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ABTRACT In recent years, different technologies have been used to measure genome-wide gene expression levels and to study the
transcriptome across many types of tissues and in response to in vitro treatments. However, a full understanding of gene regulation in
any given cellular and environmental context combination is still missing. This is partly because analyzing tissue/environment-specific
gene expression generally implies screening a large number of cellular conditions and samples, without prior knowledge of which
conditions are most informative (e.g. some cell types may not respond to certain treatments). To circumvent these challenges, we
have established a new two-step high-throughput and cost-effective RNA-seq approach: the first step consists of gene expression
screening of a large number of conditions, while the second step focuses on deep sequencing of the most relevant conditions (e.g.
largest number of differentially expressed genes). This study design allows for a fast and economical screen in step one, with a more
profitable allocation of resources for the deep sequencing of re-pooled libraries in step two. We have applied this approach to study
the response to 26 treatments in three lymphoblastoid cell line samples and we show that it is applicable for other high-throughput
transcriptome profiling requiring iterative refinement or screening.
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Introduction

Recent studies have shown that the environment has played a major
role in shaping the current distribution of allele frequencies in human
populations (Hancock et al. 2011, 2010; Barreiro et al. 2008). For
example, one of the most striking cases of the clinical impact of human
adaptations to dietary changes is the lactase persistence phenotype
(Tishkoff et al. 2007). These studies have investigated adaptations
to the macroscopic (e.g. climate, resource availability, pathogen ex-
posure) environment in humans. However, to learn about molecular
mechanisms underlying the organismal response to environmental
changes, it is necessary to focus at the cellular level. The cellular
environment is determined by the presence of other cell types (e.g. in
non-homogeneous tissues) and by the complex of stimuli (e.g. hor-
monal and metabolic) that a cell is exposed to. In this study, we define
a specific environment as an agent that is introduced in the culture
medium, can potentially change the state of the cell and is measurable
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at the molecular level. Examples include, agents secreted by nearby
cells, hormones and metabolites secreted by other organs, pollutants,
drugs or micronutrients absorbed by the organisms. These cellular en-
vironments are a complex function of organismal-level environmental
exposures, which should have a more tractable influence on sub-cellular
phenotypes such as gene expression. For example, environmental stress
(physical or emotional) changes blood glucocorticoids level (a steroid
hormone), which in the cell induces major changes in global gene-
expression patterns mediated by the activation of the glucocorticoids
receptor (GR) (Maranville et al. 2011; Grundberg et al. 2011). Despite
few additional examples, the molecular mechanisms underlying regula-
tion of gene expression in different environmental conditions are still
poorly understood. Functional genomics data collected by large con-
sortia efforts, such as ENCODE (http://genome.ucsc.edu/ENCODE/),
the Roadmap Epigenome (http://www.roadmapepigenomics.org/) have
provided large amounts of information on tissue specific regulatory
regions of the human genome. However, we are still missing a full
understanding of the elements that regulate gene expression in any
given cellular and environmental context.

The first step in understanding the regulatory mechanisms underly-
ing a cell’s response to environmental perturbations is a comprehensive
characterization of the transcriptional response across several environ-
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ments (treatments and cell types). Current experimental setups are
costly and laborious and have allowed only focusing on the analysis of
a particular cellular environment in any given experiment. The most
notable exception is the Connectivity Map initiative (Lamb et al. 2006),
which characterized the transcriptional response to 164 small-molecule
perturbagens in four cancer cell lines. Here we have developed an ap-
proach that allows a similar throughput, and uses RNA-seq rather than
microarrays, with specific advantages: for example, with RNA-seq it
is possible to investigate a wider dynamic range of expression levels,
with digital sensitivity; it is also possible to study transcript isoforms
and RNA species that are not represented on common arrays, such as
LincRNAs. Recently, Narayan and colleagues (Narayan et al. 2015)
have developed a high throughput (META) RNA profiling method,
that allows for parallel analysis and multiplexing of a large number
of samples. However, the tag and PCR-based method in the current
protocol, only allows for the quantification of known RNA species
and prevents some RNA-seq specific applications such as isoforms
quantification and allele-specific analysis. Since the development of
RNA-seq technology (Mortazavi et al. 2008; Nagalakshmi et al. 2008;
Marioni et al. 2008), a variety of protocols have been introduced to
investigate specific biological problems, for example, direct RNA se-
quencing (Ozsolak et al. 2009), allows sequencing of RNA molecules
skipping cDNA synthesis and can thus analyze short, degraded and/or
small quantity RNA samples; another example of fast and automatized
RNA-seq protocols is the Tn-RNA-seq (Gertz et al. 2012) approach,
which uses transposase-based incorporation of sequencing adaptors in
cDNA libraries.

