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Abstract

Evolution drives changes in a protein’s sequence over time. The extent to which these changes in
sequence lead to shifts in the underlying preference for each amino acid at each site is an important
question with implications for comparative sequence-analysis methods such as molecular phyloge-
netics. To quantify the extent that site-specific amino-acid preferences shift during evolution, we
performed deep mutational scanning on two homologs of human influenza nucleoprotein with 94%
amino-acid identity. We found that only a modest fraction of sites exhibited shifts in amino-acid pref-
erences that exceeded the noise in our experiments. Furthermore, even among sites that did exhibit
detectable shifts, the magnitude tended to be small relative to differences between non-homologous
proteins. Given the limited change in amino-acid preferences between these close homologs, we
tested whether our measurements could inform site-specific substitution models that describe the
evolution of nucleoproteins from more diverse influenza viruses. We found that site-specific evolu-
tionary models informed by our experiments greatly outperformed non-site-specific alternatives in
fitting phylogenies of nucleoproteins from human, swine, equine, and avian influenza. Combining
the experimental data from both homologs improved phylogenetic fit, partly because measurements
in multiple genetic contexts better captured the evolutionary average of the amino-acid preferences
for sites with shifting preferences. Our results show that site-specific amino-acid preferences are
sufficiently conserved that measuring mutational effects in one protein provides information that can
improve quantitative evolutionary modeling of nearby homologs.
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Introduction

Since the first comparative analyses of homologous proteins by Zuckerkandl and Pauling (1965) fifty

years ago, it has been obvious that different sites in proteins evolve under different constraints, with

some sites substituting to a wide range of amino acids, while others are constrained to one or a few iden-

tities. Zuckerkandl and Pauling (1965) proposed, and decades of subsequent work have confirmed (De-

Pristo et al., 2005; Harms and Thornton, 2013), that these constraints arise from the highly cooperative

interactions among sites that shape important protein properties such as stability, folding kinetics, and

biochemical function.

The complexity and among-sites cooperativity of these evolutionary constraints mean that a mutation

at a single site can in principle shift the amino-acid preferences of any other site – and numerous experi-

ments have demonstrated examples of such epistasis among sites (Weinreich et al., 2006; Ortlund et al.,

2007; da Silva et al., 2010; Lunzer et al., 2010; Gong et al., 2013; Natarajan et al., 2013; Podgornaia and

Laub, 2015). However, experiments have also shown that despite such epistasis, the amino-acid pref-

erences of many sites are similar across homologs (Risso et al., 2015; Ashenberg et al., 2013; Serrano

et al., 1993). For instance, protein structures themselves are highly conserved during evolution (Chothia

and Lesk, 1986; Sander and Schneider, 1991), and sites in specific structural contexts often have strong

propensities for certain amino acids (Chou and Fasman, 1974; Richardson and Richardson, 1988; Lim

and Sauer, 1991). Furthermore, many of the most successful methods for identifying distant homologs

(e.g. PSI-BLAST) utilize site-specific scoring models (Henikoff and Henikoff, 1997; Altschul et al.,

1997), implying that amino-acid preferences are at least somewhat conserved even among homologs

with low sequence identity.

A half-century of work has therefore made it abundantly clear that site-specific amino-acid pref-

erences can in principle shift arbitrarily during evolution, but nonetheless in practice remain somewhat

conserved among homologs. The important remaining question is the extent to which site-specific amino-

acid preferences are conserved versus shifted. This question is especially important for the development

of quantitative evolutionary models for tasks such as phylogenetic inference. Initially, phylogenetic

models unrealistically assumed that sites within proteins evolved both independently and under identical

constraints. But more recent models have relaxed the second assumption that sites evolve identically. At

first, this relaxation only allowed sites to evolve at different rates (Yang, 1994). But newer models also

accommodate variation in the amino-acid preferences among sites, either by treating these preferences as

parameters of the substitution model (Lartillot and Philippe, 2004; Le et al., 2008; Wang et al., 2008; Ro-

drigue et al., 2010) or by leveraging their direct measurement by high-throughput experiments (Bloom,

2014a,b). Because these models retain the assumption of independence among sites, they will outper-

form traditional non-site-specific models only if site-specific amino-acid preferences are substantially

conserved among homologs.
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Here we perform the first experimental quantification of the conservation of the amino-acid prefer-

ences at all sites in two homologous proteins. We do this by using deep mutational scanning (Fowler

et al., 2010; Fowler and Fields, 2014) to comprehensively measure the effects of all mutations to two

homologs of influenza nucleoprotein (NP) with 94% sequence identity. We find that the amino-acid pref-

erences are substantially conserved at most sites in the homologs, but some sites have significant shifts in

preferences. We then test whether the experimentally measured site-specific amino-acid preferences can

inform site-specific phylogenetic substitution models that describe the evolution of more diverged NP

homologs. We find that the experimentally informed site-specific substitution models exhibit improved

fit to NP phylogenies containing diverged sequences from human, swine, equine, and avian influenza

lineages. Overall, our work shows that site-specific amino-acid preferences are sufficiently conserved

that measurements on one homolog can be used to improve the quantitative evolutionary modeling of

closely related homologs.

Results

Comparison of amino-acid preferences between two homologs

Deep mutational scanning of two influenza NP homologs Our studies focused on NP from influenza

A virus. NP performs several conserved functions that are essential for the viral life cycle, including

encapsidation of viral RNA into ribonucleoprotein complexes for transcription, viral-genome replication,

and viral-genome trafficking (Eisfeld et al., 2015). NP’s structure is highly conserved in all characterized

influenza strains (Ye et al., 2006; Das et al., 2010). Our studies compared the site-specific amino-acid

preferences of NP homologs from two human influenza strains, PR/1934 (H1N1) and Aichi/1968 (H3N2)

(Figure 1). These NPs have diverged by over 30 years of evolution, and differ at 30 of their 498 residues

(94% protein sequence identity).

We used our previously described approach for deep mutational scanning of influenza genes (Bloom,

2014a; Thyagarajan and Bloom, 2014) to measure the site-specific amino acid preferences of the PR/1934

and Aichi/1968 NPs. Briefly, this approach involved using a PCR-based technique to create mutant li-

braries of plasmids encoding NP genes with random codon mutations, using reverse genetics to incor-

porate these mutant genes into influenza viruses, and then passaging these viruses at low multiplicity

of infection to select for viruses carrying functional NP variants. Deep sequencing was used to count

the occurrences of each mutation before and after selection, and the amino-acid preferences for each

site were inferred from these counts using dms tools (Bloom, 2015) (Supplementary file 1, Supple-

mentary file 2, Supplementary figure 1, Supplementary figure 2). Our mutagenesis randomized 497 of

the 498 codons in NP (the N-terminal methionine was not mutagenized), and so our libraries sampled

all 497 × 19 = 9, 443 amino-acid mutations at these sites. Our mutagenesis introduced an average of

about two codon mutations per gene, with the number of mutations per gene following a roughly Poisson
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distribution (Supplementary figure 3), and so the effect of each mutation was assayed both alone and in

the background of variants that contained one or more additional mutations.

Because deep mutational scanning is subject to substantial experimental noise, we performed several

full biological replicates for each NP homolog, beginning with independent creation of the plasmid

mutant library. In the current work, we performed three replicates of deep mutational scanning on the

PR/1934 NP and two replicates on the Aichi/1968 NP. In a previous study (Bloom, 2014a) we performed

eight replicates of deep mutational scanning on Aichi/1968 NP. We will refer to these previous replicates

of the Aichi/1968 NP deep mutational scanning as the previous study, and the two new replicates as the

current study. When not otherwise noted, we refer to the pooled data of all ten of these replicates simply

as Aichi/1968.

Amino-acid preferences are well correlated between homologs For each homolog we averaged the

site-specific amino-acid preferences across all replicates and examined the correlations of the preferences

for each of the 20 amino acids at each of the 497 sites we mutagenized (all sites can be unambiguously

aligned between homologs). The mean preferences for the two NP homologs have a Pearson’s correlation

coefficient of 0.78 (Figure 2A). In comparison, the correlation between the preferences measured in

the previous study and current study on the Aichi/1968 homolog is 0.83 (Figure 2B). Therefore, the

amino-acid preferences correlate nearly as well between the two homologs as they do between different

experiments on the same homolog. As expected, there is no correlation between the preferences of

the PR/1934 NP and a non-homologous protein (hemagglutinin, HA) for which we have previously

measured the site-specific amino-acid preferences using the same approach as in this work (Thyagarajan

and Bloom, 2014) (Figure 2C).

We also asked if the site-specific amino-acid preferences from each replicate showed the same pattern

of correlation between homologs that we observed when comparing mean preferences. We again found

that correlation coefficients are just as high between NP homologs as they are between replicate mea-

surements on the same homolog, and that there is no correlation between the preferences for NP and the

non-homologous protein HA (Figure 2D). Overall, these results indicate that at the vast majority of sites,

any differences in the amino-acid preferences between NP homologs are smaller than the noise in our

experimental measurements, and vastly smaller than the differences between non-homologous proteins.

