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Abstract 
 RNA genetic circuitry is emerging as a powerful tool to control gene expression. 
However, little work has been done to create a theoretical foundation for RNA circuit design. A 
prerequisite to this is a quantitative modeling framework that accurately describes the dynamics 
of RNA circuits. In this work, we develop an ordinary differential equation model of 
transcriptional RNA genetic circuitry, using an RNA cascade as a test case. We show that 
parameter sensitivity analysis can be used to design a set of four simple experiments that can 
be performed in parallel using rapid cell-free transcription-translation (TX-TL) reactions to 
determine the thirteen parameters of the model. The resulting model accurately recapitulates 
the dynamic behavior of the cascade, and can be easily extended to predict the function of new 
cascade variants that utilize new elements with limited additional characterization experiments. 
Interestingly, we show that inconsistencies between model predictions and experiments led to 
the model-guided discovery of a previously unknown maturation step required for RNA regulator 
function. We also determine circuit parameters in two different batches of TX-TL, and show that 
batch-to-batch variation can be attributed to differences in parameters that are directly related to 
the concentrations of core gene expression machinery. We anticipate the RNA circuit models 
developed here will inform the creation of computer aided genetic circuit design tools that can 
incorporate the growing number of RNA regulators, and that the parameterization method will 
find use in determining functional parameters of a broad array of natural and synthetic 
regulatory systems.  

 
Keywords: RNA genetic circuitry, computer aided design, TX-TL, parameterization, sensitivity 
analysis 
 
Introduction 
 
A central goal in synthetic biology is to engineer biological systems to optimally perform natural 
and sometimes novel tasks. These tasks are varied, and are often related to important 
challenges in sustainability and health. For example, there has been a great deal of effort 
placed on harnessing the natural capabilities of cells to synthesize complex molecules from 
renewable feedstocks, and to sense and respond to dynamically changing environments. These 
capabilities are themselves implemented through genetic circuits – networks of interacting gene 
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expression regulators that can dynamically balance metabolic pathways1 and integrate multiple 
signals to make behavioral decisions2, among many other behaviors related to cell replication 
and survival3. Thus a cell’s behavior is intimately connected to the structure of its genetic 
circuits1,4, making the precise engineering of genetic regulators and networks a central goal of 
synthetic biology5. 
 
Over the past decade, synthetic biology has seen significant advances in the quantity and 
sophistication of engineered genetic circuits6. Recently, regulatory RNAs have emerged as 
powerful components of the synthetic biology toolbox for constructing genetic circuits that 
control the timing and amount of gene expression7. These natural and synthetic RNAs are 
diverse, and can regulate transcription, translation and RNA degradation, especially in bacteria8. 
There is also a growing body of work on developing design principles for engineering the 
functional properties of regulatory RNAs. This work makes use of a powerful suite of 
computational9 and experimental10 methods to discern the underlying RNA structures behind the 
regulatory function7, and is leading to new classes of highly-designable RNA regulators11.  
 
Of particular interest are RNA mechanisms that regulate transcription. These regulators are 
special because they can be wired together into RNA-only genetic circuits that propagate 
information as RNAs without the need to translate or degrade intermediate regulatory proteins12. 
Recently it has been shown that RNA transcriptional repressors, also known as attenuators13 
can be configured into NOR logic gates and transcriptional cascades12. They can also be used 
to construct more sophisticated circuits, such as single-input modules14 that sequentially 
activate the expression of multiple target genes15. Advances in RNA engineering approaches 
have also greatly expanded the types of circuits that can be built out of RNA mechanisms. For 
example, the creation of small transcription activating RNAs, or STARs, allows the creation of 
new types of RNA logic gates that implement AND and NIMPLY16. This, combined with exciting 
new developments in using the RNA-protein hybrid Clustered Regulatory Interspaced Short 
Palindromic Repeats (CRISPR) interference (CRISPRi) system to construct transcriptional 
repressors17, activators18, and NOT and NOR logic gates in cells19, has started to draw attention 
to RNA-based genetic circuits as a platform for precisely controlling gene expression. 
 