Independent of the RNA-seq technology used, here we present
a new cost-effective two-step strategy that uses the ability to index
and pool many (96 or more) RNA-seq libraries in parallel. This strat-
egy allows the researcher to rapidly screen a large number of sample
conditions and strategically allocate sequencing resources to in depth
analysis only for the relevant cases. We demonstrate this approach by
exploring the transcriptional response to a wide panel of environmental
perturbations (26 treatments) in three LCL samples. The results show
that our approach should also be applicable to similar scenarios requir-
ing high throughput screening across multiple cell lines, treatments,
time points and/or patient samples in a variety of contexts, such as:
population genetic studies, pharmacological drugs testing and cancer
transcriptome profiling.

Materials and Methods

Cell culture and treatments

Lymphoblastoid cell lines (LCLs) were purchased from Coriell Cell
Repositories. Prior to the experiment, cells were cultured, at 37◦

and 5% CO2, in RPMI 1640 (Gibco), supplemented with 15% heat-
inactivated fetal bovine serum and 0.1% Gentamycin. The following
LCLs were used: GM19239, GM18507, and GM18508. LCLs were
cultured in "starvation medium" composed of RPMI 1640, supple-
mented with 15% charcoal-stripped fetal bovine serum (CS-FBS) and
0.1% Gentamycin for four days. Cells were then treated with the
treatment panel (Sigma Aldrich) in Table 1 for 6 hours.

Sample Collection and mRNA isolation

Treated cells were collected by centrifugation at 2000 rpm and washed
2X using ice cold PBS. Collected pellets were lysed on the plate, using
Lysis/Binding Buffer (Ambion), and frozen at -80◦. Poly-adenylated
mRNAs were subsequently isolated from thawed lysates using the Dyn-
abeads mRNA Direct Kit (Ambion) and following the manufacturer
instructions.

A modified RNA-seq library preparation protocol
We modified the NEBNext Ultradirectional (NEB) library prepara-
tion protocol to use 96 Barcodes from BIOOScientific added by lig-
ation, this allowed us to reduce the overall library preparation cost
to $47/sample. Specifically, RNA-seq libraries were prepared using
the NEBNext ultradirectional library preparation protocol, with the
following changes. RNA was fragmented at 94◦ for 5 minutes to obtain
fragments 200-1500bp in size. SPRI Select beads (Beckman Coulter)
were used in all purification steps and size selection was performed
to obtain 300-450bp fragments . After the cDNA synthesis, to the 65
µL of dA-Tailed cDNA were added the following components: 15µL
of Blunt/TA Ligase Master Mix, 2.39µL of BIOO Scientific Barcode
Adaptors (1-96), 1.11 µL of Nuclease-free water. The samples were in-
cubated for 15 minutes at 20◦ in a thermal cycler. USER Excision and
PCR Library Enrichment were performed according to the following
protocol. To the size selected cDNA (20µL) were added the following
components: 3µL of NEBNext USER Enzyme, 25µL of NEBNext
High-Fidelity PCR Master Mix, 2X, 2µL of BIOO Scientific Universal
Primer (12.5µM). The individual libraries were quantified using the
KAPA real-time PCR system, following the manufacturer instructions
and using a custom-made series of standards obtained from serial dilu-
tions of the phi-X DNA (Illumina). Pools of 96 samples from the first
step were sequenced on two lanes of an Illumina HiSeq in fast mode
to obtain 50bp PE reads, at the University of Chicago Genomics core.
Alternatively, this could be run on one lane of the Illumina Next-Seq
500 (75 cycles, PE). Re-pooled libraries for step two were sequenced
on 1 lane of the Illumina Next-Seq500 in High Output mode to obtain
150bp PE reads in the Luca laboratory.