Shifts in amino-acid preferences are small for most sites The previous section shows that any

widespread shifts in site-specific amino-acid preferences are smaller than the noise in our experiments.

However, it remains possible that a subset of sites show substantial shifts in their amino-acid preferences

that are masked by examining all sites together. We therefore performed an analysis to identify specific

sites with shifted amino-acid preferences between homologs.

This analysis needed to account for the fact that experimental noise induced variation in the prefer-
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ences measured in each replicate. Figure 3 shows replicate measurements for both homologs at several

sites in NP. At many sites, such as site 298, all replicate measurements yielded highly reproducible

amino-acid preferences both between and within homologs. At many other sites, such as site 3, replicate

measurements were quite variable both between and within homologs, probably due to fairly weak se-

lection at that site. Some sites, like site 254, exhibited reproducible measurements within each homolog,

and the most preferred amino acid was the same in both homologs, but the tolerance for mutations to

other amino acids was distinct in each homolog. Finally, at a few sites, most prominently site 470, repli-

cate measurements were highly reproducible within each homolog but clearly differed in which amino

acid was most preferred between homologs. We therefore developed a quantitative measure of the shift

in preferences between homologs that accounts for this site-specific experimental noise.

We used the Jensen-Shannon distance metric (the square root of the Jensen-Shannon divergence)

to quantify the distance between the 20-dimensional vectors of amino-acid preferences for each pair

of replicate measurements at each site. This distance ranges from zero (identical amino-acid pref-

erences) to one (completely different amino-acid preferences). To quantify experimental noise at a

site, we calculated the root-mean-square of the Jensen-Shannon distance for all pairwise comparisons

among replicate measurements on the same homolog, and termed this quantityRMSDwithin. Sites with

large RMSDwithin have high experimental noise. We defined an analogous statistic, RMSDbetween,

to quantify the distance in preferences between homologs by calculating the root-mean-square of the

Jensen-Shannon distance for all pairwise comparisons between replicates of PR/1934 and replicates of

Aichi/1968. Figure 3 shows the values of these statistics for example sites.

The fact that we had data from two independent sets of experiments on the Aichi/1968 NP (the

current study and previous study) enabled us to perform a control analysis by calculating RMSDbetween

and RMSDwithin for the replicates from these two experiments. As an additional control to gauge

the extent of amino-acid preference differences between non-homologous proteins, we also calculated

RMSDbetween and RMSDwithin for our experiments on Aichi/1968 NP and our previous study on HA

(note that because NP and HA are non-homologous, they cannot be meaningfully aligned, so this control

comparison simply pairs each site in NP with the corresponding residue number in HA).

The relationship betweenRMSDbetween (the observed difference between homologs) andRMSDwithin

(the observed variation in repeated measurements on the same homolog) for all sites is shown for several

different comparisons in Figure 4A-C. Sites with low RMSDwithin exhibit highly reproducible mea-

surements between replicate experiments, whereas sites with higher values ofRMSDwithin exhibit sub-

stantial experimental noise, probably due to weak selection at that site. Sites with large RMSDbetween

exhibit amino-acid preference differences between homologs, but at each site some of this observed

variation is due to the site-specific experimental noise (quantified by RMSDwithin) rather than a true

difference between the homologs.

When comparing two independent experiments on the same NP (Figure 4A) or comparing experi-
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ments on two homologs of NP (Figure 4B), the relationship between RMSDbetween and RMSDwithin

is approximately linear, indicating that the difference in amino-acid preferences between homologs at a

given site is usually comparable to the experimental noise. Deviations from this linear relationship are

more frequent in the comparison between PR/1934 and Aichi/1968 (Figure 4B) than in the comparison

between the two studies of Aichi/1968 (Figure 4A). These deviations mostly arise from sites that have

larger RMSDbetween than RMSDwithin, indicating that these sites have shifts in their amino-acid pref-

erences between homologs that exceed the experimental noise. These results comparing NP homologs

are in stark contrast with the RMSDbetween and RMSDwithin calculated when comparing NP to the

non-homologous HA (Figure 4C), where the difference between proteins is almost always substantially

greater than the experimental noise.

To quantify the extent of amino-acid preference shifts between the two homologs in a way that cor-

rects for the experimental noise, we defined another statistic,RMSDcorrected, by subtractingRMSDwithin

fromRMSDbetween (Figure 3, Supplementary file 5). Sites with shifts in amino-acid preferences greater

than the experimental noise have RMSDcorrected > 0. However, we also expect many sites to have pos-

itive RMSDcorrected values due to statistical noise. To determine the distribution of RMSDcorrected

values expected due to such statistical noise alone under the null hypothesis that the amino-acid prefer-

ences are the same in both groups being compared, we generated null distributions of RMSDcorrected

using exact randomization testing by shuffling which experimental replicates were assigned to which

NP homolog. For every possible shuffling of replicates, we computed RMSDcorrected at every site and

combined the results across all shufflings.

The distribution of RMSDcorrected obtained experimentally mostly overlaps the randomized dis-

tribution of RMSDcorrected when comparing the two independent Aichi/1968 experiments (Figure

4D). This overlap is consistent with the hypothesis that the true amino-acid preferences are the same

in both experiments on the Aichi/1968 NP. In contrast, when comparing PR/1934 to Aichi/1968, some

RMSDcorrected values are shifted in the positive direction substantially beyond the null distribution (Fig-

ure 4E), indicating larger differences in preferences at some sites than can be explained by experimental

noise alone. This shift in preferences is particularly notable for site 470, which has a RMSDcorrected of

0.45 as illustrated in Figure 3. However, most sites still fall within the null distribution when comparing

the two NP homologs. In contrast, if NP is compared to the non-homologous HA, the vast majority of

sites exhibit differences in preferences that vastly exceed the values expected under the null distribution

(Figure 4F).

As an alternative approach to generating null distributions ofRMSDcorrected, we performed simula-

tions of observed amino-acid preferences in each replicate under a model where there are no differences

in the underlying preferences between the two homologs, but varying levels of noise for each experi-

ment. We simulated amino-acid preferences at each site by drawing from a Dirichlet distribution, which

is well-suited for this purpose because its support is a normalized vector of values, in this case corre-
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sponding to the vector of amino-acid preferences at a site. Our null hypothesis is that the amino-acid

preferences are the same for both homologs, so we performed simulations assuming that the true vector

of amino-acid preferences at a site is equal to the average of our experimental measurements for both

homologs. We simulated the amino-acid preferences for each replicate by drawing from a Dirichlet dis-

tribution centered on this vector of assumed true preferences. The extent to which any given sample

drawn from this Dirichlet distribution differs from the true vector can be tuned with a single scaling

parameter (the concentration parameter). We identified a value for the concentration parameter for each

experiment (Aichi/1968 current study, Aichi/1968 previous study, and PR/1934) that resulted in corre-

lation coefficients between replicates that matched those in the actual experiment. We performed 1000

replicate simulations and combined the calculated RMSDcorrected values from all simulations to build

the null distribution. The distributions of RMSDcorrected obtained by simulation are in Supplementary

figure 5 and are similar to those obtained using exact randomization testing.

Sites with clear shifts in amino-acid preferences Using either of the two null distributions, we were

able to identify specific sites withRMSDcorrected values significantly larger than expected due to exper-

imental noise alone (Supplementary file 5). These are sites for which we can reject the null hypothesis

that there is no shift in amino-acid preferences. To control for multiple hypothesis testing, we set a false

discovery rate (proportion of rejected null hypotheses expected to be falsely rejected) of 5%.

Using exact randomization as a null distribution, we could reject the null hypothesis of no shift in

amino-acid preference for 14 of the 497 sites. The simulated-data null distribution appeared to afford

greater statistical power, and allowed us to reject the null hypothesis of no shift in preference for 76

sites (the 14 identified by the exact randomization plus an additional 62). Many of these additional sites,

however, exhibit shifts that are small in magnitude; for instance, 30 of the additional 62 sites show a

pattern similar to that of site 254 (Figure 3), where the most preferred amino acid is unchanged, but the

tolerance for mutations to other residues is somewhat larger in one homolog than the other.

Figure 4 provides a more visual way to gauge the magnitude of the shifts in amino-acid preferences.

If the preferences are completely conserved among homologs, the actual distribution in Figure 4E should

look roughly like that in Figure 4D. In contrast, if the preferences have completely shifted between

homologs, the actual distribution should look more like that in Figure 4F. As is clear from visual in-

spection, only a handful of sites have amino-acid preferences that have shifted between the PR/1934 and

Aichi/1968 homologs to be as different as is typical for pairs of sites from non-homologous proteins.

The rest of the sites either exhibit a more modest shift in preference (this is the case for 14 or 76 sites

depending on which null distribution is used) or no detectable shift in preference.

An important question is whether there are common characteristics of sites with shifted preferences.

