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ABSTRACT
Determining the methylation state of regions with high copy numbers is chal-

lenging for second-generation sequencing, because the read length is insufficient
to map uniquely, especially when repetitive regions are long and nearly identical to
each other. Single-molecule real-time (SMRT) sequencing is a promising method
for observing such regions, because it is not vulnerable to GC bias, it performs
long read lengths, and its kinetic information is sensitive to DNA modifications.
Here, we propose a novel algorithm that combines the kinetic information for
neighboring CpG sites and increases the confidence in identifying the methylation
states of those sites when they are correlated. Both the sensitivity and precision of
our algorithm were >84% for the genome of an inbred medaka (Oryzias latipes)
strain within a practical read coverage of <18-fold. Using this method, we char-
acterized the landscape of the methylation status of repetitive elements, such as
LINEs, in the human genome, thereby revealing the strong correlation between
CpG density and hypomethylation and detecting hypomethylation hot spots of
LTRs and LINEs. We also comprehensively evaluated the methylation states for
nearly identical (> 99.8%) active transposons 4682 base pairs (bp) in length in
the medaka genome, which were difficult to observe using bisulfite-treated short
reads.
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1 BACKGROUNDS
There has been a great deal of interest in identification of genome-wide epigenetic
DNA modifications in recent years, because DNA modifications play an essential role
in cellular and developmental processes [1, 2, 3, 4, 5, 6, 7, 8, 9]. Many human diseases
are associated with the disruption of DNA modifications. In particular, hypomethyla-
tion of repetitive elements, such as LINE-1 elements, has been related to some can-
cers [10, 11]. Although only a few LINE-1 elements exhibit activity in the human
genome [12], transpositions of these elements have been reported in various cancer
genomes [13, 14], and importantly, it has been reported that transpositions are corre-
lated with hypomethylation of the promoter region of LINE-1 elements [15]. There-
fore, it is essential to develop an experimental framework that can characterize the
methylation state of repetitive elements in a genome-wide manner.

The advent of second-generation sequencing technology has increased the effi-
ciency of the generation of precise genome-wide methylation maps at a single-base
resolution using bisulfite treatment [16, 17, 18, 19, 20]; however, these sequencing-
based technologies have difficulty in characterizing the methylation status of CpGs in
regions that are highly similar to other regions. Bisulfite-treated short reads from these
regions often fail to map uniquely to their original positions; instead, they are likely
to be aligned ambiguously with multiple positions. Moreover, first/second-generation
sequencing technology often fails to sequence DNA regions with a GC content >60%
[21, 22] and may exhibit bias against GC-rich regions. These inherent problems of
second-generation sequencing may result in underrepresentation of methylation infor-
mation on specific DNA regions, such as transposable elements and low-complexity
repeat sequences [19, 20, 23, 24, 25]. Especially, the younger and more active trans-
posons are thought to retain higher fidelity and are therefore difficult to address using
short reads.

In the PacBio RS sequencing system, DNA polymerase is used to perform single-
molecule real-time (SMRT) sequencing [26, 27], and this system is capable of sequenc-
ing reads of an average length of ∼10 kb. SMRT sequencing is also able to sequence
genomic regions with extremely high GC contents. A striking example is a previous
report of the sequencing of a >2-kb region with a GC content of 100% [28], indi-
cating that SMRT sequencing is less vulnerable to sequence composition bias than is
first/second-generation sequencing. SMRT sequencing of bisulfite-treated DNA frag-
ments may allow identification of DNA methylation within long regions; however, this
approach is not promising because bisulfite treatment divides DNA into short fragments
<1000 bp [29].

Instead, we explored another advantage of SMRT sequencing to detect DNA mod-
ifications. In SMRT sequencing, we can observe the base sequence in a single DNA
molecule as each corresponding nucleotide is incorporated using the time course of the
fluorescence pulses. From this time course information, we can determine the inter-
pulse duration (IPD), which is defined as the time interval separating the pulses of two
neighboring bases. Importantly, the IPD of the same genomic position varies and has
a significant and predictable response to DNA modifications due to the sensitivity of
DNA polymerase kinetics to DNA modifications and damage.

Consequently, the IPD ratio (IPDR), the ratio of the average IPD in DNA tem-
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plates with modifications to that in control templates, tends to be perturbed system-
atically, allowing identification of DNA modifications (Fig. 1a). Indeed, SMRT se-
quencing methods have been used to detect changes in 5-hydroxymethylcytosine [30],
N4-methylcytosine [31], and N6-methylademine [30, 32, 33], as well as damaged
DNA bases [34] in bacteria and mitochondria; however, estimation of 5-methylcytosine
(5-mC) residues using low-coverage reads is prone to errors and requires extensive
coverage at each position to clarify the base-wise 5-mC state and therefore becomes
costly [30, 32, 35]. Clark et al. attempted to improve the detection of microbial 5-mC in
the Escherichia coli and Bacillus halodurans genomes using Tet1-mediated oxidation
to convert 5-mC into 5caC in SMRT reads of ∼150x coverage per DNA strand [36].
Kinetic information for low-coverage SMRT reads at a single CpG site is not reliable
for predicting the methylation status.

In this study, we exploited the facts that unmethylated CpG dinucleotides are rare
(∼10%) in vertebrates and generally do not exist in isolation but often range over long
hypomethylated regions [9, 24, 37, 38, 39, 40, 41]. Su et al. reported that the av-
erage length of unmethylated regions in five human cell types is ∼2 kb [42]. Thus,
estimating regions of hypomethylated CpG sites is informative in most cases. Simi-
larly, integrating kinetic information for many CpG sites in a long region can increase
the confidence in detecting methylation when the status of those sites is correlated
and shows promise for predicting the methylation status in a block using low-coverage
SMRT reads. Therefore, we examined the feasibility of the approach and present a
novel computational algorithm that integrates SMRT sequencing kinetic data and de-
termines the methylation statuses of CpG sites.

SMRT sequencing is unique in outputting long reads, which has been shown to
be useful in a variety of applications, such as sequencing completion of bacterial
genomes [43, 44], closing gaps in draft genomes [45], the de novo assembly of un-
known genomes [46], sequencing of giant short tandem repeats (e.g., CGG repeats) [28],
and comprehensive characterization of mRNA isoforms [47]. Therefore, we examined
the possibility of determining the methylation statuses of highly similar occurrences
of transposable elements in human and medaka fish (Oryzias latipes), which could be
investigated only using long reads.

2 RESULTS

2.1 Bisulfite data benchmark and SMRT sequencing
It is necessary to take into account allele-specific DNA methylation in the analysis of
the methylomes of diploid genomes [39, 48, 49, 50, 51, 52, 53], because we may ob-
serve an intermediate DNA methylation level resulting from the mixture of different
methylation states from two haplotypes [19, 54]. To assess the ability of SMRT se-
quencing to monitor the DNA methylation status, DNA extracted from a haploid cell
line would serve as an ideal template, avoiding situations in which two alleles are differ-
entially methylated. In nonhuman model organisms, inbred strains also provide a clean
resource, because the two haplotypes are almost identical in sequence, suggesting that
the methylation statuses of the two haplotypes may also match. Therefore, we used the
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medaka model system [55], because six medaka methylomes are available from early
embryos, testes, and liver in two inbred strains [9] by way of Illumina bisulfite sequenc-
ing, which outperforms three other frequently used sequence-based methods in terms
of the genome-wide percentage of CpGs covered [20]. As CpG methylation status ref-
erence data, we used the testes methylome of the medaka Hd-rR inbred strain. In this
dataset, most of the CpG sites in the medaka genome are either hypo- or hypermethy-
lated, and methylation at non-CpG sites is very rare (∼0.02%) [9], allowing us to focus
on CpG sites only. We collected 25.87-fold coverage SMRT subreads from the testes of
medaka Hd-rR (using an estimated genome size of 800 Mb) using P6-C4 reagents. We
also collected 22.45-fold and 13.06-fold coverage SMRT reads from human peripheral
blood of two Japanese individuals. For sequencing two human samples, we employed
the P6-C4 reagents and the P4-C2 or C2-C2 reagents, respectively. In total 2596378,
7279594, and 19115712 subreads were anchored to the medaka genome and the human
genome, respectively. The mean mapped subread lengths were 7972 bases for medaka
and 9254 and 2049 bases for human samples (Supplemental Table 1).

