of cpgs in targeted genomic regions. Proc

Natl Acad Sci U S A, 107(28):12587–92. .

Penzkofer, T., Dandekar, T., and Zemojtel, T., 2005. L1base: from functional

annotation to prediction of active line-1 elements. Nucl. Acids Res., 33:D498–

D500.

Qu, W., Hashimoto, S., Shimada, A., Nakatani, Y., Ichikawa, K., Saito, T. L.,

Ogoshi, K., Matsushima, K., Suzuki, Y., Sugano, S., et al., 2012. Genome-wide

genetic variations are highly correlated with proximal dna methylation patterns.

Genome Res, 22(8):1419–25.

Ross, J. P., Rand, K. N., and Molloy, P. L., 2010. Hypomethylation of repeated dna

sequences in cancer. Epigenomics, 2(2):245–269.

Ross, M., Russ, C., Costello, M., Hollinger, A., Lennon, N., Hegarty, R., Nusbaum,

C., and Jaffe, D., 2013. Characterizing and measuring bias in sequence data.

Genome Biology, 14(5):R51.

Schadt, E. E., Banerjee, O., Fang, G., Feng, Z., Wong, W. H., Zhang, X., Kislyuk,

A., Clark, T. A., Luong, K., Keren-Paz, A., et al., 2012. Modeling kinetic rate

variation in third generation dna sequencing data to detect putative modifications

to dna bases. Genome Res, .

Schilling, E., El Chartouni, C., and Rehli, M., 2009. Allele-specific dna methy-

lation in mouse strains is mainly determined by cis-acting sequences. Genome

Research, 19(11):2028–2035.

Schmitz, R. J., Schultz, M. D., Lewsey, M. G., O’Malley, R. C., Urich, M. a.,

42

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2015. ; https://doi.org/10.1101/018531doi: bioRxiv preprint 

https://doi.org/10.1101/018531


Libiger, O., Schork, N. J., and Ecker, J. R., 2011. Transgenerational epigenetic

instability is a source of novel methylation variants. Science (New York, N.Y.),

334:369–73.

Shoemaker, R., Deng, J., Wang, W., and Zhang, K., 2010. Allele-specific methyla-

tion is prevalent and is contributed by cpg-snps in the human genome. Genome

Res, 20(7):883–9.

Smith, Z. D., Chan, M. M., Mikkelsen, T. S., Gu, H., Gnirke, A., Regev, A., and

Meissner, A., 2012. A unique regulatory phase of dna methylation in the early

mammalian embryo. Nature, 484:339–344.

Song, Q., Decato, B., Hong, E. E., Zhou, M., Fang, F., Qu, J., Garvin, T., Kessler,

M., Zhou, J., and Smith, A. D., et al., 2013. A reference methylome database

and analysis pipeline to facilitate integrative and comparative epigenomics. PloS

one, 8(12):e81148.

Su, J., Shao, X., Liu, H., Liu, S., Wu, Q., and Zhang, Y., 2012a. Genome-wide dy-

namic changes of DNA methylation of repetitive elements in human embryonic

stem cells and fetal fibroblasts. Genomics, 99(1):10–17.

Su, J., Yan, H., Wei, Y., Liu, H., Wang, F., Lv, J., Wu, Q., and Zhang, Y., 2012b.

Cpg mps: identification of cpg methylation patterns of genomic regions from

high-throughput bisulfite sequencing data. Nucleic Acids Res, .

Szpakowski, S., Sun, X., Lage, J. M., Dyer, A., Rubinstein, J., Kowalski, D.,

Sasaki, C., Costa, J., and Lizardi, P. M., 2009. Loss of epigenetic silencing in

tumors preferentially affects primate-specific retroelements. Gene, 448(2):151–

167.

43

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2015. ; https://doi.org/10.1101/018531doi: bioRxiv preprint 

https://doi.org/10.1101/018531


Tubio, J. M. C., Li, Y., Ju, Y. S., Martincorena, I., Cooke, S. L., Tojo, M., Gundem,

G., Pipinikas, C. P., Zamora, J., Raine, K., et al., 2014. Extensive transduction of

nonrepetitive dna mediated by l1 retrotransposition in cancer genomes. Science,

345(6196).

Wang, T., Guan, W., Lin, J., Boutaoui, N., Canino, G., Luo, J., Celedón, J. C., and

Chen, W., 2015. A systematic study of normalization methods for Infinium 450

K methylation data using whole-genome bisulfite sequencing data. Epigenetics,

(September):00–00.

Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl,

J. R., Dymov, S., Szyf, M., and Meaney, M. J., 2004. Epigenetic programming

by maternal behavior. Nat Neurosci, 7(8):847–54.