One reasonable hypothesis is that sites with wild-type amino-acid identities that differ between the

homologs are more likely to have experienced shifts in their amino-acid preferences. Among the 14
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sites identified as shifted by both null distributions, 5 have different wild-type amino-acid identities in

PR/1934 and Aichi/1968 (Figure 5A). Therefore, of sites with variable amino-acid identity between the

two homologs, 17% exhibit clear shifts in preference identified by both null distributions, while only 2%

of conserved sites exhibit comparable shifts.

Having identified evolutionarily variable sites as enriched for the clearest shifts in amino-acid pref-

erences, we next looked at sites with other special structural or functional properties. One group of

functionally important sites are those that comprise the RNA-binding groove of NP. These RNA-binding

sites have lowRMSDwithin (Figure 4A and B), indicating below-average noise among replicates. RNA-

binding sites also have low RMSDcorrected (Figure 5B, Figure 6A). These results are consistent with

the expectation that RNA-binding sites in NP are under strong and conserved functional constraint, since

RNA binding is essential for viral genome packing, transcription, and replication.

We next hypothesized that sites in structural proximity to evolutionarily variable sites may experi-

ence shifts in amino-acid preferences due to changes in the surrounding biochemical environment. We

identified sites directly contacting the evolutionarily variable residues, and found that they do not have

RMSDcorrected values that differ from other sites (Figure 5B). Therefore, we are unable to identify any

preferential tendency for substitutions to drive shifts in amino-acid preference at other sites in direct

contact with the substituted residue.

The 14 sites with the clearest shifts in amino-acid preferences are distributed throughout the surface

of NP in the body, head, and tail loop domains (Figure 6). Six of the 14 sites are located in the flexible tail

loop, which inserts into a neighboring monomer during NP oligimerization. This suggestive clustering

led us to test whether there was a significant tendency for the 14 sites with clearest shifts in preferences

to be spatially clustered in NP’s structure. We calculated the distance between sites as the minimum

distance between side chain atoms (using the alpha carbon for glycine). Eleven of the 14 sites with

clearest shifts in preferences are resolved in the crystal structure, and of these 11 sites the median distance

to the nearest neighbor among the 10 remaining sites is 5.8 Ångströms, which is significantly less than

expected by chance for random selections of 11 sites (10.8 Ångströms, p=0.028). Thus, the clearest shifts

in preferences between these two homologs occur in small clusters of proximal sites more often than in

single isolated sites. This pattern also holds when considering the 76 sites identified by the simulation

null distribution: among the 66 that are resolved in the crystal structure the median distance to the nearest

neighbor is 4.5 Ångströms compared to a median distance to nearest neighbor among random selections

of 66 sites of 5.0 Ångströms (p = 0.021). Therefore, sites with shifted preferences appear to cluster in

NP’s structure, even if they are not usually in direct physical contact with variable residues.

Overall, these results indicate that sites with evolutionarily variable amino-acid identity are more

likely than conserved sites to exhibit shifts in amino-acid preferences, and that sites with shifted pref-

erences tend to cluster in NP’s structure. However, the majority of sites with variable identity do not

exhibit large shifts in amino-acid preference, and overall, only between 3% and 15% (depending on the

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2015. ; https://doi.org/10.1101/018457doi: bioRxiv preprint 

https://doi.org/10.1101/018457
http://creativecommons.org/licenses/by/4.0/


method used to generate the null distribution) of sites in NP undergo shifts in amino-acid preferences that

are sufficiently large to justify rejecting the null hypothesis that the preferences are identical between ho-

mologs. Importantly, statistical significance does not necessarily imply a large magnitude in effect size

– and indeed, with just a handful of exceptions (most prominently site 470), even the shifted sites are

vastly more similar in their preferences than typical pairs of sites in non-homologous proteins.

Experimentally informed site-specific substitution models describe vast swaths of nucleo-
protein evolution

We next quantitatively assessed how well our experimentally measured amino-acid preferences reflected

the actual constraints on NP evolution. To do so, we used the amino-acid preferences to inform site-

specific phylogenetic substitution models. We have previously shown that substitution models informed

by experimentally measured site-specific amino-acid preferences greatly outperform common non-site-

specific codon-substitution models (Bloom, 2014a,b; Thyagarajan and Bloom, 2014).

In the prior work, site-specific amino-acid preferences were experimentally measured in a single

sequence context. Here, we asked whether combining the preferences measured in the two different

sequence contexts of Aichi/1968 and PR/1934 would more accurately describe NP sequence evolution.

Any improvement could be due to two effects: First, a combined substitution model might better reflect

the evolutionary average of the amino-acid preferences at sites with significant changes in preferences

over time. Second, combining data from multiple experiments should reduce noise and yield more

accurate site-specific amino-acid preferences.

Combining deep mutational scanning datasets from nucleoprotein homologs improves phyloge-
netic fit To compare the performance of different substitution models, we used a likelihood-based

framework. We first built a maximum-likelihood tree for NP sequences from human influenza using

CodonPhyML (Gil et al., 2013) with the codon-substitution model of Goldman and Yang (1994) (GY94)

(Figure 1). We fixed this tree topology and used HyPhy to optimize branch lengths and model param-

eters for each substitution model by maximum likelihood. The relative fits of the substitution models

were evaluated using the Akaike information criterion (AIC) (Posada and Buckley, 2004).

We tested experimentally informed substitution models derived from the Aichi/1968 and PR/1934

mutational scans either alone or in combination. The Aichi/1968 model used amino-acid preferences av-

eraged across the current study and the previous study. To build a combined substitution model based on

both NP homologs, we averaged the amino-acid preferences for the Aichi/1968 and PR/1934 homologs

(Aichi/1968 + PR/1934). Each substitution model had five free parameters that were fit by maximum

likelihood: four nucleotide mutation rates and a stringency parameter β that accounts for the possibility

of a different strength of selection in natural sequence evolution compared to the mutational-scanning ex-

periments (Bloom, 2014b). Importantly, the amino-acid preferences themselves are not free parameters,
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as they are independently measured by experiments that do not utilize information from the naturally

occurring NP sequences.

As a comparison to the experimentally informed substitution models, we also tested the non-site-

specific GY94 model. Relative to the experimentally informed substitution models, the GY94 model

includes more free parameters including equilibrium codon frequencies, a transition-transversion ratio,

and parameters describing gamma distributions of the nonsynonymous-synonymous ratio and substitu-

tion rate across sites (Yang, 1994; Yang et al., 2000).

The Aichi/1968 and PR/1934 experimentally informed models described the human NP phylogeny

far better than the non-site-specific GY94 model (Table 1). Strikingly, combining amino-acid preferences

from both NP homologs (Aichi/1968 + PR/1934) resulted in a greatly improved substitution model (Table

1). For each experimentally informed model, the stringency parameter β fit with value greater than 1

(average β = 2.5), consistent with the idea that selection during natural evolution is more stringent than

our laboratory selection.

Experimentally informed models also describe the evolution of more diverged non-human in-
fluenza strains Given the success of the experimentally informed substitution models in describing

the human NP phylogeny, we asked whether these models could be extended to more diverged NPs from

non-human influenza strains. We expect these models to exhibit good fit if the NP site-specific amino-

acid preferences are mostly conserved across these viral strains. We examined NPs from influenza strains

from three hosts: swine, equine, and avian. The average protein-sequence identity between human NPs

and swine, equine, and avian NPs was 91%, 91%, and 93% respectively.

We built a phylogenetic tree of NPs of influenza viruses from human, swine, equine, and avian

hosts (Figure 1, Supplementary file 4). As previously reported, the avian sequences could be divided

into western and eastern hemispheric clades, and the swine sequences consisted of the North American

Classical H1N1 clade and the more recent Eurasian H1N1 clade (Worobey et al., 2014). Using this tree,

we performed a phylogenetic analysis similar to that described above for human influenza NPs.

Again, the experimentally informed models greatly outperformed the non-site-specific GY94 model,

and combining the Aichi/1968 and PR/1934 models resulted in a far superior model (Table 2). Since

the amino-acid preferences were experimentally measured for human NP, we wanted to ensure that this

superior performance was not driven solely by the human clade of the tree. We separately fit subtrees

consisting only of swine, equine, or avian NP sequences (Supplementary table 1, Supplementary table

2, Supplementary table 3). Each subtree showed the same trend as the full tree: the experimentally

informed models were superior to the GY94 model, and combining data from the two NP homologs

resulted in large improvements in likelihood. Therefore, site-specific amino-acid preferences of NP are

sufficiently conserved across influenza A lineages that substitution models informed by deep mutational

scanning of human influenza NP homologs can be extended to the NPs of influenza from other hosts.
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Combining data from NP homologs improves phylogenetic fit to sites with shifted preferences The

results above show that the experimentally informed substitution models improved phylogenetic fit rela-

tive to the non-site-specific model, and that combining data from two NP homologs resulted in the best

model. This increased performance when combining data may come from more accurate measurement

of amino-acid preferences due to more replicates, or from averaging amino-acid preferences over mul-

tiple sequence contexts. To examine these possible explanations, we analyzed which sites in NP were

more accurately modeled when the Aichi/1968 and PR/1934 experimental models were combined. This

analysis was performed using the full phylogenetic tree of NP sequences (Figure 1).