2.2 Prediction of the regional methylation state from kinetic data
Figure 1a shows a schematic representation of the basic concept of our method. First, as
a raw ingredient for prediction, we defined the IPDR profile of a CpG site as an array of
IPDR measurements of 21 bp surrounding the CpG site. With low coverage, the IPDR
profiles at individual CpG sites are noisy and insufficient for determining whether the
focal CpG site is unmethylated or methylated. However, if we could somehow iden-
tify the boundaries of hyper/hypomethylated regions, it would be possible to take the
average of the IPDR profile for the CpGs within each region and would allow better
prediction of the methylation state of each region from its average IPDR profile, which
has less noise than the profile of a single CpG site.

We implemented our method using linear discrimination of the vectors of (aver-
age) IPDR profiles around the focal CpG sites. We represented the vectors as points
residing in the Euclidean space of the appropriate dimension and attempted to separate
the points by a decision hyperplane. For better accuracy, we optimized two parameters
of the decision hyperplane: beta (orientation) and gamma (intercept). As hypomethy-
lated regions are ∼2 kb in size (on average) and contain ∼50 CpG sites in vertebrate
genomes [42], in the prediction, we assumed unmethylated regions to have at least 50
CpG sites and integrated the IPDR profiles to make predictions, which was effective
in reducing noise in the IPD measurements. Finally, our method divides the genome
into regions containing ≥50 CpG sites, such that each region is either hypomethylated
or hypermethylated. An example of our prediction for the human genome is shown in
Fig. 1b, in which gene promoter hypomethylation was captured correctly.

To determine whether our strategy is effective and its dependence on the amount
of data available, we performed predictions using five medaka datasets with different
read coverages, and determined the depth of coverage that would be sufficient to cor-
rectly detect unmethylated CpG sites. We calculated various accuracy measures, such
as sensitivity (recall), specificity (1−false-positive rate), and precision by comparison
our prediction on each CpG site with the methylation level determined in a bisulfite
sequencing study [9]. As most CpG sites in the medaka genome are methylated con-
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sistently, there are only a small number of positive examples of unmethylated CpGs,
and therefore, precision is more informative than specificity in evaluation. We made
the trade-off between sensitivity and precision through the selection of gamma (the in-
tercept of the decision hyperplane) (Supplemental Fig. S2). Our prediction achieved
82.7% sensitivity and 86.6% precision with a 22.2-fold mapped read coverage (Fig.
1c).

2.3 Handling intermediate or ambiguous methylation states
We have introduced a two-class model of our prediction that assigns all of the CpG
sites into either hypomethylated or hypermethylated regions; however, such a dichoto-
mous model is rather unrealistic, and more refined predictions involving multi-level
methylation states or even continuous methylation levels are desirable. For example,
an intermediate level of CpG methylation could result from the distinct methylation
states of two DNA molecules of diploid cells, although each cytosine must be either
methylated or unmethylated in a single DNA molecule. More generally, a sampled cell
population can be epigenetically heterogeneous, which would possibly show a spec-
trum of methylation levels according to its composition. Finally, prediction allowing
intermediate states can represent the ambiguity of the prediction, and exclusion of such
ambiguous predictions is expected to improve the overall prediction accuracy.

Taking these points into consideration, we extended our method to achieve more
complex and informative multi-class predictions. Figures 1d-e depict this concept for
multi-class prediction. We made a classification using the linear discrimination process
involving a separation (decision) hyperplane and determined the position of the hyper-
plane using the gamma parameter (Fig. 1d). Intuitively, the intermediately methylated
CpGs are expected to be distributed more closely to the decision plane, and are there-
fore more ambiguous than the are CpGs with bona fide methylation states. Thus, to
output the multi-class prediction, we perturbed gamma around its optimal value to
produce multiple predictions on each CpG site, which is illustrated by the parallel dis-
placed hyperplanes (Fig. 1e). We then defined the discrete methylation level (DML)
as the fraction of predictions that favored ’methylation’. The robust predictions on the
bona fide hyper/hypomethylation should have extreme DML values, unlike intermedi-
ate or ambiguous predictions.

We empirically checked the accordance between the DMLs and intermediate or am-
biguous methylation states. We compared our predictions made on our human sample
(represented as DMLs) to the beta value (an indicator of methylation level expressed
as a value ranging over [0,1]) obtained by Illumina BeadChip analysis (Fig. 1f). We
divided DMLs and beta values into 10 bins and assigned all CpG sites with DMLs and
beta values available into a pair of classes of corresponding bins. In Figures 1f-g, the
width and height of each box are proportional to the relative number of CpG sites in
the bin of DML or beta value, highlighting the strong correlation between DMLs and
beta values. Similar analysis of the medaka genome also showed the expected correla-
tion (Fig. 1g), although the number of CpGs with ambiguous methylation status was
much lower than that in the human case, presumably because the medaka sample was
collected from an inbred strain [9].
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2.4 Genome-wide methylation pattern of repetitive elements in the
human genome

We investigated how individual occurrences of repetitive elements were methylated in
the human genome, as summarized in Table 1. Of note, some occurrences of repeti-
tive elements contain no or very few CpG sites, and thus we only consider those oc-
currences with at least 10 CpGs to exclude other less informative cases. First, we
checked whether SMRT reads could address the repetitive regions in a useful manner
for methylation analysis. Specifically, we considered a repeat occurrence to be covered
by uniquely mapped SMRT reads if the IPD ratio was available on ≥50% of CpGs,
and found that >96% were covered for every repeat type. To draw robust conclusions,
we further applied a stringent quality control process to each repeat occurrence such
that the read coverage was >5. Although this step reduced the number of repeat oc-
currences under consideration by 3−18%, this reduction could be mitigated simply by
producing more data. Finally, we treated an occurrence as hypomethylated if ≥50%
of CpGs were predicted as hypomethylated. Fractions of hypomethylated repeat oc-
currences vary considerably among different classes of repetitive elements, from ∼1%
for L1 and Alu to ∼50% for MIR and >70% for simple repeats and low-complexity
regions. To validate our prediction regarding the repeat occurrences, we selected 21 re-
gions for bisulfite Sanger sequencing, designed primers for nested PCR (Supplemental
Table S2), and could amplify six regions, indicating the difficulty in observing DNA
methylation of repetitive elements using traditional bisulfite Sanger sequencing. In the
six amplified regions, we confirmed the consistency between our prediction and the
methylation state observed by bisulfite Sanger sequencing (Supplemental Fig. S5).

We then examined the features for characterizing the differences between hyper-
methylated and hypomethylated repetitive elements. First, CpG density was signif-
icantly higher in the hypomethylated occurrences in almost all classes of repetitive
elements (p < 1%, Fig. 2a). This observation was consistent with the known associ-
ation between CpG-rich regions and hypomethylation because hypermethylation leads
to depletion of CpG sites through deamination [56]. Second, sequence divergence
from the representative in each repeat class also showed a correlation with methylation
status (Fig. 2b). For most classes, with the apparent exception of simple repeats, low-
complexity regions, and MIR elements, hypomethylated occurrences were significantly
more divergent than were hypermethylated occurrences (p < 1%, Fig. 2b), presum-
ably because younger copies of a repeat element are less divergent and are likely to
be targets of DNA methylation. We also examined whether the methylation status of
repetitive elements could be correlated partly with sequence features. Kernel principal
component analysis (PCA) using spectrum kernel suggested positive answers for some
repeat types (Supplemental Fig. S4).

Next, we examined whether the hypomethylated repeat occurrences were distributed
uniformly or non-uniformly throughout the entire genome. We selected three major
classes (LINE, Alu, and LTR) of repetitive elements for this analysis. We calculated the
ratios of hypomethylated copies to all repetitive elements in individual non-overlapping
bins 5 Mb in size (Fig. 2c-e). The non-random distribution patterns were more evident
for LINE and LTR than for Alu. For example, we found hypomethylated LINEs to be
enriched in the p-arm of chromosome 1 and in chromosomes 17 and 19. There were
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hypomethylation ‘hot spots’ of LTR elements, e.g., in chromosomes 6 and 9 (Supple-
mental Fig. S3). It is intriguing that some of these hypomethylation hot spots, such
as those in the p-arms of chromosomes 6 and Y, seem to be shared among different
classes of repetitive elements.

2.5 Analysis of the Tol2 transposable element
The medaka has an innate autonomous transposon known as Tol2, which is one of
the first examples of autonomous transposons in vertebrate genomes and a useful tool
for genetic engineering of vertebrates, such as zebrafish and mice [57]. The excision
activities of Tol2 are promoted when DNA methylation is reduced by 5-azacytidine
treatment, which suggests that DNA methylation is one of the mechanisms regulating
the Tol2 transposition [58]. Nevertheless, observing the methylation status of each Tol2
copy using short reads is difficult, because Tol2 is 4682 b in length, and ∼20 highly
similar copies of Tol2 exist in the genome [59].