Calculating optimal re-pooling proportions
To calculate optimal re-pooling proportions after shallow sequencing,
we first calculated the digital concentration of reads/µL (R). For each
sample i sequenced in step one, Ri is defined as the number of raw
sequencing reads per µL of pooled library. The re-pooling proportion
for each sample i is then calculated using the following formula:

T − Di
Ri

(1)

where T represents the total number of reads desired for each sample
i (here 75M) and Di represents the number of reads collected for
sample i in previous runs. Changing the value for Di and Ri also
allows for iterative adjustments of pooling proportions in order to reach
the desired total number of reads through multiple re-pooling and
sequencing runs.

RNA-seq data processing and differential gene expression
analysis
Sequencing reads were aligned to the reference human genome hg19
using bwa mem (Li and Durbin 2009 http://bio-bwa.sourceforge.net).
Reads with quality <10 and duplicate reads were removed using
samtools rmdup (http://github.com/samtools/). We also removed
two samples (barcodes) because the sequencing failed (extremely low
number of reads, <50,000). Read counts covering each transcript
were calculated using samtools and the Ensembl gene annotations.
Counts data for transcripts with >20 reads were used to run DESeq2
(Love et al. 2014). To best account for overdispersion, the DESeq2
model was fit on all sequencing data simultaneously, rather than pair-
wise matching of treatments and controls. Each control-treatment pair
was then matched from an experimental design matrix, and differen-
tially expressed (DE) genes were determined as those with at least
one transcript with a Benjamini-Hochberg controlled FDR (BH-FDR)
of 10% (Benjamini and Hochberg 1995). For step two, reads from
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multiple runs were merged after alignment (at the bam stage) and prior
to applying any filter.

To perform hierarchical clustering of the expression levels across
treatments, for each transcript in the Ensembl annotations, we calcu-
lated FPKMs from the number of reads covering the transcript. To
control for potential confounders of expression data, a linear model
was used to regress out effects from GC content, transcript length, and
an interaction term between GC content and transcript length. These
residuals were quantile normalized within each sample, and normalized
within each individual by subtracting that individual’s average value
per transcript across all treatments (10% trimmed mean).

Viability Assays
To assess cell viability in response to the treatment panel, cells were
exposed to each environmental stimulus and subsequently evaluated us-
ing the CellTiter-Glo Luminescent Assay (Promega Cat-G7570). LCLs
were cultured and treated as described above, with the exception of
being seeded into a 96-Well-Black tissue culture plate (Fisher). Treated
plates were then incubated for 48 hours. After each incubation period,
the CellTiter-Glo assay was performed according to the manufacturer
protocol. The plate was then scanned in the Fluoroskan Ascent FL plate
reader and luminescent signal acquired. For each treatment and control
sample, at each time point, experiments were performed in triplicates
on one LCL sample. Significant differential viability was assessed by
a t-test comparing each treatment to the appropriate vehicle-control.

Results

The two-step approach
We have developed a new high-throughput two-step approach to char-
acterize the transcriptional response to environmental perturbations
through RNA-seq. An outline of the approach is presented in Figure 1.
In step one we characterize global changes in gene expression. Here
we used a modified RNA-seq protocol (see methods) better suited
for our specific application, but similar results can be achieved with
popular commercial RNA-seq kits that allow for high multiplexing
(96-well plate format) such as the Illumina TruSeq Stranded mRNA
HT Sample preparation kit or the NEBNext Ultradirectional (NEB)
library preparation kit. Many of these commercially available kits can
work with liquid handling robots that automatize the majority of the
experimental steps (e.g., Beckman Coulter Biomek FXp, Eppendorf
epMotion 5075, and others).