While fixing the branch lengths and model parameters to their maximum-likelihood values for each

model, we calculated for each site the difference in likelihoods (∆log-likelihood) when the site was

modeled using the combined Aichi/1968 + PR/1934 model compared to using the Aichi/1968 model.

We binned sites into quintiles of ∆log-likelihood. Sites in the top quintile had the greatest increases in

likelihood when the Aichi/1968 and PR/1934 models were combined. Overall 67% of sites in NP had

increased likelihoods under the Aichi/1968 + PR/1934 model.

To determine whether these improved likelihoods came from lower noise in the combined experi-

mental model, we used the RMSDwithin statistic. Sites with greater variance in amino-acid preferences

across experimental replicates have higher RMSDwithin scores. We analyzed the distribution of the

RMSDwithin scores for sites within each quintile (Figure 7). The top and bottom quintiles did not have

significantly different RMSDwithin distributions, indicating that sites prone to experimental noise con-

tributed both positively and negatively to the tree likelihood when experimental datasets were combined.

Thus, the improved modeling with the combined dataset was not chiefly due to reduced experimental

noise.

Next, to determine whether the improved likelihoods were driven by sites with different preferences

between the two NP homologs, we used the RMSDcorrected statistic (Figure 7). If the improvements

under the combined model came from sites with different amino-acid preferences between Aichi/1968

and PR/1934, then we would expect that the sites with the greatest increases in likelihood would also

have the greatest RMSDcorrected values. This was indeed the case, as sites in the top quintile of log-

likelihoods had the highest medianRMSDcorrected. TheRMSDcorrected scores in the top quintile were

significantly different from those in the lower quintiles (Mann-Whitney U with Bonferroni correction

p<0.002), whereas there were no significant differences in the RMSDcorrected scores when comparing

the lower quintiles. Therefore, improvements in the combined model were partly due to better describing

those sites that had the largest shifts in amino-acid preferences over evolutionary time.
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Discussion

Determining the extent to which site-specific amino-acid preferences shift during evolution is impor-

tant for evaluating how well experimental measurements can be extrapolated across homologs, and for

guiding the development of site-specific phylogenetic substitution models. We have performed the first

comprehensive assessment of the conservation of site-specific amino-acid preferences by using deep mu-

tational scanning to measure the effects of all mutations on two closely related homologs of influenza

NP.

We found that for the majority of sites, any shift in amino-acid preferences between homologs was

smaller than the noise in our experiments. We could reject the null hypothesis that the amino-acid

preferences were identical among homologs for only between 3% and 15% of all sites, depending on

the method used to generate the null distribution. Furthermore, even for those sites for which we could

reject the null hypothesis of identical preferences between homologs, the magnitude of shifts tended to be

small. Only a handful of the 497 sites exhibited shifts in preference between homologs with a magnitude

comparable to the average difference between sites in non-homologous proteins. Sites that varied in

amino-acid identity between the two homologs were more likely to have a detectable shift in amino-acid

preferences – but even among variable sites, there was usually no shift. Admittedly, our experiments had

substantial noise, so it is likely that other sites have undergone subtle shifts below our limit of detection.

However, the fact that the preferences for the two NP variants are strongly correlated with each other but

completely uncorrelated with those for the non-homologous HA shows that the site-specific amino-acid

preferences of homologs are tremendously more similar than those of unrelated proteins.

This general conservation of site-specific amino-acid preferences does not imply an absence of epis-

tasis during NP’s evolution. For instance, our results show that some (as yet mechanistically uncharac-

terized) epistatic interaction with other sites has driven a strong shift in the amino-acid preferences at site

470. At other sites, smaller shifts in amino-acid preferences are still certain to induce evolutionarily im-

portant epistasis, since natural selection is highly discerning. Indeed, we have previously demonstrated

epistasis among mutations to NP (Gong et al., 2013), indicating that NP is no different than the many

other proteins for which evolutionarily relevant epistasis has been identified (Weinreich et al., 2006;

Ortlund et al., 2007; da Silva et al., 2010; Lunzer et al., 2010; Natarajan et al., 2013; Podgornaia and

Laub, 2015). Our key result is not that epistasis is absent, but rather that its frequency and magnitude are

sufficiently low that the amino-acid preferences for most sites are are still vastly more similar between

homologs than between non-homologous proteins.

The implications of this finding are illustrated by the second part of our study, which shows that

the experimentally measured site-specific amino-acid preferences can inform phylogenetic substitution

models that greatly outperform non-site-specific models even for more diverged NP homologs. It is

well known that the actual constraints on protein evolution involve cooperative interactions among
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sites (Zuckerkandl and Pauling, 1965; DePristo et al., 2005; Harms and Thornton, 2013), and so sub-

stitution models that treat sites either independently or identically are obviously imperfect. But com-

putational biology must balance realism with tractability. Site-independent but site-specific substitution

models are becoming feasible for real-world datasets (Lartillot and Philippe, 2004; Le et al., 2008; Wang

et al., 2008; Rodrigue et al., 2010; Bloom, 2014a,b), but approaches that relax the assumption of inde-

pendence among sites remain in their infancy (Choi et al., 2007; Bordner and Mittelmann, 2014). Are

amino-acid preferences sufficiently conserved for site-independent but site-specific models to represent

substantial improvements over existing non-site-specific alternatives? Both our experimental and com-

putational results answer this question with a resounding yes.

Why are the site-specific amino-acid preferences mostly conserved? As is the case for virtually all

proteins (Chothia and Lesk, 1986; Sander and Schneider, 1991), the structure of NP is highly conserved

among homologs (Ye et al., 2006; Das et al., 2010), and sites in specific structural contexts often have

propensities for certain amino acids (Chou and Fasman, 1974; Richardson and Richardson, 1988; Lim

and Sauer, 1991). In addition, selection for protein stability is a major constraint on evolution (De-

Pristo et al., 2005; Bloom et al., 2005), and experiments on NP (Ashenberg et al., 2013) and other

proteins (Risso et al., 2015; Serrano et al., 1993) have shown that the effects of mutations on stability

are similar among homologs. Therefore, conserved structural and stability constraints probably natu-

rally lead to substantial conservation of site-specific amino-acid preferences. We refer the reader to an

excellent recent study by Risso et al. (2015) for a more biophysically nuanced discussion of these issues.

The extent to which site-specific amino-acid preferences will be conserved among more distant ho-

mologs remains an open question. Computational simulations of the divergence of distant homologs

have been used to argue that preferences shift substantially (Pollock et al., 2012), but the reliability

of such simulations is unclear since computational predictions of the effects of even single amino-acid

mutations are only modestly accurate (Kellogg et al., 2011; Potapov et al., 2009). The only direct ex-

perimental data come from a study showing that the effects of a handful of mutations on stability are

mostly conserved among homologs with about 50% protein-sequence identity (Risso et al., 2015). More

comprehensive determination of the relationship between sequence divergence and shifts in site-specific

amino-acid preferences therefore remains an important topic for future work.
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Methods

Availability of data and computer code FASTQ files can be accessed at the Sequence Read Archive

(SRA Accession SRP056028). The computer code necessary to reproduce all the analysis in this work is

available at https://github.com/mbdoud/Compare-NP-Preferences.

Deep mutational scanning of two influenza nucleoprotein homologs

We performed deep mutational scanning of influenza nucleoprotein (NP) in three biological replicates for

A/PR/1934 (H1N1) and two biological replicates for A/Aichi/1968 (H3N2) (termed here as Aichi/1968

current study). We broadly followed the methods used for mutagenesis, viral rescue, deep sequenc-

ing, and inference of amino-acid preferences from sequence data described in (Bloom, 2014a), with the

following notable changes to the protocol.

Codon mutagenesis For each replicate mutant library, we followed the mutagenesis protocol as pre-

viously described (Bloom, 2014a), but performed two rounds of mutagenesis instead of three to de-

crease the average number of mutations per clone. After ligation of mutagenized PCR products to

the pHW2000 (Hoffmann et al., 2000) plasmid backbone, multiple parallel transformations and plat-

ings were combined to ensure that each replicate library contained more than 106 unique transformants.

Sanger sequencing of 30 clones from each homolog revealed that the number of mutations per clone was

approximately Poisson distributed with an average of 1.7 mutations per clone for the PR/1934 libraries

and 2.1 mutations per clone for the Aichi/1968 libraries, with mutations distributed uniformly across the

length of the gene.

Growth of mutant virus libraries We used reverse genetics (Hoffmann et al., 2000) to rescue viruses

carrying mutant NP genes. Co-cultures of 293T and MDCK-SIAT1 cells were plated 16 hours prior to

transfection in D10 media (DMEM supplemented with 10% FBS, 100 U/mL of penicillin,100 µg/mL

of streptomycin, and 2 mM L-glutamine) at cell densities of 3x105 293T/mL and 2.5x104 MDCK-

SIAT1/mL. Co-cultures were transfected using BioT transfection reagent (Bioland Scientific) with a

mixture of 250 ng of each of the eight reverse genetics plasmids per well in 6-well plates. In order to cir-

cumvent the possibility of rare mutants with exceptional replication fitness growing to high frequencies

and limiting the growth of other mutants, we divided each transfection into multiple tissue-culture wells.