To elucidate the methylation status of each Tol2 copy, we applied our method to
a new assembly of the Hd-rR genome obtained exclusively from SMRT reads. We
found 17 copies of Tol2 contained entirely within this assembly, all of which were
essentially identical (>99.8% sequence identity). We then called the methylation status
of these Tol2. For comparison, we mapped bisulfite-treated short reads to these contigs
and determined the methylation level. The methylation status of these Tol2, observed
by SMRT reads and bisulfite-sequencing, are shown in Fig. 3. While virtually no
Tol2 copies were mapped by bisulfite reads, as expected from their extremely high
fidelity, 16 of 17 copies were anchored by SMRT reads, and all were predicted to be
hypermethylated by our method. For the regions examined by both SMRT reads and
bisulfite-treated short reads, our prediction was consistent with the methylation level
calculated from the bisulfite-treated reads. For example, one Tol2 copy was surrounded
by hypomethylated regions (number 14). From the bisulfite data, it appeared that the
body of Tol2, from which data were missing, was hypomethylated. Nevertheless, our
prediction estimated this region to be hypermethylated. These results demonstrate the
ability of our method to clarify DNA methylation states of highly identical repetitive
elements such as active transposons.

3 DISCUSSION
In this study, we addressed the problem of uncovering the landscape of DNA methyla-
tion of repetitive elements. To this end, we developed a unique application of SMRT
sequencing to epigenetics. This direction had been already explored in the research
community for bacterial and viral species. However, this application in large verte-
brate genomes has been largely unexplored because of the subtle cytosine methylation
signals in the kinetic information. Therefore, we proposed a new method to utilize
relatively small amounts of kinetic information by incorporating a model reflecting our
prior knowledge on the regional patterns of CpG methylation of vertebrate genomes.
We confirmed the validity of our strategy by comparing the prediction to bisulfite se-
quencing data on medaka and to BeadChip analysis on human samples. These two
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datasets had very different characteristics, which seemed to be partly because of the
methods used (i.e., BeadChip was designed to observe mainly CpG islands that are of-
ten hypomethylated, while bisulfite sequencing is used for genome-wide methylation
analysis) and partly because of the nature of the samples used (i.e., the medaka sam-
ples were derived from an inbred strain, while the human samples were from diploid
cells). Despite such differences in characteristics, our method using the same param-
eters performed almost equally well for both datasets (Fig. 1f,g). These observations
suggested that the choice of parameters is robust for a wide variety of samples, which
is a desirable feature for any method.

Although we presented an extension of our method to accommodate intermedi-
ate methylation states, the discrete methylation level, as defined in this article, is not
identical to the actual proportion of methylated cytosines in the sample. That is, our
prediction is inherently a qualitative classification. A method for truly quantitative
observation of the methylation state using SMRT reads remains to be developed.

We explored the epigenetic landscape of repetitive elements within the human
genome. An apparent limitation of our analysis is that we used the hg19 reference
genome. By evaluating personal genomes instead of the reference genome, new inser-
tions of these repetitive elements are often found, and such active occurrences should
be of interest. Importantly, the more recent the insertion event, the less divergent it
would be from the original copy, and therefore, there would be less likelihood of it
being anchored by short reads. In such cases, long SMRT reads may shed new light on
the ecosystem of active repetitive elements in personal human genomes.

Finally, our method had important strengths compared with conventional tools for
epigenetic studies, such as bisulfite sequencing or affinity-based assays, with not only
an expected increase in comprehensiveness by virtue of long SMRT reads, but also
in the remarkable reduction of laboratory work. If an epigenetic study is conducted
alongside a resequencing study or a de novo assembly study using SMRT sequencing,
the methylation status could be called solely in silico, and no additional experiments
would be necessary.

METHODS

Software availability
Our software program AgIn (Aggregate on Intervals) is available at:
https://github.com/hacone/AgIn

Preparation of genomic DNA and SMRT sequencing
DNA was extracted from the testes of Hd-rR medaka with the DNeasy Blood & Tis-
sue Kit (Qiagen, Hilden, Germany), following the tissue protocol. Genomic DNA
was isolated from peripheral blood leukocytes of two Japanese patients using standard
procedures after informed consent. The DNA featured A280/260 values of ∼1.8 and
formed a clear, sharp band on agarose gel electrophoresis.
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For the medaka sample and one human sample, genomic DNA was sheared us-
ing g-Tube devices (Covaris Inc., Woburn, MA, USA), targeting 20 kb fragments at
4300 rpm, 150 ng/µl and purified using 0.45× volume ratio of AMPure beads (Pacific
Biosciences, Menlo Park, CA, USA). SMRTbellTM libraries were prepared with the
DNA Template Preparation Kit 1.0 (Pacific Biosciences, Menlo Park, CA, USA) using
the “20-kb Template Preparation using BluePippin Size Selection System (15 kb Size
Cutoff)” protocol. Sequencing primer was annealed to the template at 0.833 nM con-
centration. SMRT bellTM templates were sequenced using magnetic bead loading, C4
chemistry, and polymerase version P6. Sequence data were collected on the magnetic
bead collection protocol, 20 kb insert size, stage start, and 240 min movies in PacBio
RS Remote.

For the other human sample, sequencing was performed as follows. Genomic DNA
was sheared with using g-TUBE devices, targeting 10 kb fragments. SMRTbellTM li-
braries were prepared with the DNA Template Preparation Kit 2.0 (3∼10 kbp) (Pacific
Biosciences, Menlo Park, CA, USA). Briefly, sheared DNA was end-repaired, and hair-
pin adapters were ligated using T4 DNA ligase. Incompletely formed SMRTbellTM

templates were degraded using a combination of exonucleases III and VII. The re-
sulting DNA templates were purified using (0.45×) SPRI magnetic beads (AMPure;
Agencourt Bioscience, Beverly, MA, USA). Sequencing primers were annealed to the
templates at a final concentration of 5 nM template DNA. SMRTbellTM library was
sequenced using Magbead loading, C2 chemistry, and Polymerase version C2 or P4.
Sequence data were collected on the PacBio RS for 120 min.

Regarding two human samples, the latter sample matches the one used for Illumina
BeadChip analysis. We used the sequencing data and methylation state prediction from
this sample solely for the analysis of intermediate methylation state prediction (Fig.
1f,g).

Raw IPDR and read coverage
We used the PacBio RS SMRT pipeline to process raw kinetic data from SMRT se-
quencing to obtain the mean IPDR and read coverage at each genomic position. ri
and r′i denote the mean IPDR associated with position i of the forward and reverse
strands, respectively, and ci and c′i denote the read coverage at position i of the forward
and reverse strands, respectively. To remove outlier noise inherent in raw data, mean
IPDRs >10 were Winsorized to 10 and positions with less than three reads were ex-
cluded from the data (the latter was handled by SMRT Pipe). In bisulfite sequencing,
CpG sites with ≥ 1 reads that mapped to C of either strand were considered covered.
CpG sites that have a ≥ 1 position within a 21 bp window with ≥ 3 SMRT reads were
counted as covered.

Estimating the methylation status at individual CpG sites
Suppose that the focal genome has n CpG sites. We can assign identifiers ranging from
1 to n to individual n CpG sites and denote the genomic position of C of the i-th CpG
site by pi. For example, the second CpG site at the 10th genomic position is denoted
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by “p2 = 10.” Our goal was to predict the methylation status, unmethylated or methy-
lated, at pi using information on read coverage and IPDR at positions surrounding pi.
We used positions within 10 bases around pi because these neighboring positions have
proven to be effective in predicting 5-hydroxymethylcytosine, N4-methylcytosine, and
N6-methylademine in bacteria genomes in previous studies [30, 34, 31, 32]. Neigh-
boring positions are denoted by pi + j for j = −10, . . . ,+10 in the plus strand. For
example, the positions 5 bases upstream and downstream of pi are pi − 5 and pi + 5,
respectively.