A major gap in our RNA regulatory toolbox is the lack of a computational framework that can be 
used to model and ultimately design RNA genetic circuitry. Such a modeling framework is also 
necessary for incorporating RNA regulators and circuits into a growing suite of computer-aided 
design (CAD) tools that allow users to use high-level cellular behavioral specifications to design 
synthetic genetic circuits and select genetic regulatory parts that implement those behaviors20-
22. While there has been progress in modeling the impact of individual RNA regulators on tuning 
gene expression23-25, there has been little work in modeling how networks of transcriptional RNA 
regulators impact the coordinated expression of multiple genes. In contrast, for protein-based 
genetic circuits, systems of ordinary differential equations (ODEs) that model the basic 
processes of gene expression in a genetic network as coupled chemical reactions26 are 
commonly used to computationally study both natural27 and synthetic28 genetic networks. 
However, it is generally not known if simple ODE-based frameworks work for modeling RNA 
transcriptional circuits, and if they do, what parameter values are needed for accurate prediction 
of circuit behavior (Figure 1A). 
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Figure 1. Schematic of the model development and parameterization process. (A) A 3-
level, DNA-encoded RNA transcriptional cascade (colored circles) is composed of two 
orthogonal sRNA repressor/attenuator pairs. The RNAs are configured in a double repression 
cascade, with the final output being the transcription of a target gene that encodes a translated 
protein. The complex mechanism of RNA transcriptional repression can be described by coarse-
grained ordinary differential equations (ODEs) with a handful of unknown parameters (red). (B) 
Parameterization experiments can be designed based on a parameter sensitivity analysis of the 
model equations. This analysis identifies which parameters can be estimated from a particular 
experimental design. These experiments can then be performed to estimate the indicated 
parameters. This process can then be iterated until all parameters are estimated, resulting in 
distributions of parameters that accurately model the desired genetic circuitry. 
 
 
In this work, we develop an effective modeling framework that quantitatively captures the 
dynamic outputs of RNA-only transcriptional circuits. To do this, we leverage recent advances in 
using cell-free transcription-translation (TX-TL) reactions as rapid genetic circuit prototyping 
environments for characterizing genetic circuit dynamics15,29,30 and for modeling gene 
expression processes31. We build this model by studying a double-repression RNA-only 
transcriptional cascade12,15. We start by systematically constructing a system of ODEs that 
model the expression and degradation of each RNA regulator in the cascade (Figure 1A), and 
find that RNA maturation delay equations must be added in order to qualitatively capture 
cascade function. Since many of the model parameters for RNA-only circuits are not available in 
the literature, we next adopt a systems biology approach to estimate all unknown parameters in 
this model. Rather than perform a suite of biochemical experiments to measure each parameter 
in turn, this approach uses sensitivity analysis on the mathematical structure of the genetic 
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network to design a minimal set of characterization experiments that can be used to rapidly and 
quantitatively determine all parameters in a model32 (Figure 1B). Specifically, we show that all 
thirteen parameters of our model can be estimated from only four TX-TL experiments that can 
be run in parallel in under two hours. We then use our estimated parameters with the governing 
ODE framework to predict the function of six new RNA transcriptional circuit variants and show 
that the simulated predictions compare favorably with experimental measurements. Finally, we 
perform model parameterization experiments using a different batch of TX-TL reagents, and 
show that batch-to-batch variation can be attributed to differences in parameters that are directly 
related to the concentrations of core gene expression machinery. We end with a discussion 
about how this method can be generalized to rapidly determine parameters for quantitatively 
modeling the dynamics of synthetic genetic circuits. 
 
Results and Discussion 
 
Model Derivation 
 
Our first goal was to develop a modeling framework that could qualitatively capture the 
dynamical behavior of RNA-only circuits. One mathematical framework that has found wide use 
in modeling genetic circuits is systems of ordinary differential equations that treat the basic 
processes of gene expression in a genetic circuit as coupled chemical reactions27. While these 
models can vary in detail, in essence they consider the concentration of a given molecular 
species in time to be a function of its synthesis and degradation rates27 (Figure 1A). These rates 
in turn can be functions of the concentrations of other regulators in the circuit, effectively 
coupling the equations according to the circuit’s network topology.  
 
Our goal was to construct the simplest possible model (i.e. fewest number of equations and 
parameters) that could capture the function of RNA transcriptional repressors and cascades. To 
do this, we focused on modeling a two-repressor transcriptional cascade that had been 
previously characterized12,15. This cascade was constructed from two orthogonal RNA 
repressors called transcriptional attenuators (Figure 2A). Transcriptional attenuators act as 
genetic switches by blocking or allowing transcription through conditional formation of an RNA 
intrinsic terminator hairpin33. In the absence of an antisense sRNA, sequences in the attenuator 
prevent terminator formation, which allow transcription of a downstream gene. When antisense 
sRNAs are present, they bind to their attenuator targets, which allows terminator formation and 
switches transcription to an OFF state.  
 