For the PR/1934 libraries, we rescued viruses containing the mutagenized PR/1934 NP with the seven

remaining PR/1934 viral gene segments, and each replicate mutant library was transfected into the twelve

wells of two 6-well plates. For the Aichi/1968 libraries, we used a viral rescue protocol that increases the

number of parallel transfections and uses 293T cells that constitutively express protein V from hPIV2.

This protein targets STATI for degradation, thereby inhibiting type I interferon signaling (Andrejeva
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et al., 2002). We rescued these Aichi/1968 virus libraries by transfecting the Aichi/1968 NP mutant

library along with PB1/PB2/PA from Nanchang/933/1995 (using the plasmids in (Gong et al., 2013) and

HA/NA/M/NS from WSN/1933 into 48 wells of eight 6-well plates. For both homologs, in parallel, we

performed similar transfections using the corresponding unmutated NP genes to grow unmutated virus.

At 24 hours after transfection, co-culture media was aspirated, cells were rinsed with PBS, and the

media was changed to influenza growth media (OptiMEM I media (Gibco) supplemented with 0.01%

FBS, 0.3% BSA, 100 U/mL of penicillin,100 µg/mL of streptomycin, 100 µg/mL calcium chloride, and

3 µg/mL TPCK-trypsin). Co-culture supernatant was collected 72 hours after transfection, clarified by

centrifugation at 2,000xg for 5 min, aliquoted and stored at -80◦ C.

Since many of the virions obtained from transfection with mutant NP library plasmids are likely to

have originated in cells that contained more than one mutant NP gene and therefore might carry NP

genes and NP proteins with different mutations, we passaged viruses in MDCK-SIAT1 cells at a low

multiplicity of infection (MOI) to enforce genotype-phenotype linkage. We titered viruses from thawed

transfection supernatant aliquots for each replicate virus library using the TCID50 protocol described

in (Thyagarajan and Bloom, 2014). We then passaged viral libraries in MDCK-SIAT1 cells. Cells were

plated in D10 media at 2x105 cells/mL. After 16 hours, the media was changed to influenza growth media

containing diluted transfection supernatant virus. PR/1934 libraries were each passaged in 20 wells of

6-well dishes at an MOI of 0.05 TCID50/cell, and Aichi/1968 libraries were each passaged in eight 10-

cm dishes at an MOI of 0.1 TCID50/cell. After 48 hours, supernatant was clarified by centrifugation at

2,000xg for 5 min, aliquoted and stored at -80◦ C.

Sample preparation and deep sequencing For each virus sample to be sequenced, 10 mL of clar-

ified viral passage supernatant was centrifuged at 64,000xg for 1.5 hours to pellet viruses. RNA was

extracted using the Qiagen RNEasy kit by lysing viral pellets in buffer RLT and following the manu-

facturer’s recommended protocol. The NP gene was reverse transcribed using AccuScript High-Fidelity

Reverse Transcriptase (Agilent Technologies) from both positive-sense and negative-sense viral RNA

templates using the primers PR8-NP-RT-F (5’-agcaaaagcagggtagataatcactcactgagtgac-3’) and PR8-NP-

RT-R (5’-agtagaaacaagggtatttttcttta-3’) for PR/1934 viruses or the primers 5’-BsmBI-Aichi68-NP (5’-

catgatcgtctcagggagcaaaagcagggtagataatcactcacag-3’) and 3’-BsmBI-Aichi68-NP (5’-catgatcgtctcgtatta

gtagaaacaagggtatttttcttta-3’) for Aichi/1968 viruses.

To ensure a sufficiently large number of unique RNA molecules were reverse transcribed, we used

qPCR (SYBR Green Real-Time PCR Master Mix, Life Technologies) using primers qWSN-NP-for

(5’-ACGGCTGGTCTGACTCACAT-3’) and qPR8-NP-rev (5’-TCCATTCCGGTGCGAACAAG-3’) to

quantify the concentration of first-strand cDNA molecules against a standard curve of linear NP ampli-

cons quantified by Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies). We then made PCR am-

plicons with KOD DNA Polymerase (Merck Millipore) using at least 1x109 first-strand cDNA molecules
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as template in each reaction for viral gene sequencing. We also made PCR amplicons using 10 ng of the

indicated plasmids for plasmid sequencing. For each biological replicate, we generated these PCR am-

plicons with 25 cycles of amplification using unmutated NP plasmid, mutated NP plasmid, NP cDNA

from unmutated virus, and NP cDNA from mutated virus as template for the DNA, mutDNA, virus, and

mutvirus samples, respectively.

To reduce the sequencing error rate, we developed a sequencing sample preparation protocol that

results in sequencing libraries with inserts approximately 150 bp long. This allowed us to use paired-end

150 bp sequencing to achieve mostly overlapping reads so that sequencing errors resulting in mismatches

between the two reads could be identified and ignored during data analysis. To make these sequencing

libraries, we gel-purified the DNA, mutDNA, virus, and mutvirus PCR amplicons and sheared 1 µg

of each amplicon using Covaris to a median size of approximately 150 bp. We followed the modified

Illumina paired-end library preparation protocol provided in (Henikoff et al., 2011) for end repair, 3’ A

overhang, and adapter ligation steps, using Zymo DNA Clean & Concentrator columns (Zymo Research)

or Ampure XP (Beckman Coulter) magnetic beads for DNA clean-up after shearing, end repair, and 3’ A

overhang steps. Barcoded Y-adapters were made by annealing 10 µL of 100 µM PAGE purified universal

adapter (5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC TTCCGATC*T-

3’, where * indicates phosphorothioate bond) to 10 µL of 100 µM PAGE purified barcoded adapter (5’-

PGATCGGAAGAGCACACGTCTGAACTC CAGTCACNNNNNNATCTCGTATGCCGTCTTCTGCTT*G-

3’, where P indicates 5’ phosphorylation, * indicates phosphorothioate bond, and NNNNNN indicates

sample-specific barcode). Each 20 µL mixture (one mixture for each barcode sequence) was annealed

by heating to 95◦ C for 5 minutes and cooling at 0.3◦ C/second to 4◦ C. The resulting Y-adapters were

diluted to 25 µM by adding 20µL 10 mM Tris pH 7.5 and stored in 4 µL aliquots at -20◦ C. Y-adapters

with unique barcodes (ATCACG, ACTTGA, TAGCTT, GGCTAC, TTAGGC, GATCAG, ACTGAT, CG-

TACG, CGATGT, TGACCA, CAGATC, and CCGTCC) were ligated to samples derived from each bi-

ological replicate of each amplicon and ligation products were purified using 0.8X bead-to-sample ratio

Ampure XP.

Purified adapter-ligated products for each sample were quantified by Quant-iT PicoGreen dsDNA

Assay Kit (Life Technologies) and 25 ng was used as template for a 4-cycle PCR using Phusion High-

Fidelity Polymerase (Thermo Scientific) to amplify inserts with adapters properly ligated on both sides.

This amplification step was performed with the following components: 25 ng template DNA, 5 µL

5X Phusion buffer, 2.5 µL mixture of each dNTP at 2.5 mM, 2 µL forward primer at 10 µM (5’-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA-3’), 2 µL reverse primer at 10

µM (5’-CAAGCAGAAGACGGCATACGAGAT-3’), and 0.25 µL Phusion polymerase in a final reaction

volume of 25 µL. PCR products were purified using 1.0X bead-to-sample ratio Ampure XP and quanti-

fied using PicoGreen. Samples were pooled in equal amounts and size-selected on a 2.0% agarose gel

for fragments between 240 bp and 300 bp, which contain sequencing inserts in the size range of 120-180
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bp. The size-selected sample was then sequenced at the Fred Hutchinson Genomics Core on an Illumina

HiSeq 2500 using a paired-end 150 bp sequencing strategy in rapid run mode.

Analysis of deep sequencing data Sequencing data processing was performed using the software

package mapmuts (Bloom, 2014a). Briefly, for each replicate sample of DNA, mutDNA, virus, and

mutvirus, paired reads were stripped of any adapter sequence and aligned to each other. Read pairs

were discarded if any of the following criteria were met: less than 100 bp of overlap between reads,

average Q-score less than 25 across either read, more than 5 ambiguous nucleotides (N nucleotides)

in either read, or more than 1 mismatch in the overlap between reads. Retained read pairs were then

aligned to the appropriate reference NP gene sequence for PR/1934 or Aichi/1968 NP, and read pairs

with more than 10 mismatches to the reference sequence or with any gaps or insertions were discarded.

Once aligned to the reference sequence, codon identities at every position were called only if all three

nucleotides in the codon matched unambiguously in both reads. The total number of codon identities

at every codon position in the coding region were totaled for each sample (DNA, mutDNA, virus, and

mutvirus), separately for each biological replicate.