To achieve a better prediction, we derived a modified IPDR vector from raw read
coverage and IPDR within 10 bases around pi. For this purpose, we took into account
the property that any CpG site in one strand is reverse complementary to the CpG in the
other strand, and the methylation status of Cs at a pair of CpG sites in both strands is
consistent in most cases, making it meaningful to combine IPDR information for both
strands to predict the methylation status. To represent positions in the minus strand, we
note that since we set the position of C of the focal CpG in the plus strand to pi, the
position of C of the CpG in the minus strand is pi+1, and the surrounding positions are
pi + 1− j for j = −10, . . . ,+10. In addition, we attached more importance to IPDR
values associated with a higher read coverage and we quantified this as cpi+j × rpi+j

in the plus strand (c′pi+1−j × r′pi+1−j in the minus strand). We then took the sum of
all the products and normalized it by dividing it by the total number of reads. Finally,
we obtain the 21-dimensional modified IPDR vector for 21 genomic positions around
CpG site pi:

X̂(pi)j =
cpi+jrpi+j + c′pi+1−jr

′
pi+1−j

cpi+j + c′pi+1−j

(j = −10, . . . ,+10).

We are now in a position to define a classifier that uses X̂(pi) as explanatory vari-
ables and predicts the methylation status at pi, which is also estimated independently
by bisulfite sequencing [9]. We attempted to use linear discriminant analysis (LDA)
with the discriminant function

F(pi) = β · X̂(pi) + γ,

where we optimized values of the coefficient vector β and variable γ using bisulfite
sequencing data as the training data set to improve the prediction. If the sign of the dis-
criminant function, F(pi), is positive, the methylation status at pi is defined as ‘methy-
lated’; otherwise, it is defined as ‘unmethylated.’ We note that according to previous
studies [30, 32, 35], estimating 5-methylcytosine residues with low read coverage, for
example cpi+j + c′pi+1−j < 100, is prone to errors, demanding hundreds of reads,
which is extremely costly to achieve.

Predicting the methylation status of CpG blocks
In vertebrates, unmethylated CpG dinucleotides are rare (∼10%) and do not always
exist in isolation, but they are likely to range over long hypomethylated regions. This
motivated us to integrate low-coverage reads around CpGs in a region to yield high-
coverage for estimating the methylation status in the entire region, rather than at a
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single-base resolution. The following formula expresses the average IPDR vector for
21 genomic positions around all of the CpG sites in region A and its associated dis-
criminant function:

X̂(A)j =

∑
pi∈A(cpi+jrpi+j + c′pi+1−jr

′
pi+1−j)∑

pi∈A(cpi+j + c′pi+1−j)
(j = −10, . . . ,+10).

F(A) = β · X̂(A) + γ

In processing a longer region with more CpG sites, the accuracy of methylation status
prediction can improve, although smaller regions may be overlooked. In our analysis,
we impose the constraint that each region has at least b CpG sites and we set b to 50
because Su et al. report that the average length of unmethylated regions in five human
cell types is approximately 2 kb [42] and the average distance between neighboring
CpG sites in the medaka genome is 53.5 bases, although this constraint should be
adjusted according to each individual situation.

The possibility of the hypermethylation (hypomethylation, respectively) of A in-
creases with a larger positive (negative) value of F(A), as well as for a larger total
number of reads

w(A) =
∑

pi∈A,j=−10,...,+10

(cpi+j + c′pi+1−j).

Thus, region A associated with a larger value of w(A)F(A) is better.

Decomposing the genome into hyper-/hypomethylated CpG blocks
Now, we must consider how to decompose n CpG sites in the whole genome into
hypermethylated regions {Mλ∈Λ} and hypomethylated regions {Uµ∈M} such that all
regions are disjoint from each other, their union covers all CpG sites, and the two types
of region occur alternatingly along the genome. To obtain better regions, we calculated
the optimal decomposition of regions that maximizes the following objective function:∑

λ∈Λ

w(Mλ)F(Mλ) +
∑
µ∈M

−w(Uµ)F(Uµ).

To solve this problem, we here mention one important characteristic of SMRT sequenc-
ing. Read coverage is not affected by the sequence composition in SMRT sequenc-
ing [43, 44, 45, 46, 28] . Thus, we assume that the sum of reads at the j-th position
around all CpG sites in region A is a constant c̄(A) independent of j:∑

pi∈A

(cpi+j + c′pi+1−j) = c̄(A) for j = −10, . . . , 10

This allows us to transform w(A) into a simpler form:

w(A) =
∑

pi∈A,j=−10,...,+10

(cpi+j + c′pi+1−j) = 21c̄(A)
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Subsequently, we can also simplify the objective function:

w(A)F (A)

= w(A)(β · X̂(A) + γ)

= 21c̄(A)

 ∑
j=−10,...,+10

βj

∑
pi∈A(cpi+jrpi+j + c′pi+1−jr

′
pi+1−j)

c̄(A)

+ γw(A)

= 42

∑
j

βj

∑
pi∈A

(cpi+jrpi+j + c′pi+1−jr
′
pi+1−j)

2


+

∑
pi∈A,j

γ(cpi+j + c′pi+1−j)

= 42
∑
pi∈A

∑
j

(
βj

(cpi+jrpi+j + c′pi+1−jr
′
pi+1−j)

2
+ γ

cpi+j + c′pi+1−j

42

)
= 42

∑
pi∈A

si,

where si denotes
∑

j

(
βj

(cpi+jrpi+j+c′pi+1−jr
′
pi+1−j)

2 + γ
cpi+j+c′pi+1−j

42

)
in the sec-

ond last formula because the value only depends on read coverage and IPDR values at
21 genomic positions surrounding pi. Consequently, our objective function to optimize
became a linear combination of si:∑

λ∈Λ

w(Mλ)F(Mλ) +
∑
µ∈M

−w(Uµ)F(Uµ) =
∑
λ∈Λ

∑
pi∈Mλ

si +
∑
µ∈M

∑
pi∈Uµ

(−si)

Although we set si to a score calculated from weighted IPDR information, we can set
si to a log-likelihood function of the form - log Qi for some likelihood function Qi.

This simple form motivated us to design a dynamic programming algorithm for
calculating the optimal value efficiently. We considered the subproblem involving the
first i CpG sites among all n sites, and let SM

i and SU
i be the maximum value of

the objective function when the last i-th CpG site was methylated and unmethylated,
respectively. SM

i and SU
i meet the following recurrences:

SM
i+1 = max{SM

i + si+1, SU
i−b+1 +

i+1∑
k=i−b+2

sk}

SU
i+1 = max{SU

i − si+1, SM
i−b+1 +

i+1∑
k=i−b+2

(−sk)}

The first max term implies extension of the running region by one CpG site, while the
second term means a switch from the previous methylation status and the initiation of a
new region with ≥ b CpG sites. We set b to 50 in our experiments, but one can change
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the requirement for the minimum number of CpG sites in a region by making an ap-
propriate adjustment to the second term. Of SM

n and SU
n , the larger value gives the

maximum value, and tracing back the optimal path from the maximum value provides
all the boundaries between neighboring methylated and unmethylated regions. To sat-
isfy the constraint on the minimum number of CpG sites, we used the idea proposed
by Csűrös [60].

Thus far, we have assumed two possible methylation statuses, methylated or un-
methylated, because this situation is true in most cases in our inbred strain sample [9].
In human cells, however, many partially methylated cytosines have been reported [19].
To consider such situations, we need to extend our algorithm to involve scores for three
methylation statuses, methylated, unmethylated, and partially methylated. One can re-
design the score function and the recurrence for each class. For example, making the
parameters, β, γ, and b, depend on the class to which the i-th CpG site belongs, we can
redefine the new recurrences for three classes:

SM
i+1 = max{SM

i + sMi+1, max{SU
i−bM+1, S

P
i−bM+1}+

i+1∑
k=i−bM+2

sMk }

SU
i+1 = max{SU

i + sUi+1, max{SP
i−bU+1, S

M
i−bU+1}+

i+1∑
k=i−bU+2

sUk }

SP
i+1 = max{SP

i + sPi+1, max{SM
i−bP+1, S

U
i−bP+1}+

i+1∑
k=i−bP+2

sPk },

where P denotes “partially methylated,” bC indicates the minimum region length for
each class C ∈ {M,U,P}, and

sCi =
∑
j

(
βC
j

(cpi+jrpi+j + c′pi+1−jr
′
pi+1−j)

2
+ γC

cpi+j + c′pi+1−j

42

)
.

One might wonder if the hidden Markov Model (HMM) can be used for comput-
ing unmethylated and methylated regions; however, it is not obvious that using HMM
guarantees the requirement that each range has ≥ b CpG sites.