The double-repression RNA transcriptional cascade consisted of three levels12,15 (Figure 2A). 
The bottom level of the cascade (L1) consisted of a constitutive promoter followed by 
attenuator-1 (A1), which controlled the transcription of a downstream super folder GFP 
(SFGFP)34 coding sequence. A1 was itself switched to an OFF state by interactions with 
repressor sRNA 1 (R1), which was present in two tandem copies on the second level (L2) of the 
cascade12,15. The complete L2 also contained a constitutive promoter followed by attenuator-2 
(A2), both upstream of the R1 copies. Following previous work, self-cleaving ribozymes were 
included before each R1 copy to ensure proper function12. This configuration allowed the 
transcription of R1 to be controlled by repressor sRNA 2 (R2), which was expressed from a 
constitutive promoter on level 3 (L3) of the cascade. 

 
Characterization of the cascade in TX-TL reactions revealed the patterns of fluorescence 
expected from combining different levels of the cascade in the reactions (Figure 2B). TX-TL 
reactions consist of three components: cell extract, energy solution/buffer and input circuit DNA. 
To characterize the performance of RNA genetic circuits, plasmid DNA encoding different  
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Figure 2. Governing Equations for a 3-level sRNA transcriptional cascade (A) Schematic of 
the cascade. Level 1 (L1) plasmid expresses attenuator 1 (A1) controlling SFGFP transcription; 
Level 2 (L2) expresses attenuator 2 (A2) controlling the transcription of tandem copies of sRNA 
repressor 1 (R1); Level 3 (L3) expresses sRNA repressor 2 (R2). Concentrations of DNA 
templates used in TX-TL reactions for part B are listed beside the levels. (B) Representative 
fluorescence signal time trajectories in TX-TL reactions containing three different combinations 
of DNA templates from the transcriptional cascade in part A. L1 alone leads to a high rate of 
SFGFP production (blue line); L1+L2 results in results in a reduced SFGFP production rate (red 
line) due to R1 repressing A1; L1+L2+L3 (purple line) results in a higher SFGFP production rate 
than just L1+L2 due to the double negative inversion of the full cascade. (C) Schematic (left) of 
the mechanistic steps of the cascade in part A that are captured by the governing equations 
(right). The equations model the tandem copies of R1 on L2 as one repressor.  
 
combinations of cascade levels were mixed with extract and buffer following previously 
published protocols35 (see Methods). These were then monitored on a plate reader to measure 
SFGFP fluorescence over time to characterize overall circuit expression. As expected, when 
only L1 DNA was present, we observed a rapid increase in SFGFP fluorescence, which was 
decreased when both L1 and L2 DNA were present (Figure 2B). The addition of L3 DNA in the 
reaction showed an increase over the L1+L2 condition indicating that the double repression of 
the cascade was functioning properly as had been observed previously15. 
 
As a starting point for our model, we considered the expression of each RNA in the system to 
be governed by one mass balance ODE that accounts for its synthesis and degradation rates. 
For simplicity, we considered these rates to be described by single constants. To model 
transcriptional repression, we introduced Hill functions of order one, based on previous 
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experimental work in characterizing sRNA/attenuator transfer functions12. This allowed us to 
construct a set of four equations with eight parameters that captured the flow of information in 
the RNA transcriptional cascade (SI Equations 1.1-1.4, Figure S1). Note that we incorporated 
the tandem copies of R1 present in L2 of the cascade through the parameters of the model 
rather than extra mechanistic steps. 
 
Using this simple model, we simulated time dependent trajectories of the cascade (Figure S2). 
These results showed that there were several qualitative disagreements between the model and 
the previously reported experimental data for this cascade. In particular, several mechanistic 
details of RNA transcriptional attenuators were not included in these equations. The most 
important of these is cross-talk, or the ability for non-designed interactions to cause repression 
between different levels of the cascade due to the imperfect orthogonality of the repressors 
used in the system12. We incorporated cross-talk into the model by using a constrained fussy 
logic formulation, treating the bottom level of the cascade as an OR gate module with two 
signaling species accounting for the contributions of cognate and cross-talk interactions36(Figure 
S1B,SI Equations 2.1-2.4).  
 