Inference of amino-acid preferences We specify that at every site r in the protein, there is an inherent

preference πr,a for every amino acid a, and we specify that
∑

a πr,a = 1. The preference πr,a can be

considered to be the expected frequency of amino acid a at site r in a mutant virus library after viral

growth from a starting plasmid mutant library that contains equal numbers of every amino acid encoded

at site r. Thus, mutations to amino acids with high preferences are beneficial and will be selected for

during viral growth, and mutations to amino acids with low preferences will inhibit viral growth and will

be selected against. Since the plasmid mutant libraries we generated contain on average more than one

mutation per clone, the amino-acid preferences we measure represent an average preference in a variety

of genetic backgrounds very similar to the starting sequence.

Let A(x) represent the amino acid encoded by codon x and let C represent the set of all codons. The

effect of the preference πr,A(x) on the frequency f of observing codon x at site r in the mutant virus

library sample mutvirus is given by:

fmutvirus
r,x = εr,x + ρr,x +

µr,x × πr,A(x)∑
y∈C

µr,y × πr,A(y)
(Equation 1)

where εr,x is the rate of PCR and sequencing errors at site r resulting in codon x, ρr,x is the rate of

reverse transcription errors at site r resulting in codon x, and µr,x is the frequency of codon x at site r in

the plasmid mutant library mutDNA.

We inferred the amino-acid preferences independently for each biological replicate using the Bayesian

algorithm described in (Bloom, 2015) as implemented in dms tools where codon counts in the DNA,
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virus, and mutDNA samples are used to infer the unknown parameters ε, ρ, and µ at each site.

Amino-acid preferences for Aichi/1968 NP were previously published in (Bloom, 2014a), where 8

biological replicates of the entire experiment were performed. In this work we report two additional

biological replicates of the deep mutational scanning experiment for Aichi/1968. We will distinguish the

two data sets when they are used separately for comparison as Aichi/1968 previous study and Aichi/1968

current study, and we will call the combined dataset of all 10 biological replicates for this homolog

Aichi/1968.

Comparison of site-specific amino-acid preferences between homologs

Quantifying the magnitude of amino-acid preference difference between homologs At every site

in the protein, each replicate deep mutational scanning experiment allows for the inference of an amino-

acid preference distribution ~π that provides the preference at that site for all 20 amino acids. We used

the Jensen-Shannon distance metric (the square root of the Jensen-Shannon divergence) to quantify the

distance d between two amino-acid preference distributions:

d(~π1, ~π2) =

√
H

(
~π1 + ~π2

2

)
− H(~π1) +H(~π2)

2
(Equation 2)

where H(~π) is the Shannon entropy of the amino-acid preference distribution ~π. The Jensen-Shannon

distance metric quantifies the similarity between two amino-acid preference distributions, ranging from

0 (identical distributions) to 1 (completely dissimilar distributions). The average distance d between

amino-acid preferences inferred from replicate experiments in the same homolog varies across sites. In

other words, at some sites in the protein ~π is measured with greater precision than others. We therefore

sought to develop, for every site r, a quantitative measure of the magnitude of change in ~π between

homologs that corrects for the variation in ~π within replicate experiments of the same homolog.

For two groups of replicate mutational-scanning experiments A and B done in different homologs,

each containing several replicate inferences of ~π for every site, we calculate the root-mean-square dis-

tance at site r over all pairwise comparisons of ~π measured in replicate experiments i (from group A)

and j (from group B):

RMSDr,between =

√
1

NA,B

∑
i∈A

∑
j∈B

d(~πr,i, ~πr,j)2 (Equation 3)

where NA,B is the total number of non-redundant pairwise comparisons between replicate preferences

measured from groups A and B. At the same site, to estimate the amount of experimental noise within

replicates of the same homolog, we calculate the root-mean-square distance over all pairwise compar-

isons of ~π within the same group of replicate experiments, and average this site-specific noise estimate
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across the two groups:

RMSDr,within =
1

2

√
1

NA,A

∑
i,j∈A,i<j

d(~πr,i, ~πr,j)2 +
1

2

√
1

NB,B

∑
i,j∈B,i<j

d(~πr,i, ~πr,j)2 (Equation 4)

whereNA,A andNB,B are the number of non-redundant pairwise comparisons between replicates within

groups A and B, respectively. We then subtract the magnitude of the noise at this site observed within

groups from our measurement of the difference in amino-acid preferences seen between groups to obtain

a corrected value for the change in ~π at site r between homologs:

RMSDr,corrected = RMSDr,between −RMSDr,within (Equation 5)

It is possible that the observed variation within groups is greater than the observed variation between

groups, resulting in negative RMSDcorrected.

Identifying sites with statistically significant changes in amino-acid preference To determine whether

site-specific RMSDcorrected values are significantly larger than expected if amino-acid preferences are

unchanged between homologs, we applied two methods to generate null distributions ofRMSDcorrected

values. First, we used exact randomization testing to make all possible shuffles of the replicate homolog

datasets into the two groups A and B. For each permutation, we calculated the RMSDcorrected at ev-

ery site, and the results are combined for all permutations. If there are no differences in preferences

between homologs, the distribution of scores generated through randomization should be similar to the

distribution of scores from the actual experiment.

We next observed that the overall correlation of amino-acid preferences across all sites between repli-

cates can vary between experiments. For instance, the average Pearson’s correlation between PR/1934

replicates is 0.59, the correlation between Aichi/1968 replicates in the previous study is 0.50, and the cor-

relation between Aichi/1968 replicates in the current study is 0.74. We considered whether the varying

precision between homologs might lead to biases in the calculated RMSDcorrected.

To test this, we generated a second null distribution of RMSDcorrected under the hypothesis that the

“true” amino-acid preferences are the same for both homologs and can be approximated by averaging

the mean observed preferences for each homolog:

〈〈~πr〉〉 =
〈~πr,homolog A〉+ 〈~πr,homolog B〉

2
(Equation 6)

Under this hypothesis, the observed differences in amino-acid preferences between homologs is solely

due to the different amounts of experimental noise between replicates of each homolog. To model the

effects of this noise on our analysis, we drew replicate simulated amino-acid preferences at each site r
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from a Dirichlet distribution with mean centered on the “true” amino-acid preferences:

~πr,simulated A = Dir(〈〈~πr〉〉 × σA) (Equation 7)

where σA is a scaling factor that is chosen to yield simulated replicate preferences across the entire

protein that have an average Pearson’s correlation between replicates equal to the correlation between

experimental replicates. In other words, we simulate replicate amino-acid preference measurements with

noise tuned to match the actual noise in each experiment. For each simulated experiment, we simulated

the same number of replicates that were performed experimentally, and calculated RMSDcorrected for

all sites. We ran the entire simulation 1000 times, combining all RMSDcorrected values to obtain a null

distribution.

We then separately used the two null distributions (generated through randomization or simulation)

to assign p-values to site-specific RMSDcorrected at each site r:

pr =
number of scores in null distribution ≥ RMSDr,corrected

number of scores in null distribution
(Equation 8)

To control the false discovery rate across the 497 sites tested for significance, we used the procedure of

Benjamini and Hochberg (1995).

Structural analysis of sites with preference changes We used the crystal structure of the influenza

A H1N1 WSN/1933 NP (PDB ID 2IQH, chain C; Ye et al., 2006) to calculate distances between sites.

Distances between sites were defined as the minimum distance between any side chain atoms distal to

the alpha carbons of each site (the alpha carbon was used for all glycine residues). A distance cutoff of

4.5 Ångströms was used to define sites that are in contact with evolutionarily variable sites. To test for

spatial clustering of a group of N sites, the distribution of N distances to the nearest neighbor of the

remaining N − 1 sites was compared to a null distribution of distances calculated the same way for 1000

random selections of sites of size N . One-sided P-values were computed using the Mann-Whitney U

test.

Phylogenetic analysis

Experimental substitution model overview We used a previously described approach to build site-

specific substitution models for influenza nucleoprotein (Bloom, 2014a,b). Briefly, this approach cal-

culates the codon-substitution rate at each site in nucleoprotein based on the rate at which nucleotide

mutations arise and the level of selection acting on these new mutations. The rate of codon substitution,

Pr,xy, at site r of codon x to a different codon y is described as,

Pr,xy = Qxy × Fr,xy (Equation 9)
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where Qxy is the rate of mutation from x to y, and Fr,xy is the probability that a mutation from x to y at

site r is selected and reaches fixation. In this equation, the mutation ratesQxy are assumed to be identical

across sites whereas the selection is modeled as site-specific and site-independent. The site-specific

fixation probabilities Fr,xy were calculated from the experimentally measured amino-acid preferences

using the relationship proposed by Halpern and Bruno (Halpern and Bruno, 1998; Bloom, 2014b). The

four mutation rate free parameters and the stringency parameter were defined as in (Bloom, 2014b).

We then calculated the phylogenetic likelihood of the observed nucleoprotein sequences given the

resulting experimental substitution model Pr,xy, the nucleoprotein phylogenetic tree, and the model pa-

rameters. The tree consisted of influenza nucleoproteins from either human, swine, equine, or avian

hosts. While holding the tree topology fixed, tree branch lengths, and any other model parameters (dis-

cussed below), were optimized by maximum likelihood.