Wilson, A. S., Power, B. E., and Molloy, P. L., 2007. Dna hypomethylation and

human diseases. Biochimica et biophysica acta, 1775:138–162.

Xie, W., Schultz, M., Lister, R., Hou, Z., Rajagopal, N., Ray, P., Whitaker, J., Tian,

S., Hawkins, R., Leung, D., et al., 2013. Epigenomic analysis of multilineage

differentiation of human embryonic stem cells. Cell, 153(5):1134–48.

Yamada, Y., Watanabe, H., Miura, F., Soejima, H., Uchiyama, M., Iwasaka, T.,

Mukai, T., Sakaki, Y., and Ito, T., 2004. A comprehensive analysis of allelic

methylation status of cpg islands on human chromosome 21q. Genome Res,

14(2):247–66.

Zemach, A., McDaniel, I. E., Silva, P., and Zilberman, D., 2010. Genome-wide

evolutionary analysis of eukaryotic dna methylation. Science, 328(5980):916–9.

44

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2015. ; https://doi.org/10.1101/018531doi: bioRxiv preprint 

https://doi.org/10.1101/018531


Zhang, X., Davenport, K. W., Gu, W., Daligault, H. E., Munk, a. C., Tashima, H.,

Reitenga, K., Green, L. D., and Han, C. S., 2012. Improving genome assemblies

by sequencing pcr products with pacbio. BioTechniques, 53:61–2.

Zhang, Y., Rohde, C., Tierling, S., Jurkowski, T. P., Bock, C., Santacruz, D.,

Ragozin, S., Reinhardt, R., Groth, M., Walter, J., et al., 2009. Dna methyla-

tion analysis of chromosome 21 gene promoters at single base pair and single

allele resolution. PLoS Genet, 5(3):e1000438.

45

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2015. ; https://doi.org/10.1101/018531doi: bioRxiv preprint 

https://doi.org/10.1101/018531


Methylated CpG
Unmethylated CpG

Average
IPDR Profile

IPDR profile of each CpG site

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ????

?

Predicted regions

Answer
( (

A

γ

γ γ'...γ''

0

1

γ'''

0
0.1 0.2

0.3...

21 IPD ratios => a point in the 21-dim space

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Sensitivity

F G

B

C D

E

SINE
LINE
LTR
DNA
Simple

Low Complexity
Satellite
RNA
Other

Unknown

20 kb hg19
26,715,000 26,720,000 26,725,000 26,730,000 26,735,000 26,740,000 26,745,000 26,750,000 26,755,000 26,760,000 26,765,000 26,770,000 26,775,000 26,780,000 26,785,000 26,790,000 26,795,000 26,800,000

Bisulfite{
Unmethylated Region
(PacBio)

Alignability(100-mer)

RepeatMasker

Hypomethylated
Region

Methylation Level

Read Count

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 14, 2015. ; https://doi.org/10.1101/018531doi: bioRxiv preprint 

https://doi.org/10.1101/018531


LINE AluLTR
>20%0%

Ratio of unmethylated copies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

CpG density

Table 1. Summary of methylation status on repetitive elements

Class With >9 CpGs (A) Covered (B) B/A Covered with >5x (C) C/A       Unmethylated (D) D/C
LINE/L1 50795 50127 98.7% 45379 89.3% 356 0.8%
LINE/L2 4977 4961 99.7% 4637 93.2% 244 5.3%
LINE/CR1 178 178 100.0% 165 92.7% 5 3.0%
LINE/RTE-X 65 64 98.5% 60 92.3% 1 1.7%
SINE/Alu 238701 235527 98.7% 214341 89.8% 2282 1.1%
SINE/MIR 374 371 99.2% 343 91.7% 169 49.3%
LTR/ERV1 19638 19354 98.6% 17739 90.3% 348 2.0%
LTR/ERVK 5175 5079 98.1% 4603 88.9% 87 1.9%
LTR/ERVL 4395 4350 99.0% 3991 90.8% 82 2.1%
LTR/ERVL-MaLR 4366 4327 99.1% 3933 90.1% 69 1.8%
LTR/Gypsy 108 104 96.3% 89 82.4% 9 10.1%

6092AVS/nosoporteR 2796 96.2% 2427 83.5% 3 0.1%
DNA/hAT-Blackjack 83 83 100.0% 75 90.4% 2 2.7%
DNA/hAT-Charlie 1460 1452 99.5% 1342 91.9% 55 4.1%