Another feature of the RNA transcriptional attenuators not captured is their ability to be placed in 
tandem next to each other so that the combined attenuator can respond to multiple antisense 
sRNAs. Previous work had found that attenuators in tandem multiplied their effects and 
increased their sensitivity to antisense RNA12. In fact this feature was exploited in order to 
create a time-delay in a singe-input module that could sequentially activate the expression of 
two different genes15. To incorporate tandem attenuators in our model, we raised the repressive 
Hill functions to the power of tandem attenuator number on that level (Figure S1C, S2B, SI 
Equations 3.1-3.4). Previous work also showed that some aspect of the attenuation mechanism 
causes repression of the downstream gene even in the absence of any antisense sRNA12, 
which was also incorporated into our model (Figure S1D, S2C, Equations SI 4.1-4.4). 
 
We next began comparing our model to measured fluorescence trajectories from TX-TL 
reactions (Figure S3). Since we used a fluorescent reporter protein as a final output of the 
cascade, we added additional equations to model the translation and maturation of the 
fluorescent reporter protein (SI Equations 5.1-5.6). Specifically, we modeled translation as a 2-
step process consisting of initiation and elongation, and ignored SFGFP degradation which is 
appropriate for TX-TL reactions35. During this model formulation process, we noticed that there 
was a delay between when DNA was introduced in the TX-TL reactions, and the time it took to 
observe fluorescence that was longer than the expected delay due to SFGFP maturation. 
Specifically, we were not able to observe a fluorescence signal until ~20 minutes after the 
reaction was initiated. As we tried to qualitatively fit the model to the experimental trajectories, 
we found that this delay was too large to be described by any known mechanism of this system 
(Figure S3A, B). Thus we hypothesized that the observed delay was specific to the TX-TL 
system, which could be due to the time needed for activation of extract core machinery after 
mixing with buffer. To test this, we pre-incubated extract and buffer together at 37°C for 20 
minutes before adding DNA and performing the circuit characterization. We found that when 
extract and buffer were pre-incubated, this delay was removed, allowing greater qualitative 
agreement with our model (Figure S3C, D). 
 
While we were able to obtain a qualitative match between our model and experimental 
trajectories, we noticed that when L1 and L2 were both present in TX-TL reactions, we observed 
a decrease in SFGFP production rate after 30 minutes. This manifested as a downward 
‘bending’ of the L1+L2 fluorescence trajectories that we could not qualitatively capture (Figure 
S4). We hypothesized this was due to the fact that the sRNA R1 repressor encoded in the L2 
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plasmid did not function immediately once synthesized, which was an underlying assumption of 
the model up to this point. To incorporate this into our model, we added additional sRNA 
maturation steps into the governing equations (SI Equations 6.1-6.8, Figure 2C). As shown in 
Figure S2B, after we introduced sRNA maturation delay terms into the governing equations, we 
were able to qualitatively capture the bending of the L1+L2 trajectories. 
 
Since the same promoter was used on all constructs, β1 and β2 were determined by multiplying 
βm by an appropriate factor based on DNA template concentrations. The final governing 
equation set thus consisted of eight ODEs and thirteen unknown parameters (Figure 2C,Tables 
1 and 2), which qualitatively captured the behavior of the three-level RNA transcriptional 
cascade. 
 
Parameter Estimation Through Sensitivity Analysis-Based Experimental Design 
 
Our next goal was to determine parameters that would give quantitative agreement between our 
model and measurements of the final output fluorescence of the RNA transcriptional cascade. 
Parameter estimation is a highly non-trivial problem, as parameters are complex functions 
themselves of many detailed biochemical reactions. For example, transcription rate is commonly 
modeled as a single parameter with units of nucleotides/sec, when in reality it encompasses 
many separate processes including polymerase-promoter recognition, open-complex formation, 
escape probability and non-uniform elongation rates37. The most common method for 
determining parameters is to find them in the literature, and optionally consider parameter 
ranges centered on literature values23. While useful, this approach has limitations, including the 
fact that literature parameters are often not measured in an experimental/cellular/construct 
context relevant to the functioning of the model circuit, parameter measurement may not be 
consistent with the approximations made by the modeling framework, and it may be impossible 
to find certain parameters especially in cases when a synthetic regulator does not exist in 
nature16. An alternative approach is to perform a series of specific experiments designed to 
isolate the measurement of each parameter. While effective38, this approach is difficult to scale 
as the size of the genetic networks grow. 
 