For calculating more quantitative methylation level called discrete methylation lev-
els, we performed prediction using the set of 10 perturbed gamma values (from -12%
to +24% by 4%) so we obtain 10 predictions on each CpG site. Then, on each CpG
site, the number of predictions that favored methylation were divided by 10, yielding
the discrete methylation level ranging over [0, 1].

Methylation status calculated from bisulfite sequencing
We evaluated the prediction accuracy of our integration method using methylation
scores calculated from bisulfite-treated Illumina reads as the answer set. Let S be
the set of bisulfite-treated Illumina reads covering the i-th CpG site, x be the number
of methylated CpGs in S at i, and y be the coverage of S at i (the size of S). We
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defined the methylation score at i as x/y. We then defined the methylation status as
‘hypomethylated’ if the score was less than 0.5; otherwise, it was defined as ‘hyperme-
thylated’.

We need to carefully constrain the value of the coverage y. Allowing a lower value
of y is likely to produce more erroneous methylation scores, while using y greater than
a higher threshold would reduce the number of CpGs associated with their methylation
scores. The average coverage was 9.40-fold in our bisulfite-treated reads collected
from testes of the Hd-rR medaka inbred strain; however, the coverage at individual
CpG sites varied to some extent. To increase the number of CpG sites associated with
methylation scores, we defined the methylation score when the CpG site was covered
by one or more reads (i.e., y ≥ 1).

Prediction accuracy of our method at individual CpG sites
We predicted the methylation status of each CpG site by checking whether the CpG
site was located in a hypo- or hypermethylated region according to the output of our
integration method. We measured the accuracy of the prediction by checking the con-
sistency between the prediction and the actual status for each CpG site. CpG sites for
which no bisulfite-treated reads were available were ignored. We treat a hypomethy-
lated status as positive and a hypermethylated status as negative, because we are more
interested in identifying rare hypomethylated regions accounting for ∼10% of CpG
sites.

Methylation analysis of human repetitive elements
We started the analysis by listing repetitive elements using the Repeat Library 20140131
(Smit, A., Hubley, R. & Green, P. Repeatmasker open-4.0. http://www.repeatmasker.org).
Only repetitive elements containing at least 10 CpG sites were considered. We calcu-
lated the methylation levels of CpG sites as discrete methylation levels, and CpG sites
with a DML<0.4 were considered as hypomethylated. To further reduce the degree of
hypomethylation assigned false-positively, we filtered out repetitive elements with an
average read coverage on CpG sites of <5.0. Finally, we treated repetitive elements as
hypomethylated if more than half of the CpG sites were hypomethylated; otherwise,
they were considered as hypermethylated.

The relationships between methylation state and CpG density or divergence were
tested for statistical significance using the Mann-Whitney U test. To draw ideograms in
Figure 2c-e, we counted the numbers of hypomethylated and hypermethylated repeats
in every 5 Mb bin and then used the Ideographica web server [61] to generate the im-
ages. In Supplemental Figure S4, Kernel PCA analysis was performed using spectrum
kernel. As the magnitude of sequence divergence among occurrences was markedly
variable for different types of repetitive elements, it was necessary to optimize the k-
mer size for each type of repetitive element to achieve better visualization.
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Validation of our prediction by bisulfite Sanger sequencing
Bisulfite conversion of genomic DNA was performed using a commercially available
kit (MethlEasy Xceed Rapid DNA Bisulphite Modification Kit; Human Genetic Sig-
natures, NSW, Australia). Briefly, 5 µg of DNA was denatured by 0.3 M NaOH for
15 minutes at 37◦C. Subsequently, the samples were incubated with bisulfite solution
for 45 minutes at 80◦C. After purification, the eluted samples were incubated for 20
minutes at 95◦C. The converted DNA was stored at -20◦C for PCR amplification.

To perform targeted PCR on the 21 regions selected for validation, we designed
primers for nested PCR to amplify 111∼622bp fragments of bisulfite-converted DNA
(Supplemental Table S2). Primer pairs were purchased from Life Technologies (Sup-
plementary Information). PCR was performed in a volume of 50 µL containing 1 ×
EpiTaq PCR Buffer, 2.5 mM MgCl2, 0.3 mM dNTP mix, 20 pmol primers, 1.25 units
TakaraEpiTaq HS polymerase (Shiga, Japan), and 50 ng bisulfite-converted DNA. PCR
conditions were 40 cycles of 98◦C for 10 seconds, 55◦C for 30 seconds, and 72◦C for
1 minute. To check the quality of the PCR products, 2% agarose gel electrophoresis
was used in 1 × TAE buffer at 50 volts for 15 minutes. The amplified products were
visualized using a LED transilluminator, and the product bands were purified using the
NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel GmbH & Co. KG, Dueren,
Germany). Targeted PCR products were sequenced directly using ABI3730 sequencers
with BigDye v3.1 chemistry (Applied Biosystems, Foster City, CA, USA).

Finally, we processed the obtained sequencing data using the QUMA online tool [62]
for analysis and visualization of the methylation patterns (Supplemental Fig. S5).

Methylation analysis of medaka Tol2 elements
In Figure 3, we applied our method to observe the methylation state of a new medaka
assembly. For comparison, we also called the methylation state on every 100-bp win-
dow using Bismark software and the publicly available bisulfite-treated reads from the
testes of the Hd-rR strain. Among the assembly, we identified 17 contigs containing
Tol2 elements by BLAST search.

Other data sources and data visualization
Figure 1b and Supplemental Figure 3 were produced using the UCSC Genome Browser
(http://genome.ucsc.edu/) [63]. We used human bisulfite sequencing data and hy-
pomethylated regions available in the GEO database [64].
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FIGURE LEGENDS
Figure 1. Outline of our integration method

a. The top three distributions show the typical Inter-Pulse Duration Ratio (IPDR) pro-
files within 10 bp of the CpG sites in the raw data. The IPDR profiles of individual
CpG sites were treated as points in the 21-dimensional feature space. Red-colored un-
methylated CpGs and blue-colored methylated CpGs are difficult to separate using a
hyperplane. Therefore, initially, we had little knowledge about the methylation status
of each CpG site from the raw data, as illustrated by the question marks at the CpG sites.
Our algorithm predicts the boundary of hypo- and hypermethylated CpG sites. The av-
erage IPDR profiles of the two regions, which have clearly distinct IPDR profiles, are
shown below the two regions separated by the boundary. Red circles and blue boxes
represent unmethylated and methylated CpGs, respectively, predicted by our algorithm
(annotated as ’predicted regions’) and were observed by bisulfite sequencing (labeled
’answer’). In the feature space, red and blue disks represent the IPDR profiles of pre-
dicted regions. b. Comparison of our prediction with the available human genome
methylome data. From top to bottom, below the RefSeq gene track, black bars indicate
hypomethylated regions predicted from SMRT sequencing data using our method. Yel-
low and black bars show the methylation level and read coverage obtained from public
bisulfite sequencing data, respectively, and blue boxes show hypomethylated regions
predicted from the bisulfite data. Green bars below indicate the alignability of short
(100-bp) reads. The bottom row shows repeat masker tracks. c. Analysis of the sen-
sitivity and precision (proportion of true-positives among the predicted positives) of
our integration method. To estimate the read coverage sufficient to guarantee accuracy,
we examined five datasets of different coverages ranging from ∼2-fold to ∼ 22-fold.
d. IPDR profiles of CpGs are represented as points in the feature space. Predictions
are made using a decision hyperplane (determined by gamma), and CpGs are classi-
fied as methylated (blue) or unmethylated (red). e. Multiple predictions using a set of
different parameters define the discrete methylation level (DML) on each CpG site. f.
DMLs (x-axis) correlated with the beta values of BeadChip (y-axis) for the CpG sites
in our human sample. The beta values are color coded from 0 (red, hypomethylation)
to 1 (blue, hypermethylation). The width is scaled to the relative number of CpG sites
predicted as having that DML. The majority of CpG sites are hypomethylated, because
most CpG sites on the BeadChip are designed on CpG islands. g. DMLs (x-axis) and
methylation level monitored by bisulfite sequencing (y-axis) in our medaka sample ac-
cording to the color coding and scaling shown in Fig. 1f. Most of the CpG sites were
hypermethylated because we observed CpG methylation genome-wide.

Figure 2. Epigenetic landscape of repetitive elements in the human genome

a-b. Distribution of CpG density (a) and sequence divergence from the representative
in each repeat class (b) for methylated (cyan) and hypomethylated (pink) repeat occur-
rences. The asterisks indicate statistical significance (p < 1%) determined by the U
test. c-e. Genome-wide distribution of hypomethylated repetitive elements. The ratio
of hypomethylated repeat occurrences to all occurrences in each 5-Mb bin is indicated
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by color shadings. Prediction of the methylation state was performed after quality con-
trol as described in the text.