To compare overall phylogenetic likelihoods calculated under various substitution models, we cal-

culated the difference in the Akaike Information Criteria (∆AIC) between models. We compared site-

specific models derived from experimentally determined amino-acid preferences to a non-site-specific

model. We tested separate site-specific models using the amino-acid preferences from PR/1934 and

Aichi/1968. The Aichi/1968 preferences were an average of the amino-acid preferences from the cur-

rent study and previous study. In addition, we tested a site-specific model where we combined data

from the separate Aichi/1968 and PR/1934 mutational-scanning experiments, by averaging amino-acid

preferences for each amino acid at each site across the two homologs, weighting each homolog equally.

The non-site-specific model used the Goldman-Yang (GY94) codon substitution model (Goldman

and Yang, 1994), with nucleotide equilibrium frequencies calculated by the CF3x4 method (Pond et al.,

2010). In this model, the transition-transversion ratio was optimized by maximum likelihood, along

with the mean and shape parameters describing gamma distributions of the nonsynonymous-synonymous

ratios (Yang et al., 2000) and the substitution rates (Yang, 1994) across sites. Each gamma distribution

was discretized with four categories. In previous comparisons of non-site-specific models, this non-site-

specific model performed better than other variants of the GY94 model (Bloom, 2014a,b). All analyses

were performed using the software packages phyloExpCM (Bloom, 2014a) and HyPhy (Pond et al.,

2005), and the data, scripts, and descriptions to replicate the results in this article are available at https:

//github.com/mbdoud/Compare-NP-Preferences.

Phylogenetic trees for different influenza hosts We built phylogenetic trees for nucleoprotein coding

sequences from strains of human influenza, swine influenza, equine influenza, and avian influenza. Full-

length nucleoprotein sequences were downloaded from the Influenza Virus Resource (Bao et al., 2008),

and for each host, a small number of unique sequences per year per influenza subtype were retained.

For human influenza, we retained one sequence every other year from each of the H1N1, H2N2, and

H3N2 lineages. For swine influenza, we retained one sequence per year from either the North American
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Classical H1N1 lineage or the Eurasian H1N1 lineage. For equine influenza, we retained one sequence

per year from the H3N8 lineage. For avian influenza, one sequence every other year per subtype was

retained, and the examined hosts were further restricted to only duck species, to make a sequence set

with a size manageable for phylogenetic modeling.

Sequences from each host were aligned by EMBOSS needle (Rice et al., 2000), and maximum-

likelihood trees were built by RAxML (Stamatakis, 2006). Using these trees and the program Path-O-Gen

(http://tree.bio.ed.ac.uk/software/pathogen/), we identified and removed any se-

quences that were noticeable outliers from the molecular clock. The final tree contained 37, 46, 29, and

24 sequences from human, swine, equine, and avian hosts respectively.

Maximum-likelihood phylogenetic trees were then built from the nucleoprotein sequence alignment

using codonPhyML (Gil et al., 2013). The GY94 model (Goldman and Yang, 1994) was run using

the CF3x4 nucleotide equilibrium frequencies (Pond et al., 2010) along with maximum-likelihood op-

timization of a transition-transversion ratio and of a mean and shape parameter describing a gamma

distribution of nonsynonymous-synonymous ratios (Yang et al., 2000). This gamma distribution was dis-

cretized with four categories. The final, unrooted tree was visualized with FigTree (http://tree.

bio.ed.ac.uk/software/figtree/) and rooted using the avian clade (Worobey et al., 2014).
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Table 1: Combining experimental data improves phylogenetic fit to NPs from human influenza

model ∆AIC
log

likelihood

parameters
(optimized +

empirical) optimized parameters
Aichi/1968 + PR/1934 0.0 -4395.8 5 (5 + 0) RA→G = 4.6, RA→T = 0.8, RC→A = 1.4, RC→G = 0.1, β = 3.0

PR/1934 322.3 -4556.9 5 (5 + 0) RA→G = 4.9, RA→T = 0.8, RC→A = 1.4, RC→G = 0.1, β = 2.1
Aichi/1968 485.7 -4638.6 5 (5 + 0) RA→G = 4.8, RA→T = 0.7, RC→A = 1.4, RC→G = 0.1, β = 2.4

GY94, gamma ω, gamma rates 2582.3 -5678.9 13 (4 + 9) κ = 6.2, ω shape = 0.1, mean ω = 0.1, rate shape = 2.4

Substitution models are sorted by ∆AIC, and the corresponding log likelihoods, number of free parameters,
and values of optimized parameters are shown. Log likelihoods for each model were calculated through
maximum-likelihood optimization of branch lengths and model parameters given the fixed tree topology of
human NPs shown with blue lines in Figure 1. The only parameters in the experimentally informed models
are the four nucleotide mutation rates and the stringency parameter β. The non-site-specific GY94
model (Goldman and Yang, 1994) has nine empirical nucleotide equilibrium frequencies (Pond et al., 2010),
and optimized parameters describing the transition-transversion ratio (κ), the gamma distribution of the
nonsynonymous-synonymous ratio (ω) (Yang et al., 2000), and the gamma distribution of substitution
rates (Yang, 1994). In the Aichi/1968 model, the preferences from current study and previous study have
been averaged.
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Table 2: Combining experimental data improves phylogenetic fit to NPs from human, swine, equine,
and avian influenza

model ∆AIC
log

likelihood

parameters
(optimized +

empirical) optimized parameters
Aichi/1968 + PR/1934 0.0 -17507.9 5 (5 + 0) RA→G = 6.0, RA→T = 1.0, RC→A = 1.4, RC→G = 0.1, β = 2.7

PR/1934 700.2 -17858.0 5 (5 + 0) RA→G = 6.3, RA→T = 1.0, RC→A = 1.4, RC→G = 0.1, β = 2.1
Aichi/1968 1030.2 -18023.0 5 (5 + 0) RA→G = 6.2, RA→T = 0.9, RC→A = 1.4, RC→G = 0.1, β = 2.3

GY94, gamma ω, gamma rates 1784.7 -18392.2 13 (4 + 9) κ = 6.9, ω shape = 0.3, mean ω = 0.1, rate shape = 3.1

This table differs from Table 1 in that it fits the combined tree of human, swine, equine, and avian NPs in
Figure 1.
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Figure 1: Phylogenetic tree of influenza NPs. The two homologs used in this work are labeled
on the human influenza lineage. A diverse set of sequences was collected by sampling across years
and hosts, and a maximum-likelihood tree was inferred using CodonPhyML (Gil et al., 2013) with the
codon substitution model of Goldman and Yang (1994). The tree was rooted using the avian clade as an
outgroup. The scale bar is in units of codon substitutions per site.
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Figure 2: Site-specific amino-acid preferences correlate nearly as well between NP homologs as
between replicate measurements on the same homolog. (A), (B) The correlation between the mean
of the preferences taken over all replicates on each NP homolog is nearly as large as that between the
preferences measured in the current study and previous study on the Aichi/1968 NP. (C) However, there
is no correlation between the preferences measured for NP and the non-homologous protein HA. Each
data point in (A)-(C) is the preference for one of the twenty amino acids at one of the 497 sites in NP.
R is the Pearson correlation coefficient. (D) The Pearson correlations between the preferences measured
in all pairs of individual replicates. Comparisons between NP and HA were made based on position in
primary sequence for sites 2 through 498.
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Figure 3: Replicate measurements quantify the shift in amino-acid preferences between homologs
after correcting for experimental noise. The amino-acid preferences measured in multiple replicates of
deep mutational scanning of both homologs are shown for selected sites ordered by the magnitude of pref-
erence change observed after correcting for site-specific noise. RMSDbetween (the average difference
between the two homologs) and RMSDwithin (the average variation within replicates of each homolog)
are shown to the right. RMSDcorrected is calculated by subtracting RMSDwithin from RMSDbetween.
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Figure 4: Identification of sites with shifts in amino-acid preferences. (A)-(C) Each plot shows
statistics calculated for a comparison between two groups of replicate experiments. Each point represents
a site in NP. RMSDwithin quantifies the average difference in amino-acid preferences within each of
the two groups (experimental noise), and RMSDbetween quantifies the average difference in preferences
between the two groups. Points above the y = x diagonal represent sites with preference changes
between homologs greater than experimental noise. Sites in the RNA-binding groove are in purple;
sites that have different wild-type identities in PR/1934 and Aichi/1968 are in green. (D)-(F) The actual
distribution of RMSDcorrected values is shown in blue, and the distribution of RMSDcorrected from
data randomized between comparison groups is shown in red. Comparisons are made between the two
studies on Aichi/1968 (A, D), between Aichi/1968 and PR/1934 (B, E), and between Aichi/1968 and the
non-homologous HA (C, F).
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Figure 5: Evolutionarily variable sites are enriched for changes in amino-acid preference. (A) Sites
with shifts in amino-acid preferences were identified by RMSDcorrected values greater than expected
under a null model assuming no difference between homologs (false discovery rate of 5% using a null
model generated by exact randomization testing). Variable sites have different wild-type residues in the
two NP homologs. (B) The distributions of RMSDcorrected for various groups of sites. The median
is marked by a horizontal line, boxes extend from 25th to 75th percentile, and whiskers extend to data
points within 1.5 times the interquartile range. Outliers are marked with crosses. Contacting variable
sites are conserved sites with side-chain atoms within 4.5 Ångströms of a variable side-chain atom.
RMSDcorrected distributions for each group of sites are shown for two comparisons: one comparing
two independent experiments on Aichi/1968, and one comparing Aichi/1968 to PR/1934. P-values were
determined using the Mann-Whitney U test and adjusted using the Bonferroni correction.
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Figure 6: Magnitude of the shift in amino-acid preferences mapped on the NP structure.
RMSDcorrected values for each site are used to color space-filling models for the indicated sites in
the NP crystal structure (PDB ID 2IQH, chain C; Ye et al., 2006)). Sites are shown as circles when
in regions that are not present in the crystal structure (dashed lines). Blue represents small shifts in
amino-acid preferences between PR/1934 and Aichi/1968; red represents large shifts. Variable amino
acid refers to sites where the wild-type residue differs between PR/1934 and Aichi/1968 NP. Largest
preference changes refers to sites where the null hypothesis is rejected using exact randomization testing
with a false discovery rate of 5%.
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Figure 7: NP sites that are better described by combining data from both homologs have
shifted amino-acid preferences. The change in per-site likelihood in going from the Aichi/1968
model to the Aichi/1968 + PR/1934 model was plotted against the per-site RMSDwithin (A) or per-
site RMSDcorrected (B). Sites were ranked by ∆(log-likelihood), divided into quintiles, and the per-
site RMSDwithin or per-site RMSDcorrected for sites in each quintile was displayed as a box and
whisker plot. Outlier sites beyond the interquartile range are omitted. Quintiles are ordered left to right
from least improved likelihoods to most improved likelihoods under the combined model. The median
RMSDwithin or RMSDcorrected is shown as a horizontal, dashed line. Sites with the most improved
likelihoods did not have significantly higher variation in amino-acid preferences (high RMSDwithin)
across replicate measurements on the same homolog. However, these sites did have significantly higher
differences in amino-acid preferences between Aichi/1968 and PR/1934 (high RMSDcorrected).