Potentially more powerful are methods that can take into account the structure of the genetic 
circuit to design a minimal set of experiments that can be used to rapidly and quantitatively 
determine all parameters in a model. Such methods have been developed in the context of 
systems biology, which focuses on understanding a biological system’s structure and dynamics. 
Because natural biological networks are usually massive and full of unknown species and 
parameters, systems biologists have developed numerous methods to locate the most important 
components of a genetic network and identify the most sensitive parameters2. Here we adapted 
a technique based on parameter sensitivity analysis and used it to design experiments that 
would provide enough information to identify all unknown parameters in our RNA circuitry model 
(Figure 1).  

The basis of this technique is to use sensitivity analysis to guide the design of experiments that 
can use the full time trajectory information of a genetic circuit’s output to determine multiple 
parameters at the same time (Figure 1). For a particular experiment modeled by a system of 
ODEs, sensitivity analysis is based on the sensitivity matrix, which describes how the time  
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Figure 3. Sensitivity matrices for parameter identification experiments. Four 
parameterization experiments were designed based on sensitivity analysis to estimate all 
thirteen unknown parameters in our model (Figure 2). For each experiment, the constructs used 
are shown above the SFGFP portion of the calculated sensitivity matrix for that experiment. 
Parameters are numbered according to Table 1. Red/blue indicates high/low sensitivity, 
respectively. Note that time varying changes in parameter sensitivity indicates portions of the 
trajectories that are influenced by each parameter. Experiments were designed in order from (A) 
to (D), with parameters identified by previous experiments marked as grey rows. Since the 
same promoter was used on all constructs, β1 and β2, determined by multiplying βm by an 
appropriate factor based on DNA template concentrations, are absent from the sensitivity 
analysis. (A) 0.5nM of L1 plasmid alone is able to identify five parameters: βm, kE, dm, α and kI. 
(B) 0.5nM of L1 and 4nM of L2 is able to identify four parameters: K1, d1, rm1 and Pt. (C) 0.5nM 
of L2’ (Table S2) and 4nM of L3 is able to identify three parameters: K2, d2, rm2 (D) 0.5nM of L1, 
4nM of L2, and 14nM of L3 is able to identify the last parameter, pc. The sensitivity color scale 
was changed in D to aid in visualization. 
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varying molecular concentrations of the genetic circuit in the experiment change in response to 
a change in the parameters of the model (see Methods)39. Since our experiments measure 
SFGFP expression, we focused our analysis on how sensitive predicted trajectories of SFGFP 
expression were to changes in the thirteen unknown parameters. Parameters with large 
magnitudes in the sensitivity matrix (highly sensitive) can then be determined by fitting them to 
make the model match the experimental data. By proposing different experiments, this 
procedure can be iterated until a panel of experiments is designed that together can be used to 
estimate all parameters of the model (Figure 1). We note that this procedure is particularly 
amenable to being used with TX-TL reactions since circuit DNA template concentrations can be 
easily varied to rapidly design a set of parameterization experiments. 
 

 
 

Figure 4. Validation of model simulations of parameter estimation experiments. 
Comparison of experimental trajectories of SFGFP fluorescence in TX-TL experiments (black 
dash lines) with simulated model predictions. Model simulated trajectories were generated by 
performing 1,000 simulations with parameters drawn from the set of 10,000 determined from the 
estimation procedure (see Methods). Experimental and model trajectories were normalized by 
the maximum observed experimental fluorescence (see Methods). The mean simulated 
trajectory (red line) is shown within 95% confidence intervals (blue region). The schematic of 
each experiment is shown in the upper left corner of each plot corresponding to the experiments 
in Figure 3. 

 
To perform this procedure, we used an initial set of parameter guesses taken from the literature 
or manual fitting to calculate the sensitivity matrix from a proposed experimental design. Our 
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goal was to determine a reduced set of TX-TL experiments that could be used to find all thirteen 
parameters of our RNA transcriptional cascade model. In order to strike a balance between TX-
TL energy resource usage and potential bleaching effects of the fluorescence measurement, we 
targeted experiments that could be performed at 29°C for 100 minutes with fluorescence 
collection every 5 minutes. We first performed the sensitivity analysis on an experiment 
consisting of just the bottom level (L1) of the cascade (Figure 3A). The calculated sensitivity 
matrix for the subset of equations that model L1 revealed that the SFGFP fluorescence 
trajectory in this experiment is most sensitive to the parameters βm (promoter strength), kE 
(translational elongation rate), dm (mRNA degradation rate), α (SFGFP maturation rate), and kI 
(translational initiation rate) (Figure 3A). This recapitulates the relationship that steady-state 
SFGFP concentration should be related to the product of the transcription and translation rates 
divided by the degradation rates of mRNA and SFGFP.  
 