Figure 3. Methylation analysis of Tol2, a 4682-bp long autonomous transposon, in
medaka

The new genome assembly of SMRT reads had 17 regions (contigs) that contained
complete Tol2 copies. The circles show our prediction of the methylation state of CpG
sites, while the rectangles show the methylation states within each 100 bp window ob-
tained from bisulfite sequencing. For both tracks, open/red indicates hypomethylation
and filled/blue indicates hypermethylation. The arrow above indicates the region of
Tol2 insertions. As the eleventh region was located at the extreme of the contig, Tol2
was not observed successfully by either SMRT sequencing or bisulfite sequencing. For
the other 16 regions, hypermethylation of Tol2 was observed consistently by SMRT se-
quencing, while virtually no information was available on the Tol2 region from bisulfite
sequencing.
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CpG density

Table 1. Summary of methylation status on repetitive elements

Class With >9 CpGs (A) Covered (B) B/A Covered with >5x (C) C/A Hypomethylated (D) D/C

LINE/L1 50795 50127 98.7% 45379 89.3% 356 0.8%

LINE/L2 4977 4961 99.7% 4637 93.2% 244 5.3%

LINE/CR1 178 178 100.0% 165 92.7% 5 3.0%

LINE/RTE-X 65 64 98.5% 60 92.3% 1 1.7%

SINE/Alu 238701 235527 98.7% 214341 89.8% 2282 1.1%

SINE/MIR 374 371 99.2% 343 91.7% 169 49.3%

LTR/ERV1 19638 19354 98.6% 17739 90.3% 348 2.0%

LTR/ERVK 5175 5079 98.1% 4603 88.9% 87 1.9%

LTR/ERVL 4395 4350 99.0% 3991 90.8% 82 2.1%

LTR/ERVL-MaLR 4366 4327 99.1% 3933 90.1% 69 1.8%

LTR/Gypsy 108 104 96.3% 89 82.4% 9 10.1%

Retroposon/SVA 2906 2796 96.2% 2427 83.5% 3 0.1%

DNA/hAT-Blackjack 83 83 100.0% 75 90.4% 2 2.7%

DNA/hAT-Charlie 1460 1452 99.5% 1342 91.9% 55 4.1%

DNA/hAT-Tip100 326 322 98.8% 305 93.6% 19 6.2%

DNA/MULE-MuDR 92 92 100.0% 89 96.7% 2 2.2%

DNA/PiggyBac 57 55 96.5% 52 91.2% 1 1.9%

DNA/TcMar-Mariner 384 384 100.0% 360 93.8% 1 0.3%

DNA/TcMar-Tigger 2821 2801 99.3% 2649 93.9% 43 1.6%

rRNA 68 66 97.1% 66 97.1% 8 12.1%

Simple_repeat 6256 6191 99.0% 5434 86.9% 3849 70.8%

Low_complexity 1068 1064 99.6% 942 88.2% 789 83.8%
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SUPPLEMENTAL FIGURE LEGENDS

Supplemental Table S1. Statistics of SMRT sequencing data production

Summary statistics of SMRT sequencing data collected in this study.

Supplemental Figure S1. The normal vector used for prediction

a. The normal vector β used for prediction. We calculated β as follows. Firstly,

we classified the CpGs on the scaffold 1 in the medaka Hd-rR genome (version 1)

into methylated CpGs and unmethylated CpGs according to bisulfite sequencing data.

Next, for each CpG site, we calculate the IPD ratio profiles as the 21-dimensional vec-

tors based on SMRT sequencing kinetics data. Then, using LDA (Linear Discriminant

Analysis), we tried to find the best hyperplane that could separate these IPD ratio pro-

files into each class, namely, methylated or unmethylated. The normal vector of this

hyperplane is denoted by β. b. The average IPDR profiles around unmethylated and

methylated CpG sites. The x-axis shows the positions within 10 bp of the focal CpG

site at the position represented by 0. The y-axis indicates IPDR values. The red- and

blue-colored box plots at each position show the distributions of IPDR values around

unmethylated and methylated CpG sites, respectively. The bottom, middle and top of

each box plot indicate the first, second, and third quartiles, respectively, of the distri-

bution.

Supplemental Figure S2. Accuracy measures on the scaffold 1 and scaffold 2 of

the medaka Hd-rR genome (version 1)

a-c. Matthew’s correlation coefficient (a), sensitivity (b), and precision (c) as a func-

tion of the parameter γ, on the scaffold 1. d-f. Matthew’s correlation coefficient (d),

sensitivity (e), and precision (f) on the scaffold 2. The differently colored curves corre-

spond to the different amount of sequencing data used for the prediction. Comparison

1
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of these statistics between scaffold 1 and scaffold 2 shows that γ can be robustly opti-

mized through maximization of MCC.

Supplemental Figure S3. Examples of hypomethylated repeat occurrences in a

hypomethylation ‘hot spot’

Three adjacent LTR1 elements were hypomethylated in this region (a), and a LTR12E

element was located at a hypomethylated bi-directional promoter region (b). Both re-

gions are on the p-arm of the chromosome 6. The arrows indicate the locations of

LTR1 and LTR12E. From top to bottom, below the RefSeq gene track, black bars indi-

cate hypomethylated regions predicted from SMRT sequencing data using our method.

Yellow and black bars show the methylation level and read coverage obtained from

public bisulfite sequencing data, respectively, and blue boxes show hypomethylated re-

gions predicted from the bisulfite data. Green bars below indicate the alignability of

short (100-bp) reads. The bottom rows shows repeat masker tracks and GC rate for

every 5 bp window.

Supplemental Figure S4. Kernel PCA analysis of sequence feature and methyla-

tion state

The results of Kernel PCA analysis are shown for 4 selected classes of repetitive el-

ements, AluSc (a), LTR12E (b), LTR26E (c), and L2a (d). We projected the repeat

occurrences into the plane based on the distance metrics that we defined using the

spectrum kernels and their top 2 principal components. The colors of the dots represent

the methylation state of the repeat occurrences; namely, red indicates hypomethylation

and blue hypermethylation. The arrows show the hypomethylated occurrences that are

clustered in terms of the sequence features.

2
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Supplemental Table S2. The primers for nested PCR of the bisulfite treated blood

DNA

The primers for nested PCR are shown alongside the sequence IDs that correspond to

those in Supplemental Figure S4, the sequence names, and the target genomic regions.

For each entry, the forward primers appear in the top row, and the reverse primers

appear in the second row.

Supplemental Figure S5. Methylation analysis of selected regions for validation

of our prediction

Of the 21 regions selected for validation of our method, 6 were amplified, and their

Sanger sequencing reads were aligned to the target regions. In the alignments, the

methylated (unconverted) CpGs are represented by the pink asterisks (*), and the un-

methylated (converted) CpGs by the blue number sign (#). We can assess the efficiency

of bisulfite conversion and the quality of the alignment by looking at non-CpG C sites

(CpHs) because Cs in CpHs are usually unmethylated and should always be converted

to Ts (represented by the colons (:)). Thus unconverted CpHs, which are highlighted by

the brown exclamation marks (!), indicate low quality regions. The solid lines represent

the other types of matches.