623001piT-TAh/AND 322 98.8% 305 93.6% 19 6.2%
DNA/MULE-MuDR 92 92 100.0% 89 96.7% 2 2.2%
DNA/PiggyBac 57 55 96.5% 52 91.2% 1 1.9%
DNA/TcMar-Mariner 384 384 100.0% 360 93.8% 1 0.3%
DNA/TcMar-Tigger 2821 2801 99.3% 2649 93.9% 43 1.6%
rRNA 68 66 97.1% 66 97.1% 8 12.1%
Simple_repeat 6256 6191 99.0% 5434 86.9% 3849 70.8%
Low_complexity 1068 1064 99.6% 942 88.2% 789 83.8%

*
*
*

*
*
*
*
*
*
*

*
*

*

*
*

*

*
*
*
*
*
*

*

*

*
*

* p<0.01 * p<0.01

A B
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Legends for supplemental tables and figures

Supplemental Table S1. Statistics of SMRT sequencing data production

Summary statistics of SMRT sequencing data collected in this study.

Supplemental Table S2. The primers for nested PCR of the bisulfite treated blood

DNA

The primers for nested PCR are shown alongside the sequence IDs that correspond to

those in Supplemental Figure S4, the sequence names, and the target genomic regions.

For each entry, the forward primers appear in the top row, and the reverse primers

appear in the second row.

Supplemental Table S3. DNA methylation states of full-length LINE/L1 elements

According to the three classes of full-length LINE/L1 elements in L1Base, we exam-

ined DNA methylation states of LINE/L1 elements in each class.

Supplemental Figure S1. The normal vector used for prediction

A. The normal vector β used for prediction. We calculated β as follows. Firstly,

we classified the CpGs on the scaffold 1 in the medaka Hd-rR genome (version 1)

into methylated CpGs and unmethylated CpGs according to bisulfite sequencing data.

Next, for each CpG site, we calculate the IPD ratio profiles as the 21-dimensional vec-

tors based on SMRT sequencing kinetics data. Then, using LDA (Linear Discriminant

Analysis), we tried to find the best hyperplane that could separate these IPD ratio pro-

files into each class, namely, methylated or unmethylated. The normal vector of this

hyperplane is denoted by β. B. The average IPDR profiles around unmethylated and

methylated CpG sites. The x-axis shows the positions within 10 bp of the focal CpG

site at the position represented by 0. The y-axis indicates IPDR values. The red- and

blue-colored box plots at each position show the distributions of IPDR values around

1
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unmethylated and methylated CpG sites, respectively. The bottom, middle and top of

each box plot indicate the first, second, and third quartiles, respectively, of the distribu-

tion. C. An example in which both our method and bisulfite sequencing are consistent

in showing unmethylation in gene promoters. The tracks are similar to those in Figure

1B.

Supplemental Figure S2. Accuracy measures on the chromosome 1 of the medaka

Hd-rR genome (version 2)

A-C. Matthew’s correlation coefficient (A), sensitivity (B), and precision (C) as a func-

tion of the intercept of the hyperplane γ, on the chromosome 1 in the medaka genome

(version 2) with a 29.9-fold mapped read coverage. Matthew’s correlation coefficient

represents an overall accuracy of our prediction. The differently colored curves corre-

spond to the different lower bound of number of CpG sites, denoted by b, that was used

for the prediction. Our prediction achieved 93.0% sensitivity and 94.9% precision at

b = 35 and γ = −0.526 . Or sensitivity (93.67%) and precision (93.88%) are close to

each other when b = 35 and γ = −0.540 .

Supplemental Figure S3. Sensitivity and precision of predicting unmethylated

regions with ≥ b CpG sites for a variety of read coverages

We continue to use b to denote a lower bound of the number of CpG sites in a region.

For b = 30, 35, 40, 45, 50, we plot the sensitivity and precision curves when the read

coverage is 20% of 29.9x (A), 40% of 29.9x (B), 60% of 29.9x (C), 80% of 29.9x (D),

and 29.9x (E). The sensitivity and precision were evaluated on the chromosome 1 of

the medaka Hd-rR genome (version 2). For better prediction with a smaller coverage,

a wider window was favored. Precisely, setting b to 50 outperforms the other values

for coverages, 20% and 40%, but it becomes inferior for 80% and 100%. In contrast,

both sensitivity and precision increase for larger coverages, 80% and 100%, when b is

2
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set to smaller values, 35 and 40. In particular, Figure E shows that for coverage 100%

(29.9x), setting b to 35 is better than other values of b. Figure C also highlights that

even with a small coverage 60% of 29.9x, both sensitivity and precision are ∼ 90% for

b = 45.