We next proposed an experiment that added a single layer of repression (Figure 3B). Since βm, 
kE, dm, α and kI were already identified in the previous experiment, their rows in the SSM were 
all set to 0 so that the algorithm skipped identified parameters from its previous rounds and 
searched for the next most identifiable parameters. This second experiment was additionally 
able to identify 4 more parameters (K1, d1, rm1, Pt ) (Figure 3B). Successive iterations allowed us 
to find two additional experiments that allowed all thirteen parameters to be identified with a total 
of four TX-TL experiments (Figure 3C,D).  

 
We next sought to use this designed set of experiments to estimate the parameters in our 
model. We first performed replicate TX-TL experiments with each of the plasmid combinations 
we designed, and collected the fluorescence time trajectories of the reactions. Using this 
experimental data, we then estimated parameters using an iterative fitting procedure that used 
each experiment in turn to find its designated parameters (see Methods). Rather than focus on 
a single set of optimal parameters, we considered variations of parameter values that can 
capture the natural variation in experimental conditions. To do this, we initially input sets of 
parameters, drawn from uniform distributions centered around an initial best guess, into the 
fitting procedure and optimized the values of each parameter within each input set (see 
Methods). This resulted in 10,000 sets of the thirteen estimated parameters, which allowed us to 
calculate mean predicted trajectories with 95% confidence intervals (Figure 4).  

 
As mentioned before, there were two R1 repressors encoded in L2 and one R2 repressor in L3 
of the cascade, though they were both treated as single repressors in the model. Because the 
model was not given explicit information about the difference between these configurations, this 
gave us the opportunity to examine the estimated parameters to test the adaptability of our 
parameter estimation procedure to this type of model discovery (Table S4). Several estimated 
parameters showed that indeed this was the case. In particular, the repression coefficient of R1 
(K1, mean 240.9) was significantly greater than the repression coefficient of R2 (K2, mean 
132.0), indicating a weaker repression made by the double repressor configuration. This was 
actually consistent with previous in vivo characterization experiments, which showed that the L2 
configuration containing an attenuator followed by tandem ribozyme-antisense coding regions 
was less efficient at repression than a single bare antisense12. In addition, the degradation rate 
of R1 (d1, mean 0.83x10-3 s-1) was also noticeably smaller than the degradation rate of R2 (d2, 
mean 2.08x10-3 s-1), showing that it is slower to degrade two repressors than it is to degrade 
one. Finally, the maturation rate of R1 (rm1, mean 3.21x10-5 s-1) was smaller than the maturation 
rate of R2 (rm2, 1.55x10-4 s-1), indicating additional processing steps are needed for the tandem 
repressor configuration. This makes intuitive sense given that ribozymes were included between 
the tandem R1 units, which must fold and cleave before R1 can properly function12. 
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To validate our method, we compared measured trajectories of SFGFP fluorescence for each 
experiment to simulated trajectories using 1,000 sets of randomly drawn parameters from the 
10,000 parameter set distributions (Figure 4). This allowed us to compare the experiments to 
the mean simulated trajectory and 95% confidence intervals, which captured the range of 
trajectories predicted by our parameter distributions. As shown in Figure 4, each mean 
simulated trajectory accurately described the experimental observations, with almost every 
measured experimental trajectory lying within the simulation 95% confidence intervals. 
 
These results validated our hypothesis that sRNA genetic circuits could be accurately modeled 
using simplified sets of ODEs with appropriate parameters. It also showed that our effective 
ODE model was able to quantitatively capture the complex biochemical conversions that take 
place within our model RNA circuit. Finally, it proved that our approach of estimating unknown 
parameters, using a minimal set of experiments designed from sensitivity analysis, was efficient, 
and produced accurate results. Conveniently these four TX-TL experiments could all be 
performed at the same time, allowing the simultaneous determination of all parameters in our 
model in a matter of hours. This approach is also highly generalizable to other ODE systems, 
and could be used to parameterize a broad array of synthetic genetic circuits. 
 
Model Predictions 
 
Our ultimate goal of building a quantitative model was to accurately predict the behavior of a 
newly designed experiment. To do this, we designed six new experiments that varied the basic 
elements of the 3-level cascade, and compared model-simulated trajectories to experimental 
SFGFP fluorescence time course trajectories of these experiments (Figure 5). 
 