3
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Genome 301 GGGAGTGACCCAATTTTCCAGGTGCCGTCCATCACCCCTTTCTTTGACTAGGAAAGGGAA
| ||||||

Bisulfite 1 ---------------------------------------------------GTAAGGGAC

Genome 361 CTCCCTGACCCCTTGCGCTTCCCGAGTGAGGCAATGCCTCGCCCTGCTTCGGCTCGCGCA
:|:::|| ::::| #|:||: #||||||||:||||:: |:::||:| #||: #|#|:|

Bisulfite 10 TTTTTTGMTTTTTYSTGTTTTYTGAGTGAGGTAATGTTCYGTTTTGTTCTGGTCTGTGTA

Genome 421 CGGTGCGTGCACCCACTGACCTGCGCCCACTGTCTGGCACTCCCTAGTGAGATGAACCTG
*||||*|||:|:::|:|||::||*|:::|:|||:|||:|:|:::||||||||||||::||

Bisulfite 70 CGGTGCGTGTATTTATTGATTTGCGTTTATTGTTTGGTATTTTTTAGTGAGATGAATTTG

Genome 481 GTA-CCTTAGATGGAAATGCAGAAATCACCGGTCTTCTGCGTCGCTCACGCTGGGAGCTA
||| ::|||||||||||||:||||||:|!*|| :|| |* ! ! # !|

Bisulfite 130 GTATTTTTAGATGGAAATGTAGAAATTACCGGYTTT-----TCCCSCCTCCT--------

Sequence ID #5
Prediction: Hypomethylated
Region: chrX:17,366,059-17,366,763 

C
*
C

C
!
C

C
#
T

C
:
T

: Methylated CpG : Unmethylated CpG

: Unconverted CpH
     (CpA, CpC, CpT)

: Converted CpH
     (CpA, CpC, CpT)

Genome 301 CCTCAGTCGGGAAGTGCAAGGGGTCAGGGAGTTCCCCTTCCGAGTCAAAGAAAGGGGTGA
|| |:||||||||::::||: ||||:||||||| ||| ||

Bisulfite 1 -------------------AGGKTTAGGGAGTTTTTTTTTYGAGTTAAAGAAA-GGGCGA

Genome 361 CGGACAGCACCTGGAAAATCGGGTCACTCCCACCCGAATACTGCGCTTTTCCGACAGGCT
*|||: :|::||||||||* |||:|:|:::|::*|||||:||*|:||||:*||:||| |

Bisulfite 41 CGGATM-TATTTGGAAAATCAGGTTATTTTTATTCGAATATTGCGTTTTTTCGATAGG-T

Genome 421 TAAAAAACGGCGCACCACAAGATTATATCCCACACCTGGCTCGGAGGGTCCTACGCCCAC
|||||||*||*|:|::|:||||||||||:::|:| :|||:|*|||||||::||*| ::|*

Bisulfite 99 TAAAAAACGGCGTATTATAAGATTATATTTTATA-TTGGTTCGGAGGGTTTTACG-TTAC

Genome 481 GGAATCTCGCTGATTGCTAGCACAGCAGTCTGAGATCAAACTGTAAGGCGGCAGC-AAGG
|||||:|*|:||||||:|||:|:||:|||:||||||:|||:|||||||*||:||: || |

Bisulfite 157 GGAATTTCGTTGATTGTTAGTATAGTAGTTTGAGATTAAATTGTAAGGCGGTAGTAAASG

Genome 540 CTGGGGGAGGGGCGCCCGCCATTGCCCAGGCTTTCTTAGGAAAACAAAGCAGCCGGGAAG
:||||| ||| * !

Bisulfite 217 TTGGGGAMGGGKCCC---------------------------------------------

Sequence ID #7
Prediction: Hypermethylated
Region: chr6:123,793,104-123,793,890 

Genome 181 CTATCCTTCACTGGAATCGTAACTGAGGCT--CAATTCGCCTATCCTTTAGCCCCACCT-
|:| !| :!! |:!|

Bisulfite 1 ---------------------------GTTGGCA-----------------TCCMATCTA

Genome 238 --GCTGGAGGCTCTTTGCATCCTTTCGCTTTGTCCACTCTGGCCGCTTCCCTCGTGGGAA
:||||||:| ||||:||::|||#|:|||||::|:|:|||:#|:||:::|#|||||||

Bisulfite 17 TWRTTGGAGGTTYTTTGTATTTTTTTGTTTTGTTTATTTTGGTTGTTTTTTTTGTGGGAA

Genome 296 TATTTCAGGTTCCTCTTAGCCTTGATGGCGGGTCAGCATAAACCCCTGAT-GGGACCCCC
|||||:|||||::|:||||::||||||| ||||:||:|||||::::|||| ||||:!

Bisulfite 77 TATTTTAGGTTTTTTTTAGTTTTGATGGYGGGTTAGTATAAATTTTTGATKGGGATC---

Sequence ID #8
Prediction: Hypomethylated
Region: chr11:5,829,621-5,830,339
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C
*
C

C
!
C

C
#
T

C
:
T

: Methylated CpG : Unmethylated CpG

: Unconverted CpH
     (CpA, CpC, CpT)

: Converted CpH
     (CpA, CpC, CpT)

GTTACAGGAAAGTAAACAGTACTAGGTGCAGGGGCTTTAATTCTATCA-CAAGGTGATAG
||!|| || |:|| :| ||||||||||

Bisulfite 129 -------------------TACTA------------TTWMWTTTAWTAWWAAGGTGATAG

Genome 352 AAGCGGGGCTTTGGGCTTTATCAACCAGACACAAACGCGGGGGGCTCTGGGTGCTGTTAA
||| ||||:||||||:|||||:||::|||:|:|||#| ||||||:|:||||||:|| |||

Bisulfite 158 AAGWGGGGTTTTGGGTTTTATTAATTAGATATAAATG-GGGGGGTTTTGGGTGTTGCTAA

Genome 412 CCGGGCGAAT-TCCTGGGAACTGCGGGTATGGCTTGCCACAGTACCTTATCAGTTAATTG
:#||| ||| |!! |

Bisulfite 217 TTGGGYGAAYCTCCCG--------------------------------------------

Sequence ID #9
Prediction: Hypomethylated
Region: chr1:89,663,480-89,664,077

Genome 661 ACCAGCGACCCCACACTCCAGCCGTCCCTGTCCACACCTCTAAACACCCCATCCCCAAAC
! !:|:|! !! !*| !! :::: |::::|||:

Bisulfite 1 --------CYCTATAC-CCCCCCGCYCC------------------TTTTTTTTTTAAAT

Genome 721 CTCTCAGGGAGGCGGATCTGGGGTGTCCTCCCCTCTCCCCCATTAAACTGTTTCTGCTGC
:|:|: | | || :||||| | ::|::::|:|:::::|| |||:|||||:||:||:

Bisulfite 34 TTTTTTKKGRRGKGGGGTTGGGGGGKTTTTTTTTTTTTTTTATCAAATTGTTTTTGTTGT

Genome 781 AGCCTTCGGCGTCTCGGTGCAGTGACTCGGGCCGTGAACCTGTGCCGGTTACAACTGCAC

Sequence ID #11
Prediction: Hypomethylated
Region: chr19:11,848,508-11,850,380

::||#||#||:|#||||:|||||:|#|||:#|||||::||||:#|||||:||:||:|:
Bisulfite 94 AGTTTTTGGTGTTTTGGTGTAGTGATTTGGGTTGTGAATTTGTGTTGGTTATAATTGTAT

Genome 841 AATCTGGGGAGACGCGGAGCTGCGGGCGCGGAGCTGCCCAGAGAGGGCGCCGGGGCCGGG
|||:||||||||#|#||||:||#|||#|#||||:||:::||||||||#|:#||||:#|||

Bisulfite 154 AATTTGGGGAGATGTGGAGTTGTGGGTGTGGAGTTGTTTAGAGAGGGTGTTGGGGTTGGG

Genome 901 GCCGCAGCGGCCGAGCAGGGACGGGACAGGACGCCCGGGGTCCCGGCTGCCGCCCCAGCC
|:#|:||#||:#|||:|||||#||||:||||#|::#|||||::#||:||:#|::::|| :

Bisulfite 214 GTTGTAGTGGTTGAGTAGGGATGGGATAGGATGTTTGGGGTTTTGGTTGTTGTTTTAG-T

Genome 961 CCATCTTGCGGCCCA-GGGGACCAAGGGCAGAGCTGCGCCAGGGGCACTGGGATTTGCAG
::||:| | |:::| | | !!|| ! *

Bisulfite 273 TTATTTYGYSGTTTACGCCGMCCAAMCSC----YYMC-----------------------

Genome 1 TCTCTCTCTGGGGGGTGGAGGGGACAGAGATCTGGAAAACTGAGAACCCCAAGGGACTCA
|||| | ||! | |||||||:||||||::::||||||:|:|

Bisulfite 1 -------------CCTGGACGAGACCG-----TGGAAAATTGAGAATTTTAAGGGATTTA

Genome 61 CACTGGTTTCTGAGCCTCAGTTTTCCTAGTTACAAAGGACAGCCTCTGCCTGTGATGGGC
:|:||||||:||||::|:||||||::||||||:||||||:||::|:||::|||||||||

Bisulfite 43 TATTGGTTTTTGAGTTTTAGTTTTTTTAGTTATAAAGGATAGTTTTTGTTTGTGATGGGG

Genome 121 GCTGACACACGTGGCACAGTTCCCCATGTGTCCCTCGAAATACCTCCACCATCAGCACAA
|:|||:|:|*||||:|:||||::::||||||:::|*||||||::|::|::||:||:|:||