Supplemental Figure S4. Methylation analysis of selected regions for validation

of our prediction

Of the 21 regions selected for validation of our method, 6 were amplified, and their

Sanger sequencing reads were aligned to the target regions. In the alignments, the

methylated (unconverted) CpGs are represented by the pink asterisks (*), and the un-

methylated (converted) CpGs by the blue number sign (#). We can assess the efficiency

of bisulfite conversion and the quality of the alignment by looking at non-CpG C sites

(CpHs) because Cs in CpHs are usually unmethylated and should always be converted

to Ts (represented by the colons (:)). Thus unconverted CpHs, which are highlighted by

the brown exclamation marks (!), indicate low quality regions. The solid lines represent

the other types of matches.

Supplemental Figure S5. Kernel PCA analysis of sequence feature and methyla-

tion state

The results of Kernel PCA analysis are shown for 4 selected classes of repetitive el-

ements, AluSc (A), LTR12E (B), LTR26E (C), and L2a (D). We projected the repeat

occurrences into the plane based on the distance metrics that we defined using the spec-

trum kernels and their top 2 principal components. The colors of the dots represent the

methylation state of the repeat occurrences; namely, red indicates unmethylation and

blue methylation. The arrows show the unmethylated occurrences that are clustered in

terms of the sequence features.

3
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Supplemental Figure S6. Examples of unmethylated repeat occurrences in a un-

methylation ‘hot spot’

Three adjacent LTR1 elements were unmethylated in this region (A), and a LTR12E

element was located at a unmethylated bi-directional promoter region (B). Both re-

gions are on the p-arm of the chromosome 6. The arrows indicate the locations of

LTR1 and LTR12E. From top to bottom, below the RefSeq gene track, black bars in-

dicate unmethylated regions predicted from SMRT sequencing data using our method.

Yellow and black bars show the methylation level and read coverage obtained from

public bisulfite sequencing data, respectively, and blue boxes show unmethylated re-

gions predicted from the bisulfite data. Green bars below indicate the alignability of

short (100-bp) reads. The bottom rows shows repeat masker tracks and GC rate for

every 5 bp window.

Supplemental Figure S7. Two LINE insertions novel to hg19

We identified two LINE insertions by comparing a new assembly obtained from SMRT

reads and the hg19 reference genome. The vertical arrows indicate the locations of the

identified novel insertions. Specifically, one is aligned at 186,372,132 in Chromosome

3 with identity 99.02%, and the other at 137,014,775 bp in Chromosome 5 with identity

98.71%. From top to bottom, the tracks shown are RefSeq genes, DNase clusters,

repeat masker masked regions, and GC rate for every 5 bp window.
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Genome 301 GGGAGTGACCCAATTTTCCAGGTGCCGTCCATCACCCCTTTCTTTGACTAGGAAAGGGAA
| ||||||

Bisulfite 1 ---------------------------------------------------GTAAGGGAC

Genome 361 CTCCCTGACCCCTTGCGCTTCCCGAGTGAGGCAATGCCTCGCCCTGCTTCGGCTCGCGCA
:|:::|| ::::| #|:||: #||||||||:||||:: |:::||:| #||: #|#|:|

Bisulfite 10 TTTTTTGMTTTTTYSTGTTTTYTGAGTGAGGTAATGTTCYGTTTTGTTCTGGTCTGTGTA

Genome 421 CGGTGCGTGCACCCACTGACCTGCGCCCACTGTCTGGCACTCCCTAGTGAGATGAACCTG
*||||*|||:|:::|:|||::||*|:::|:|||:|||:|:|:::||||||||||||::||

Bisulfite 70 CGGTGCGTGTATTTATTGATTTGCGTTTATTGTTTGGTATTTTTTAGTGAGATGAATTTG

Genome 481 GTA-CCTTAGATGGAAATGCAGAAATCACCGGTCTTCTGCGTCGCTCACGCTGGGAGCTA
||| ::|||||||||||||:||||||:|!*|| :|| |* ! ! # !|

Bisulfite 130 GTATTTTTAGATGGAAATGTAGAAATTACCGGYTTT-----TCCCSCCTCCT--------

Sequence ID #5
Prediction: Hypomethylated
Region: chrX:17,366,059-17,366,763 

C
*
C

C
!
C

C
#
T

C
:
T

: Methylated CpG : Unmethylated CpG

: Unconverted CpH
     (CpA, CpC, CpT)

: Converted CpH
     (CpA, CpC, CpT)