We first aimed to test the ability of the estimated parameters to capture changes in DNA 
template concentration of the cascade. Two experiments were designed that varied the 
concentration ratio of a single repressive connection of the cascade (Figure 5A), and the 
amount of antisense sRNA expressed from L3 in the full cascade (Figure 5B). Model predictions 
were made by running simulations using our estimated parameter sets with the parameters β1 
and β2 multiplied by factors that took into account the change in DNA concentrations in the new 
experiments. In both new experiments, the average model predictions accurately matched the 
observed experimental trajectories, with all experimental trajectories falling within the 95% 
confidence intervals of the simulated trajectories (Figure 5A, B). In the single repression case of 
increasing L2 DNA, more repression was modeled and observed compared to the trajectories 
from the training experiment as expected (Figure 5A vs. Figure 4B). In the full cascade example, 
there were two sets of experimental trajectories observed, with the model showing predictions 
that captured the average behavior of these sets (Figure 5B). 
 
Next we tested the ability to make predictions on RNA transcriptional cascades that included 
regulatory parts not involved in the training of any parameters. In particular, we designed an 
experiment to include a tandem attenuator in front of the L1 SFGFP reporter. Since the tandem 
attenuator is more sensitive to antisense RNA concentration, we expected both a single 
repressive connection and the full cascade to show an overall lower SFGFP signal throughout 
the trajectory15. This was indeed observed (Figure 5C vs. Figure 4B and Figure 5D vs. Figure 
4D). Furthermore, we found that the model predictions for these new circuit variants were in 
strong agreement with the experiments, with the average predictions accurately capturing the 
observed trajectories, for which all but one fell within the 95% confidence intervals of the 
simulated trajectories (Figure 5C,D). It is important to note that the tandem attenuator regulatory 
part was not included at all in the parameterization experiments. Rather it was modeled by 
squaring the repressive function of the single-attenuator (Figures 2C, S1C, S2B). This shows 
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how our model is easily extensible, and that accurate predictions can be made from a limited set 
of parameterization experiments when modular parts are used to construct synthetic circuits. 

 
Figure 5. Model Predictions.  Comparison of experimental trajectories of SFGFP fluorescence 
in TX-TL experiments (black dash lines) with simulated model predictions. Model simulated 
trajectories were generated by performing 1,000 simulations with parameters drawn from the set 
of 10,000 determined from the estimation procedure (see Methods). Experimental and model 
trajectories were normalized by the maximum observed experimental fluorescence (see 
Methods). The mean simulated trajectory (red line) is shown within 95% confidence intervals 
(blue region). The schematic of each experiment is shown in the upper left corner of each plot. 
(A) Two level concentration prediction that varies the L2 plasmid concentration from Figure 3B. 
(B) Three level concentration prediction that varies the L3 plasmid concentration from Figure 
3D. (C) Two level tandem attenuator prediction. The experiment contains 0.5nM of a modified 
L1 plasmid expressing 2 tandem copies of A1 in front of SFGFP (L1T, Table S2), and 4nM of the 
L2 plasmid. (D) Three level tandem attenuator prediction containing the same constructs as in 
(C) with an additional 14nM of L3 plasmid. (E) Two level swap prediction. The experiment 
contains 0.5 nM of a modified L1 plasmid that expresses A2 in front of SFGFP (PL1, Table S2), 
and 8nM of a new L2 plasmid expressing A1 followed by R2 (PL2, Table S2). (F) Three level 
swap prediction containing the same constructs as in (E) with an additional 14nM of a new L3 
plasmid that expresses R1 (PL3, Table S2). 
 