In the first step, all samples are experimentally processed in parallel,
from tissue culture and treatments to library preparation, thus mini-
mizing variation from testing hundreds of conditions at the same time.
Additionally, high multiplexing allows reducing the number of con-
trols that would need to be repeated across different treatment batches
in a less multiplexed experimental set up (e.g. 93 treatments plus 3
controls). A 96-libraries pooling and shallow sequencing strategy is
then used to minimize the amount of resources used in the screening
step. Most RNA-sequencing studies that only require gene expression
quantification are currently collecting tens of millions of reads per sam-
ple. A recent report by Hou et al. (2015) shows that gene expression
for high abundant transcripts can be reliably quantified with less than
five million reads. Here we demonstrate that similar sequencing depth
also allows detecting global and biologically relevant gene expression
changes and can be used to identify relevant conditions to follow up
in step two. Furthermore, even for study designs that require deep se-
quencing of large number of samples (e.g. 96), our two-step approach
allows using the first step to QC the libraries, before investing in deep
sequencing efforts.

For the second step, we do not need to prepare new libraries, and we
can simply repool a selection of the initial libraries, without additional

experimental costs. Furthermore, we can optimize library concen-
trations to pool in order to achieve even representation of individual
libraries. This is done by calculating a digital library concentration
from the sequencing run performed in step one. Note that this digital
library concentration is the fraction of reads from the total sequenced
in the pool, and it naturally takes into account potential differences
across the libraries in sequencing output (e.g., due to Flow cell cluster
formation in Illumina sequencing machines) (see Equation 1). Even in
situations where deep sequencing data are to be collected for all sam-
ples, using a two-step approach allows for optimizing pooling ratios
and efficient allocation of sequencing resources across samples. The
greater sequencing depth in step two is carried out by capitalizing on
the resource savings made possible by the shallow sequencing scheme
applied in step one.

Below we present an application of the two-step approach to analyze
the response to 26 environmental perturbations in LCLs.

Step one—Identifying global changes in gene expression from
low-coverage data

To characterize the response to treatments, cells were treated, while in
mid-log phase exponential growth, with the panel of treatments listed
in Table 1, for 6 hours. Cells from all treatment conditions, including
the vehicle controls, were cultured and harvested in parallel at the same
time point. This is different from studies that collect genomic data prior
and post treatment (with the treatment being done in vivo or in vitro)
and allows for a better control of technical noise, or biological variation
that is independent of the treatment. For example, we were able to
account for temporal changes in gene regulation that are independent
of the treatment (e.g. changes in cell cycle phase over time, reagent
batch effect). Furthermore, to achieve greater confidence and accuracy
to measure baseline gene expression, for each LCL sample, the control
treatments were performed in triplicates. For all stages of sample
preparation we have used a 96-well plate study design (3 samples
and 32 treatment conditions): from cell culturing to RNA extraction
and library preparation, thus facilitating increased sample processing
throughput.

To identify DE genes we used the method implemented in the
software DEseq2, which estimates variance-mean dependence in the
read counts for each gene and tests for differential expression based on
a model using the negative binomial distribution.

Each treatment was matched to the appropriate vehicle control
(Table 1) for this analysis. However, when comparing pairs of controls
to each other we did not detect any DE genes (10% BH-FDR, Figure
S1). To assess the calibration of the tests for differential expression on
low coverage data, we used QQ-plots and observed that in most cases
the tests are well calibrated (Figure 2 and Figure S2).