Genome 301 CCTCAGTCGGGAAGTGCAAGGGGTCAGGGAGTTCCCCTTCCGAGTCAAAGAAAGGGGTGA
|| |:||||||||::::||: ||||:||||||| ||| ||

Bisulfite 1 -------------------AGGKTTAGGGAGTTTTTTTTTYGAGTTAAAGAAA-GGGCGA

Genome 361 CGGACAGCACCTGGAAAATCGGGTCACTCCCACCCGAATACTGCGCTTTTCCGACAGGCT
*|||: :|::||||||||* |||:|:|:::|::*|||||:||*|:||||:*||:||| |

Bisulfite 41 CGGATM-TATTTGGAAAATCAGGTTATTTTTATTCGAATATTGCGTTTTTTCGATAGG-T

Genome 421 TAAAAAACGGCGCACCACAAGATTATATCCCACACCTGGCTCGGAGGGTCCTACGCCCAC
|||||||*||*|:|::|:||||||||||:::|:| :|||:|*|||||||::||*| ::|*

Bisulfite 99 TAAAAAACGGCGTATTATAAGATTATATTTTATA-TTGGTTCGGAGGGTTTTACG-TTAC

Genome 481 GGAATCTCGCTGATTGCTAGCACAGCAGTCTGAGATCAAACTGTAAGGCGGCAGC-AAGG
|||||:|*|:||||||:|||:|:||:|||:||||||:|||:|||||||*||:||: || |

Bisulfite 157 GGAATTTCGTTGATTGTTAGTATAGTAGTTTGAGATTAAATTGTAAGGCGGTAGTAAASG

Genome 540 CTGGGGGAGGGGCGCCCGCCATTGCCCAGGCTTTCTTAGGAAAACAAAGCAGCCGGGAAG
:||||| ||| * !

Bisulfite 217 TTGGGGAMGGGKCCC---------------------------------------------

Sequence ID #7
Prediction: Hypermethylated
Region: chr6:123,793,104-123,793,890 

Genome 181 CTATCCTTCACTGGAATCGTAACTGAGGCT--CAATTCGCCTATCCTTTAGCCCCACCT-
|:| !| :!! |:!|

Bisulfite 1 ---------------------------GTTGGCA-----------------TCCMATCTA

Genome 238 --GCTGGAGGCTCTTTGCATCCTTTCGCTTTGTCCACTCTGGCCGCTTCCCTCGTGGGAA
:||||||:| ||||:||::|||#|:|||||::|:|:|||:#|:||:::|#|||||||

Bisulfite 17 TWRTTGGAGGTTYTTTGTATTTTTTTGTTTTGTTTATTTTGGTTGTTTTTTTTGTGGGAA

Genome 296 TATTTCAGGTTCCTCTTAGCCTTGATGGCGGGTCAGCATAAACCCCTGAT-GGGACCCCC
|||||:|||||::|:||||::||||||| ||||:||:|||||::::|||| ||||:!

Bisulfite 77 TATTTTAGGTTTTTTTTAGTTTTGATGGYGGGTTAGTATAAATTTTTGATKGGGATC---

Sequence ID #8
Prediction: Hypomethylated
Region: chr11:5,829,621-5,830,339
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C
*
C

C
!
C

C
#
T

C
:
T

: Methylated CpG : Unmethylated CpG

: Unconverted CpH
     (CpA, CpC, CpT)

: Converted CpH
     (CpA, CpC, CpT)

GTTACAGGAAAGTAAACAGTACTAGGTGCAGGGGCTTTAATTCTATCA-CAAGGTGATAG
||!|| || |:|| :| ||||||||||

Bisulfite 129 -------------------TACTA------------TTWMWTTTAWTAWWAAGGTGATAG

Genome 352 AAGCGGGGCTTTGGGCTTTATCAACCAGACACAAACGCGGGGGGCTCTGGGTGCTGTTAA
||| ||||:||||||:|||||:||::|||:|:|||#| ||||||:|:||||||:|| |||

Bisulfite 158 AAGWGGGGTTTTGGGTTTTATTAATTAGATATAAATG-GGGGGGTTTTGGGTGTTGCTAA

Genome 412 CCGGGCGAAT-TCCTGGGAACTGCGGGTATGGCTTGCCACAGTACCTTATCAGTTAATTG
:#||| ||| |!! |

Bisulfite 217 TTGGGYGAAYCTCCCG--------------------------------------------

Sequence ID #9
Prediction: Hypomethylated
Region: chr1:89,663,480-89,664,077

Genome 661 ACCAGCGACCCCACACTCCAGCCGTCCCTGTCCACACCTCTAAACACCCCATCCCCAAAC
! !:|:|! !! !*| !! :::: |::::|||:

Bisulfite 1 --------CYCTATAC-CCCCCCGCYCC------------------TTTTTTTTTTAAAT

Genome 721 CTCTCAGGGAGGCGGATCTGGGGTGTCCTCCCCTCTCCCCCATTAAACTGTTTCTGCTGC
:|:|: | | || :||||| | ::|::::|:|:::::|| |||:|||||:||:||:

Bisulfite 34 TTTTTTKKGRRGKGGGGTTGGGGGGKTTTTTTTTTTTTTTTATCAAATTGTTTTTGTTGT

Genome 781 AGCCTTCGGCGTCTCGGTGCAGTGACTCGGGCCGTGAACCTGTGCCGGTTACAACTGCAC

Sequence ID #11
Prediction: Hypomethylated
Region: chr19:11,848,508-11,850,380

::||#||#||:|#||||:|||||:|#|||:#|||||::||||:#|||||:||:||:|:
Bisulfite 94 AGTTTTTGGTGTTTTGGTGTAGTGATTTGGGTTGTGAATTTGTGTTGGTTATAATTGTAT

Genome 841 AATCTGGGGAGACGCGGAGCTGCGGGCGCGGAGCTGCCCAGAGAGGGCGCCGGGGCCGGG
|||:||||||||#|#||||:||#|||#|#||||:||:::||||||||#|:#||||:#|||

Bisulfite 154 AATTTGGGGAGATGTGGAGTTGTGGGTGTGGAGTTGTTTAGAGAGGGTGTTGGGGTTGGG

Genome 901 GCCGCAGCGGCCGAGCAGGGACGGGACAGGACGCCCGGGGTCCCGGCTGCCGCCCCAGCC
|:#|:||#||:#|||:|||||#||||:||||#|::#|||||::#||:||:#|::::|| :

Bisulfite 214 GTTGTAGTGGTTGAGTAGGGATGGGATAGGATGTTTGGGGTTTTGGTTGTTGTTTTAG-T

Genome 961 CCATCTTGCGGCCCA-GGGGACCAAGGGCAGAGCTGCGCCAGGGGCACTGGGATTTGCAG
::||:| | |:::| | | !!|| ! *

Bisulfite 273 TTATTTYGYSGTTTACGCCGMCCAAMCSC----YYMC-----------------------

Genome 1 TCTCTCTCTGGGGGGTGGAGGGGACAGAGATCTGGAAAACTGAGAACCCCAAGGGACTCA
|||| | ||! | |||||||:||||||::::||||||:|:|

Bisulfite 1 -------------CCTGGACGAGACCG-----TGGAAAATTGAGAATTTTAAGGGATTTA

Genome 61 CACTGGTTTCTGAGCCTCAGTTTTCCTAGTTACAAAGGACAGCCTCTGCCTGTGATGGGC
:|:||||||:||||::|:||||||::||||||:||||||:||::|:||::|||||||||

Bisulfite 43 TATTGGTTTTTGAGTTTTAGTTTTTTTAGTTATAAAGGATAGTTTTTGTTTGTGATGGGG

Genome 121 GCTGACACACGTGGCACAGTTCCCCATGTGTCCCTCGAAATACCTCCACCATCAGCACAA
|:|||:|:|*||||:|:||||::::||||||:::|*||||||::|::|::||:||:|:||

Bisulfite 103 GTTGATATACGTGGTATAGTTTTTTATGTGTTTTTCGAAATATTTTTATTATTAGTATAA

Genome 181 TCATCCTACGAGACAGGCACGGCCGCTCTCCCCATTCTCCAGATGTGGAAACCGGGGCCC
|:||::||*||||:|||:|*||:*|:|:|::::|||:|::|||||||||||:*||||:::

Bisulfite 163 TTATTTTACGAGATAGGTACGGTCGTTTTTTTTATTTTTTAGATGTGGAAATCGGGGTTT

Genome 241 AGCCAGGTGAAGTCGTAA-CCCGAGGTGCCA-TAGCTGTTGCGTTCCAGAGGCGAGA-TT
||::|||||||||*|||| ::*||||||::| |||:|||||*|||::|||||*|||| ||

Bisulfite 223 AGTTAGGTGAAGTCGTAATTTCGAGGTGTTATTAGTTGTTGCGTTTTAGAGGCGAGATTT

Genome 298 CAAACCC--ACGTCCGTCCGGAAGCCTTGGAAGTGAGGGTGTGCCTGCCTAACCTGCTCA
:||| :: |:*

Bisulfite 283 TAAAWTTWAWYSTTC---------------------------------------------

Sequence ID #15
Prediction: Hypermethylated
Region: chr19:47,905,568-47,906,031
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LTR12E (k=10)

LTR26E (k=6) L2a (k=6)