Bisulfite 103 GTTGATATACGTGGTATAGTTTTTTATGTGTTTTTCGAAATATTTTTATTATTAGTATAA

Genome 181 TCATCCTACGAGACAGGCACGGCCGCTCTCCCCATTCTCCAGATGTGGAAACCGGGGCCC
|:||::||*||||:|||:|*||:*|:|:|::::|||:|::|||||||||||:*||||:::

Bisulfite 163 TTATTTTACGAGATAGGTACGGTCGTTTTTTTTATTTTTTAGATGTGGAAATCGGGGTTT

Genome 241 AGCCAGGTGAAGTCGTAA-CCCGAGGTGCCA-TAGCTGTTGCGTTCCAGAGGCGAGA-TT
||::|||||||||*|||| ::*||||||::| |||:|||||*|||::|||||*|||| ||

Bisulfite 223 AGTTAGGTGAAGTCGTAATTTCGAGGTGTTATTAGTTGTTGCGTTTTAGAGGCGAGATTT

Genome 298 CAAACCC--ACGTCCGTCCGGAAGCCTTGGAAGTGAGGGTGTGCCTGCCTAACCTGCTCA
:||| :: |:*

Bisulfite 283 TAAAWTTWAWYSTTC---------------------------------------------

Sequence ID #15
Prediction: Hypermethylated
Region: chr19:47,905,568-47,906,031
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Statistics for medaka SMRT sequencing (P6)

Number of SMRT cells 38

Number of mapped subreads    2,596,378

Mean mapped subread length (b) 7,972

Total bases of mapped subreads (b) 20,698,432,471

Coverage (medaka genome size = 800 Mb) 25.87

Statistics for human SMRT sequencing (P6)

Number of SMRT cells 111

Number of mapped subreads    7,279,594

Mean mapped subread length (b) 9,254

Total bases of mapped subreads (b) 67,364,373,129

Coverage (human genome size = 3 Gb) 22.45

Statistics for human SMRT sequencing (P4)

Number of SMRT cells 377

Number of mapped subreads    19,115,712

Mean mapped subread length (b) 2,049

Total bases of mapped subreads (b) 39,177,531,604

Coverage (human genome size = 3 Gb) 13.06
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Sequence_Id Sequence_Name Region Primer_Sequence (5' to 3') Primer Sequence (for nested PCR) (5' to 3')
1 FLI_CHR11_F chr11:92,869,695-92,870,491 TGTATGAGTATGTTTAGTGT TATATGGGGGAGGAGTTAAGATGGT

FLI_CHR11_R CTACTATCTTTTTATTTATCTATACCC CACCCCTTTCTTTAACTCAAAAAAAA

2 FL_CHR7_F chr7:34,945,686-34,946,552 GAATATATGAGTAAATGAAGGATGT TTTTATTAGGGAGTGTTAGATAGTGGG
FL_CHR7_R TACCCCCAAAAATAAAAACT TATTAAATACCCCTCCCCCAACCTC

3 FL_CHR8_F chr8:98,307,662-98,308,329 TTGGTATTTGTAAGAAATTAGGGA TGATTTTTGTATTTTTATTTGAGGTAT
FL_CHR8_R CTTACACTTCCCAAATAAAACAA ATAAAACAATACCTCACCCTACTTC

4 FL_CHR19_F chr19:35,351,062-35,351,674 AAGATATTTATTTAAGGAGGAG GGTGATTTTTGTATTTTTAGTTGAGGTAT
FL_CHR19_R ACCTAATCAAACCTAAACAATAAC AAAAAAAACTCCCTAACCCCTTAC

5 FL_CHRX_F chrX:17,366,059-17,366,763 GGTGGGAGTGATTTAATTTTTTA GAAAGGGAATTTTTTGATTTTTTG
FL_CHRX_R ACTTTATTTATACAACTTCTATTC AAAACAACTCTAATCTATAACTCCCAAC

6 FL_CHR1_F chr1:90,218,123-90,218,684 TTTGGTTGTTTTGTTTATTTAAGT TTAAGTAAGTTTGGGTAATGGTGGG
FL_CHR1_R ATCTCTTAAATACCTTAACC AAAAAATCAAAAAATTCCCTTTCC

7 FL_CHR6_F chr6:123,793,104-123,793,890 GGAAGGATAAATAGTTTAATAAAGG TTATTAGGGAATGTTAGATAGTGGG
FL_CHR6_R CCCAAAAATAAAACCTACAAAA TTTCCTAAAAAAACCTAAACAATAAC

8 LTR_CHR11_F chr11:5,829,621-5,830,339 TTGTAATATTTTTTATATTGGG TTGTTGGAGGTTTTTTGTATTTTTT
LTR_CHR11_R AAAAAATCTTCAATCATCCT ATCCAATCTATAATTCTATAATCACCTCAT

9 LTR_CHR1_F chr1:89,663,480-89,664,077 AAATTTTTGTTTTTTGGAGTTTTA TTTTAATTTTATTATAAGGTGATAGAAG
LTR_CHR1_R TAACTCTCCCTTAACTAAAA TAAAATACTATAACAAACCATACCC

10 LTR_CHR6_F chr6:26,924,100-26,924,635 AAGTTTTTTAAAGTTTTTATTAG
LTR_CHR6_R ACCTACCATACTAAAACCCT

11 LTR26C_CHR19_F chr19:11,848,508-11,850,380 AGGTTGAAGATTTTATAAGGGAA TTTTATTTTTAAATTTTTTAGGGAGG
LTR26C_CHR19_R TAAAACCCACACTAACTTTT ATCTACAAATCCCAATACCCCTAAC

12 AluSc_F chr15:80,352,853-80,353,500 AGTTGTAATTAGTTGTGAGGAAGT TTGTAATTTTAGTATTTTGGGAGGT
AluSc_R CCCCTAAAACTCTAAAAAAA AAAAAAAATTTAATCCTATTTCTC

13 AluSc2_F chr12:11,667,503-11,668,057 TTTTGAGTGTTTTTGGTTTTGGA TTTTTATGTTAAGAATAGTTTTGGT
AluSc2_R TTTCTCTATTTTTCAACTATTCACC TAAAATAAAATCTCTCTCTATCACC

14 MIR_F chr8:145,157,891-145,158,610 GAGGAGTAAAGAAATATAAG AGTTTTGTAAAGTAGGTTTAGGTAGGTTTT
MIR_R RAAACCCAAAATTAAACCCCT CCACCTAAATACCCTTAAACAATTATATTT

15 MIR2_F chr19:47,905,568-47,906,031 GGATAGAGATTTGGAAAATTGA TGGAAAATTGAGAATTTTAAGGGATTTATA
MIR2_R AAACAAATTAAACAAACACACCC AACACACCCTCACTTCCAAAACTTC

16 LTR26E_CHR19_F chr19:12,510,921-12,511,712 TTTTGGAAAGAAAGAAGGGAT
LTR26E_CHR19_R CATTCTACTAAATAAACTCC AATTCAAAATCTAAAAACTCCRAC

17 LTR26E_CHR1_F chr1:245,287,681-245,288,390 AGGATTAAGAAGAATTTTGGA AGAAATATAGTTGTAAGTAAG
LTR26E_CHR1_R CTATAAAACACAACAAACTTAACC AAATCCATCTCCCTAAAAAA

18 L2b_CHR9_F chr9:137,028,161-137,028,803 ATATTTTGTAGTTATTTTTGA ATTTTTTTTAGAATTTAGGG
L2b_CHR9_R ACACCCAAATCCAAATCCAAA CCCAAAAACCTATACAAAAA

19 L2b_CHR8_F chr8:141,097,083-141,098,123 GGAGTATAGATGGAATATTAATAG TTGTTTAGGTTAAAATTTTAAAAGATATTT
L2b_CHR8_R CACAACTAATACAAAAACCCAAA TACAAAAACCCAAAAATAATACCAC

20 AluY_CHR1_F chr1:202,975,549-202,976,334 TATTTTGTAAGTTTAGGGGTGTT GTGTTTTTTTTGTTTGTGGT
AluY_CHR1_R CCCACACCTATATTAATTAAAA TTCTTCTTAATAACTCCTCT

21 LSUrRNAHsa_F chr9:79,186,495-79,187,160 AGTTTTTTATTGGGATGGTATGT TTTTTTAATAATAATGAGATGGGG
LSUrRNAHsa_R CCCTTTCTTTTTTTCTTTTTTC
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