We next asked whether our ability to detect DE genes may depend
on sequencing depth. Figure 3 shows that the number of DE genes is
not correlated with sequencing depth across three individual samples
for each treatment. For example, we detect <100 DE genes in response
to vitamin B6 and vitamin E, even though these are the treatments for
which we collected the largest number of reads. On the other hand, we
identified thousands of DE genes for iron and tunicamycin, which are
among the treatments with less coverage.

We selected the panel of treatments to include dexamethasone and
estrogen as prior experiments performed by our group (see Luca
et al. (2013), Maranville et al. (2011)) showed a strong and null tran-
scriptional response to these compounds, respectively. After running
DESeq2, we identified 3212 DE genes in response to dexamethasone,
while only 47 DE genes were detected in cells treated with estrogen,
thus confirming previous results (Figure 2).

To identify major similarities and differences in the transcriptional
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response to our panel of treatments, we performed hierarchical cluster-
ing on the transcript expression data for each treatment (expressed in
FPKMs). Figure 4 shows a heatmap of the correlation matrix across all
treatment conditions and samples. Some key features appear evident
even with low sequencing depth: control samples cluster together;
treatments that induce a strong response are distinct from all other treat-
ments and controls, and show a clear pattern where the three samples
for each treatment condition cluster very tightly.

Given the high number of DE genes observed for certain treatments,
we asked whether they could indicate that the cell is undergoing a cyto-
toxic response. To this end we compared the transcriptional response
from RNA-seq data to the cytotoxic response measured in viability
assays. To measure cell viability we used the Promega Glo-Max as-
say, and compared ATP production measured in relative luminescence
units in treatment and control cells. We observed a significant negative
correlation between number of DE genes and change in cell viability
after 48 hrs treatment (Spearman ρ = −0.48, p = 0.02). This sug-
gests that when an extremely large number of DE genes is observed,
it is indicative of major changes in the cell physiological state, which
ultimately may lead to cell death. For example, the largest number
of DE genes was observed for treatments such as iron (12979) and
manganese (16990), which were administered at supra-physiological
doses (Figure S2).

Overall the results from step one show that even from low sequenc-
ing depth data it is possible to identify biologically meaningful global
changes in gene expression that are relevant to assess the cellular
response to environmental perturbations.

Step two—Analysis of gene regulation in response to environ-
mental perturbations

The information collected in step one of our approach can be most
effectively used to re-pool individual libraries by selecting the treatment
conditions biologically relevant for the system under-study. As a
proof of principle, we selected four treatment conditions (vitamin A,
copper, selenium, iron) for deeper sequencing (75M reads/sample) in
all three cell lines, to investigate the transcriptional response to these
environmental perturbations with greater resolution.

One of the challenges when sequencing highly multiplexed pools
of libraries is achieving even coverage across samples. Figure 5 shows
density plots of sequencing depth across shallow and deep sequencing
samples. The distribution of sequencing depth is a function of factors
related to the sequencing technique and instrument, including, for
example, efficiency in cluster generation on an Illumina sequencer.
It is possible to account for these factors when determining pooling
concentrations for the deep sequencing pool. We developed a formula
(Equation 1) that uses information from the low coverage data to
learn about "read" concentration per library and also accounts for the
sequencing output of each individual sequencing run (see methods).
This is much better than any standard library quantification approach,
because we have a "digital" count of the actual reads that contribute to
generate clusters on the flow-cell per unit of volume of the library. As
expected, in the 30 pooled libraries from step two, we observe a much
tighter distribution of sequencing depth.

We then used DEseq2 to identify DE genes in the deep sequenced
libraries. Table 2 shows the number of DE genes, and their direction
of expression change. We found that transcript fold change is highly
correlated between the shallow and deep sequencing experiments for
the same treatment (Spearman ρ > 0.7, Figure 6), which confirms
that gene expression changes detected from shallow sequencing can be
used to identify biologically relevant treatments for follow up studies.
As expected, with deep sequencing data we can identify transcriptional
changes at greater resolution. Fig 7 shows the increase in number of

DE genes as a function of sequencing depth in step one and step two.
To investigate similarities in the transcriptional response to these

four treatments, we calculated pairwise Spearman rank correlations on
the transcript fold change. We observed that responses to metal ions
(copper, selenium, iron) tend to be more highly correlated with each
other, compared to vitamin A. The highest correlation was observed
between copper and iron (0.43, p = 0). This suggests that LCLs respond
to these treatments through similar gene regulatory pathways.