PC1 PC1

PC
2

PC
2

A B

C D

Methylation status

Hypo
methylation

Hyper
methylation
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Refseq Genes

SINE
LINE
LTR
DNA
Simple

Low Complexity
Satellite
RNA
Other

Unknown

20 kb hg19
26,715,000 26,720,000 26,725,000 26,730,000 26,735,000 26,740,000 26,745,000 26,750,000 26,755,000 26,760,000 26,765,000 26,770,000 26,775,000 26,780,000 26,785,000 26,790,000 26,795,000 26,800,000

LTR12E

LTR1 LTR1 LTR1
B

Bisulfite{
Unmethylated Region
(PacBio)

Alignability(100-mer)

RepeatMasker

Hypomethylated
Region

Methylation Level

Read Count

SINE
LINE
LTR
DNA
Simple

Low Complexity
Satellite
RNA
Other

Unknown

50 kb hg19
26,890,000 26,900,000 26,910,000 26,920,000 26,930,000 26,940,000 26,950,000 26,960,000 26,970,000 26,980,000 26,990,000

GUSBP2
LINC00240

LOC100270746

GC rate

Bisulfite{
Unmethylated Region
(PacBio)

Alignability(100-mer)

RepeatMasker

Hypomethylated
Region

Methylation Level

Read Count

GC rate

A
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Scale
chr3:

Scale
chr5:

Refseq Genes

B

RepeatMasker

GC rate

DNase Clusters

Refseq Genes

A

RepeatMasker

GC rate

DNase Clusters

SINE
LINE
LTR
DNA
Simple

Low Complexity
Satellite
RNA
Other

Unknown

10 kb hg19
137,005,000 137,010,000 137,015,000 137,020,000 137,025,000

KLHL3
KLHL3
KLHL3

SINE
LINE
LTR
DNA
Simple

Low Complexity
Satellite
RNA
Other

Unknown

10 kb hg19
186,360,000 186,365,000 186,370,000 186,375,000 186,380,000 186,385,000

FETUB
FETUB
FETUB

HRG
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Statistics for medaka SMRT sequencing (P6)

Number of SMRT cells 38

Number of mapped subreads    2,848,641

Mean mapped subread length (b) 8,722

Total bases of mapped subreads (b) 24,846,441,723

Coverage (medaka genome size = 800 Mb) 31.06

Statistics for human SMRT sequencing (P6)

Number of SMRT cells 111

Number of mapped subreads    7,279,594

Mean mapped subread length (b) 9,254

Total bases of mapped subreads (b) 67,364,373,129

Coverage (human genome size = 3 Gb) 22.45

Statistics for human SMRT sequencing (P4)

Number of SMRT cells 377

Number of mapped subreads    19,115,712

Mean mapped subread length (b) 2,049

Total bases of mapped subreads (b) 39,177,531,604

Coverage (human genome size = 3 Gb) 13.06
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Sequence_Id Sequence_Name Region Primer_Sequence (5' to 3') Primer Sequence (for nested PCR) (5' to 3')
1 FLI_CHR11_F chr11:92,869,695-92,870,491 TGTATGAGTATGTTTAGTGT TATATGGGGGAGGAGTTAAGATGGT

FLI_CHR11_R CTACTATCTTTTTATTTATCTATACCC CACCCCTTTCTTTAACTCAAAAAAAA

2 FL_CHR7_F chr7:34,945,686-34,946,552 GAATATATGAGTAAATGAAGGATGT TTTTATTAGGGAGTGTTAGATAGTGGG
FL_CHR7_R TACCCCCAAAAATAAAAACT TATTAAATACCCCTCCCCCAACCTC

3 FL_CHR8_F chr8:98,307,662-98,308,329 TTGGTATTTGTAAGAAATTAGGGA TGATTTTTGTATTTTTATTTGAGGTAT
FL_CHR8_R CTTACACTTCCCAAATAAAACAA ATAAAACAATACCTCACCCTACTTC

4 FL_CHR19_F chr19:35,351,062-35,351,674 AAGATATTTATTTAAGGAGGAG GGTGATTTTTGTATTTTTAGTTGAGGTAT
FL_CHR19_R ACCTAATCAAACCTAAACAATAAC AAAAAAAACTCCCTAACCCCTTAC

5 FL_CHRX_F chrX:17,366,059-17,366,763 GGTGGGAGTGATTTAATTTTTTA GAAAGGGAATTTTTTGATTTTTTG
FL_CHRX_R ACTTTATTTATACAACTTCTATTC AAAACAACTCTAATCTATAACTCCCAAC