37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2015. ; https://doi.org/10.1101/018457doi: bioRxiv preprint 

https://doi.org/10.1101/018457
http://creativecommons.org/licenses/by/4.0/


model ∆AIC
log

likelihood

parameters
(optimized +

empirical) optimized parameters
Aichi/1968 + PR/1934 0.0 -6832.4 5 (5 + 0) RA→G = 4.9, RA→T = 0.9, RC→A = 1.4, RC→G = 0.1, β = 2.8

PR/1934 390.4 -7027.6 5 (5 + 0) RA→G = 5.1, RA→T = 0.9, RC→A = 1.4, RC→G = 0.1, β = 2.1
Aichi/1968 563.3 -7114.0 5 (5 + 0) RA→G = 5.0, RA→T = 0.8, RC→A = 1.4, RC→G = 0.1, β = 2.4

GY94, gamma ω, gamma rates 2153.5 -7901.2 13 (4 + 9) κ = 5.9, ω shape = 0.3, mean ω = 0.0, rate shape = 2.9

Supplementary table 1: Combining experimentally informed substitution models for swine influenza
NP. This table differs from Table 1 in that the phylogenetic fit is for the tree of swine NPs shown in Figure 1.
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model ∆AIC
log

likelihood

parameters
(optimized +

empirical) optimized parameters
Aichi/1968 + PR/1934 0.0 -2458.1 5 (5 + 0) RA→G = 10.4, RA→T = 0.7, RC→A = 1.5, RC→G = 0.4, β = 2.8

PR/1934 244.1 -2580.1 5 (5 + 0) RA→G = 10.6, RA→T = 0.7, RC→A = 1.5, RC→G = 0.4, β = 2.0
Aichi/1968 337.5 -2626.8 5 (5 + 0) RA→G = 10.7, RA→T = 0.6, RC→A = 1.4, RC→G = 0.3, β = 2.4

GY94, gamma ω, gamma rates 2270.1 -3585.2 13 (4 + 9) κ = 13.0, ω shape = 0.0, mean ω = 0.1, rate shape = 1.7

Supplementary table 2: Combining experimentally informed substitution models for equine influenza
NP. This table differs from Table 1 in that the phylogenetic fit is for the tree of equine NPs shown in Figure
1.
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model ∆AIC
log

likelihood

parameters
(optimized +

empirical) optimized parameters
Aichi/1968 + PR/1934 0.0 -5686.6 5 (5 + 0) RA→G = 8.7, RA→T = 1.1, RC→A = 1.3, RC→G = 0.0, β = 3.2

PR/1934 334.3 -5853.7 5 (5 + 0) RA→G = 9.0, RA→T = 1.1, RC→A = 1.3, RC→G = 0.0, β = 2.3
Aichi/1968 639.0 -6006.1 5 (5 + 0) RA→G = 8.9, RA→T = 1.0, RC→A = 1.3, RC→G = 0.0, β = 2.5

GY94, gamma ω, gamma rates 1730.0 -6543.6 13 (4 + 9) κ = 9.2, ω shape = 0.0, mean ω = 0.0, rate shape = 1.9

Supplementary table 3: Combining experimentally informed substitution models for avian influenza
NP. This table differs from Table 1 in that the phylogenetic fit is for the tree of avian NPs shown in Figure 1.
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Supplementary figure 1: Logoplot of amino-acid preferences for PR/1934 NP. The mean preferences
for sites 2 through 498 of PR/1934 are represented in a sequence logo-like visualization created with the
program dms logoplot. The height of each letter is proportional to the preference for that amino-acid
at that site.
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Supplementary figure 2: Logoplot of amino-acid preferences for Aichi/1968 NP. The mean prefer-
ences for sites 2 through 498 of Aichi/1968 are represented in a sequence logo-like visualization created
with the program dms logoplot. The height of each letter is proportional to the preference for that
amino-acid at that site.
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A B 

C D 

Supplementary figure 3: Characterization of plasmid mutant libraries generated by codon mu-
tagenesis. The distributions of number of mutated codons per clone (A, C) and number of nucleotide
changes per codon mutation (B, D) were determined by full-length Sanger sequencing of individual
clones. A-B: PR/1934 libraries, C-D: Aichi/1968 libraries.
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Supplementary figure 4: Logoplot of amino-acid preferences for combined PR/1934+Aichi/1968
NP. The mean preferences for sites 2 through 498 of the combined Aichi/1968 + PR/1934 model are
represented in a sequence logo-like visualization created with the program dms logoplot. The height
of each letter is proportional to the preference for that amino-acid at that site.
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Supplementary figure 5: Null distributions of RMSDcorrected generated by simulation. The null
distributions generated by simulation are shown in red; experimental distributions are shown in blue.
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Supplementary file 1: Mean amino-acid preferences for PR/1934 NP. This text file lists the mean
amino-acid preferences for sites 2 through 498 in PR/1934 NP. The amino-acid preferences inferred from
three biological replicates for PR/1934 NP were averaged at each site.

Supplementary file 2: Mean amino-acid preferences for Aichi/1968 NP. This text file lists the mean
amino-acid preferences for sites 2 through 498 in Aichi/1968 NP. The average is taken from the average
across the previous study replicates and the average from the current study replicates.

Supplementary file 3: Mean amino-acid preferences for combined PR/1934+Aichi/1968 NP. This
text file lists the amino-acid preferences averaged evenly across the two homologs.
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Supplementary file 4: NP sequence alignment used to build phylogenetic tree. The alignment
consists of human, swine, equine, and avian NP-coding sequences.

Supplementary file 5: Amino-acid preference RMSD calculations for PR/1934 vs. Aichi/1968
NP. This table lists summary findings for the comparison of amino-acid preferences between PR/1934
and Aichi/1968 NP. For sites 2 through 498 (the initiating methionine was not mutagenized in our ex-
periments) the amino-acid identity is noted to either be conserved or variable between PR/1934 and
Aichi/1968 NP homologs. For variable sites, the PR/1934 amino-acid identity is listed first. The
RMSDbetween, RMSDwithin, and RMSDcorrected statistics calculated for the comparison between
3 replicates of PR/1934 and 10 replicates of Aichi/1968 are listed in the following columns. The next
two columns denote sites where the null hypothesis that preferences are identical across homologs can
be rejected (under a false discovery rate of 5%) using exact randomization or simulation to generate null
distributions of RMSDcorrected, respectively. The final two columns list the mean amino-acid prefer-
ences for the most preferred amino acids as measured in each homolog. Amino acids are listed in their
order of preference to account for the top 65% of preferences (preferences sum to 1 at each site), with
up to three listed for each homolog; full amino-acid preference data is available in Supplementary file 1,
Supplementary file 2, and Supplementary file 3.
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