To further investigate the regulatory pathways altered during the
response to these treatments, we performed GO enrichment analysis
using the DAVID online tool (Huang et al. 2009) and focusing on
biological processes (5% BH-FDR, Supplementary Tables S1-S8). We
observed that upregulated genes in response to vitamin A are enriched
for the immune response and related processes (e.g. leukocytes and
lymphocytes activation), which is in line with the known role of vitamin
A as an activator of immune function (Mora et al. 2008). Upregu-
lated genes in response to copper are enriched for genes involved in
the protein ubiquitination biological processes, and the same result is
observed for upregulated genes in response to selenium. This supports
the observation that these two metal ions elicit very similar transcrip-
tional responses, which are clearly distinct from the response induced
by treatment with vitamin A. However GO enrichment analysis also
points to an anti-inflammatory role for selenium, as down-regulated
genes in response to this metal ion are enriched for leukocytes activa-
tion. Finally, genes upregulated in response to iron are enriched for
metal ion transport and cell-cell adhesion among the top biological
processes, while down-regulated genes are enriched for RNA and DNA
metabolic processes as well as key cellular processes such as mitosis.
These last enrichments reflect the observed cytotoxicity of the iron
treatment we performed on the cells.

Discussion

We have developed a novel high-throughput and cost-effective approach
to screen and analyze the transcriptional response to a large number of
environmental perturbations through RNA-seq. This approach consists
of two steps, where only the first step requires cell culture experiments
and library preparation and allows for a fast and economical screen of
a large number of environmental conditions that are followed up in the
second step through deep sequencing of re-pooled libraries.

We have shown that shallow sequencing of 96 pooled libraries al-
lows identifying, with minimal costs (approx $60/sample, including
library preparation and sequencing), the most interesting conditions
while capturing biologically relevant and informative gene expression
changes. This removes the burden of deep sequencing uninformative
libraries in pilot studies. We have presented an application of this
approach to analyzing 23 environmental perturbations and appropriate
controls in three LCL samples. However, this approach can be success-
fully applied to other study designs where it is most economical to test
a large number of conditions prior to further analysis of relevant ones.
Examples of such applications include time-course experiments, where
it may be relevant to initially screen a large number of timepoints, to
identify the most relevant ones to follow up. At the population level,
to identify population-specific responses, one could first test a large
number of treatments in a few individuals in order to identify the treat-
ments that elicit a strong response to justify treating large population
samples. Finally, tissue specific profiling in disease patients, where
step one would allow identifying the most differentially expressed
tissues between patient and controls that justify deep sequencing to
characterize specific altered pathways.

The second step of our approach can be designed to achieve varying
levels of sequencing depth and read length, depending on the question
being asked. Here we have used step two to validate the shallow
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sequencing step and learn about transcriptional changes in response to
three metal ions and a vitamin/nuclear receptor ligand treatments.

Given the significant monetary savings allowed by step one, it is
possible to invest in deep sequencing of step two pools to the degree
necessary to answer specific biological questions. For example, using
more cycles to get longer reads, may facilitate transcript isoforms de-
tection and quantification (Katz et al. 2010). A sequencing depth of
80M reads or above combined with longer reads also helps in identify-
ing allele specific expression (ASE) even in the absence of genotype
information, as we recently showed in Harvey et al. (2014).