6 FL_CHR1_F chr1:90,218,123-90,218,684 TTTGGTTGTTTTGTTTATTTAAGT TTAAGTAAGTTTGGGTAATGGTGGG
FL_CHR1_R ATCTCTTAAATACCTTAACC AAAAAATCAAAAAATTCCCTTTCC

7 FL_CHR6_F chr6:123,793,104-123,793,890 GGAAGGATAAATAGTTTAATAAAGG TTATTAGGGAATGTTAGATAGTGGG
FL_CHR6_R CCCAAAAATAAAACCTACAAAA TTTCCTAAAAAAACCTAAACAATAAC

8 LTR_CHR11_F chr11:5,829,621-5,830,339 TTGTAATATTTTTTATATTGGG TTGTTGGAGGTTTTTTGTATTTTTT
LTR_CHR11_R AAAAAATCTTCAATCATCCT ATCCAATCTATAATTCTATAATCACCTCAT

9 LTR_CHR1_F chr1:89,663,480-89,664,077 AAATTTTTGTTTTTTGGAGTTTTA TTTTAATTTTATTATAAGGTGATAGAAG
LTR_CHR1_R TAACTCTCCCTTAACTAAAA TAAAATACTATAACAAACCATACCC

10 LTR_CHR6_F chr6:26,924,100-26,924,635 AAGTTTTTTAAAGTTTTTATTAG
LTR_CHR6_R ACCTACCATACTAAAACCCT

11 LTR26C_CHR19_F chr19:11,848,508-11,850,380 AGGTTGAAGATTTTATAAGGGAA TTTTATTTTTAAATTTTTTAGGGAGG
LTR26C_CHR19_R TAAAACCCACACTAACTTTT ATCTACAAATCCCAATACCCCTAAC

12 AluSc_F chr15:80,352,853-80,353,500 AGTTGTAATTAGTTGTGAGGAAGT TTGTAATTTTAGTATTTTGGGAGGT
AluSc_R CCCCTAAAACTCTAAAAAAA AAAAAAAATTTAATCCTATTTCTC

13 AluSc2_F chr12:11,667,503-11,668,057 TTTTGAGTGTTTTTGGTTTTGGA TTTTTATGTTAAGAATAGTTTTGGT
AluSc2_R TTTCTCTATTTTTCAACTATTCACC TAAAATAAAATCTCTCTCTATCACC

14 MIR_F chr8:145,157,891-145,158,610 GAGGAGTAAAGAAATATAAG AGTTTTGTAAAGTAGGTTTAGGTAGGTTTT
MIR_R RAAACCCAAAATTAAACCCCT CCACCTAAATACCCTTAAACAATTATATTT

15 MIR2_F chr19:47,905,568-47,906,031 GGATAGAGATTTGGAAAATTGA TGGAAAATTGAGAATTTTAAGGGATTTATA
MIR2_R AAACAAATTAAACAAACACACCC AACACACCCTCACTTCCAAAACTTC

16 LTR26E_CHR19_F chr19:12,510,921-12,511,712 TTTTGGAAAGAAAGAAGGGAT
LTR26E_CHR19_R CATTCTACTAAATAAACTCC AATTCAAAATCTAAAAACTCCRAC

17 LTR26E_CHR1_F chr1:245,287,681-245,288,390 AGGATTAAGAAGAATTTTGGA AGAAATATAGTTGTAAGTAAG
LTR26E_CHR1_R CTATAAAACACAACAAACTTAACC AAATCCATCTCCCTAAAAAA

18 L2b_CHR9_F chr9:137,028,161-137,028,803 ATATTTTGTAGTTATTTTTGA ATTTTTTTTAGAATTTAGGG
L2b_CHR9_R ACACCCAAATCCAAATCCAAA CCCAAAAACCTATACAAAAA

19 L2b_CHR8_F chr8:141,097,083-141,098,123 GGAGTATAGATGGAATATTAATAG TTGTTTAGGTTAAAATTTTAAAAGATATTT
L2b_CHR8_R CACAACTAATACAAAAACCCAAA TACAAAAACCCAAAAATAATACCAC

20 AluY_CHR1_F chr1:202,975,549-202,976,334 TATTTTGTAAGTTTAGGGGTGTT GTGTTTTTTTTGTTTGTGGT
AluY_CHR1_R CCCACACCTATATTAATTAAAA TTCTTCTTAATAACTCCTCT

21 LSUrRNAHsa_F chr9:79,186,495-79,187,160 AGTTTTTTATTGGGATGGTATGT TTTTTTAATAATAATGAGATGGGG
LSUrRNAHsa_R CCCTTTCTTTTTTTCTTTTTTC
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