With the availability of desktop sequencer instruments (such as
the Illumina NextSeq500), this two-step protocol will allow for fast
screening and in-depth analysis of relevant conditions in less than 1
week-time. Additionally, compared to microarray-based pilot studies
with 96 samples, our approach allows for 40% savings (e.g. $9,600
with the least expensive microarray option vs $5,800), with subsequent
optimal allocation of resources to meaningful biological conditions
(in step two), thus reducing the amount of time and funds spent on
unsuccessful pilot/exploratory studies.
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Table 1 Treatments used in step one.

Treatment Common Name Control Concentrationa

Ascorbic acid Vitamin C Media 1.00 × 10−5

Biotin Biotin Media 4.75 × 10−10

Nicotinic Acid Vitamin B3 Media 1.50 × 10−5

Pantothenic Acid Vitamin B5 Media 1.00 × 10−7

Pyridoxine Vitamin B6 Media 1.00 × 10−5

Retinoic Acid Vitamin A Ethanol 1.00 × 10−8

Tocopherol Vitamin E Ethanol 5.00 × 10−5

Plumbagin Vitamin K3 Ethanol 1.00 × 10−6

Aldosterone Aldosterone Ethanol 1.00 × 10−5

Progesterone Progesterone (C1) DMSO 1.00 × 10−6

Progesterone Progesterone (C2) Ethanol 1.00 × 10−5

Beta-Estradiol Estrogen Ethanol 1.00 × 10−5

Dexamethasone Dexamethasone Ethanol 1.00 × 10−5

Caffeine Caffeine Media 1.16 × 10−3

Nicotine Nicotine Media 6.16 × 10−4

Copper (II) Chloride Copper Media 6.00 × 10−5

Iron (III) Chloride Iron Media 5.00 × 10−3

Manganese (II) Chloride Manganese Media 3.00 × 10−3

Molybdenum (V) Chloride Molybdenum Media 5.00 × 10−4

Sodium Selenite Selenium Media 1.00 × 10−5

Zinc Chloride Zinc Media 8.00 × 10−5

Tunicamycin Tunicamycin DMSO 2 µg/mL

PM 2.5 (Detroit) PM 2.5 Media 5 µg/mL

a All concentrations are in molarity (M) unless otherwise specified.

Table 2 Differentially expressed genes identified in step two.

# DEGa

Shallow Deep

Copper Up 758 1806

Down 769 2167

Iron Up 7754 12465

Down 3133 6134

Selenium Up 3198 5937

Down 2535 5266

Vitamin A Up 2156 3337

Down 1239 2553
a 10% BH-FDR
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Figure 1 Workflow of the two-step approach.
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Figure 2 QQplot of the p-value distribution for DE genes in response to dexamethasone (black) and estrogen (green). Additional QQ plots
from step one and step two are available in the supplements.
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Figure 3 DE genes and sequencing depth. Bubble plot of DE genes (10% BH-FDR). The size of the bubble indicates the total number of reads
after filtering across treatment samples.
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Figure 4 Heatmap and hierarchical clustering of gene expression levels. Gene expression levels (FPKMs) were clustered for each sample
(row coloring) and treatment (column coloring, row labeling) combination. The dendrogram shows the Euclidian distance between samples,
while the heatmap shows the Pearson correlation (red = 1, blue = −1).
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Figure 5 Density plot of raw (unfiltered) sequencing depth across individual barcoded samples for the shallow sequencing (blue) and
across treatments for the deep sequencing (red) runs. Note that in step two, to achieve even representation of sequencing depth across treat-
ment conditions, each replicate of the control samples was pooled at one third of the other treatments. Dotted lines indicate mean sequencing
depth.
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Figure 6 Correlation in the transcriptional response between shallow and deep sequencing. Plotted is the log2(fold change) for each tran-
script calculated from shallow and deep sequencing data for the four treatments analyzed in step two. Colored points represent transcripts differ-
entially expressed at 1% BH-FDR. Vitamin A (A), copper (B), iron (C), selenium (D).
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Figure 7 Comparison of sequencing depth and number of differentially expressed genes (10% BH-FDR) between shallow and deep se-
quencing runs.
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