Finally we tested the ability of our model to predict rewiring of the cascade elements. We 
designed two experiments that swapped the order of the R1/A1 and R2/A2 repressive 
sRNA/target attenuator pairs in both a single repressive connection and the full cascade (Figure 
5E,F). This was a challenging prediction since the genetic contexts of R1 and R2 changed in the 
swapped configuration between tandem ribozyme-antisense constructs and single antisense 
expression. As we observed in the parameterization experiments, this context change causes 
large changes in the repression parameters for these antisense sRNAs (Table S4). Therefore, 
we needed a way to easily estimate these new parameters using our previous information and 
as few as possible new parameterization experiments. To do this, we made several 
assumptions: (i) if the repression ratio of single copies of the two repressors, K1s and K2s, is f (f= 
K1s/ K2s), then the repression ratio of tandem copies of the two repressors, K1d and K2d, is also f 
(f= K1d/ K2d); (ii) the crosstalk strength of the swapped construct is the same as the crosstalk 
strength of the parameterization construct; and (iii) two different single repressors would have 
similar degradation and maturation rates, so that in the swap construct these two sets of 
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maturation and degradations rates are unchanged. These assumptions allowed us to re-use 
almost all parameters except K1s and K2d. Since K2s and K1d were already estimated in the 
parameterization procedure, we used one additional simple experiment to estimate K1s (Figure 
S5). This allowed us to calculate f, which could then be used to calculate K2d by our 
assumptions. Finally K1s and K2d were used to make the prediction of our new design with the 
rest of the previously determined parameters. Comparisons between the average simulated 
trajectories were again in strong agreement with the observed SFGFP fluorescence trajectories 
for these experiments, with all trajectories falling within the 95% confidence intervals of the 
experiments (Figure 5E,F). 
 
Overall we found that our model and its estimated parameters are capable of performing 
quantitative predictions of new sRNA circuits. This demonstrated its potential for aiding in the 
design of circuits for synthetic biology. In addition, we showed that our model is extensible, and 
can incorporate new genetic parts with limited additional characterization experiments. 
 
Understanding TX-TL Batch Variation Using Model Parameterization 
 
Given the simplicity and convenience of the four parameterization experiments, we wanted to 
investigate if these experiments could be used as a way to study batch-to-batch variation in TX-
TL extract performance. In previous work, we observed differences between sRNA circuitry 
characterization time courses when different batches of TX-TL were used15. This was 
hypothesized to be due to different concentrations of molecular machinery in the extract that 
could impact the overall transcription, translation and degradation rates that influence circuit 
expression. Since our parameter estimation procedure establishes quantitative values for each 
of these key rates, we thought that comparing estimated parameters from two different batches 
of TX-TL would more precisely reveal the specific differences between the batches. 
 
To test this idea, we performed the same parameter estimation procedure with a separate TX-
TL batch. This yielded the same estimates of all thirteen parameters in our model, which were 
shown to accurately model the new experimental SFGFP circuit characterization trajectories 
(Figure S6). Although these two batches showed comparable quality, we noticed that batch A 
had slightly lower GFP fluorescence trajectories compared to batch B in three out of four 
parameterization experiments (Figure S7). To analyze this batch-to-batch difference, we 
compared the distributions of the thirteen parameters derived from these two sets of 
experiments (Figure 6, Table S4).  
 
Interestingly, we found that several parameters showed large differences between the two 
batches. These included the transcription rate βm, RNA degradation rates (d2, d1, dm)  and 

SFGFP maturation rate 𝛂. Specifically, batch A had lower values for all of these parameters, 
suggesting that batch B had faster transcription, RNA degradation and GFP maturation. This 
could be explained by key differences in molecular machinery concentrations between these 
two batches that are known sources of variability in extract preparation40. Furthermore, these 
results demonstrated that our rapid parameter estimation procedure can be used to generate 
hypotheses about specific differences between TX-TL extract preparations, which could become 
increasingly important given the emerging new applications for these systems as molecular 
diagnostic platforms41. 
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Figure 6 Parameter distributions from two independent TX-TL batches. Estimated 
parameters from batch A (blue) (Figure 4) and batch B (red) (Figure S6). Histograms are 
composed of 10,000 sets of parameters fit from the parameterization experiments performed in 
each batch. 
 
Conclusion 
 
In conclusion, we have developed an effective quantitative model for sRNA transcriptional 
circuits and demonstrated its accuracy using a 3-level sRNA repression cascade as a test case. 
Our results showed that we were able to capture key features of this mechanistically 
sophisticated circuitry using only 8 ODEs with thirteen unknown parameters. To determine 
these parameters, we used sensitivity analysis to design four simple experiments that can be 
performed in parallel using cell-free TX-TL extracts to estimate all thirteen parameters. Finally 
we used our model along with estimated parameters to predict the time course dynamic 
trajectories for new network designs that used parts that were not included in parameterization 
experiments. We also showed that our model was easily extensible to include new parts with a 
limited number of additional characterization experiments. In all cases, our models were able to 
accurately reproduce the experimental results. 
 
Interestingly, the process of constructing, parameterizing and validating our model of sRNA 
transcriptional circuitry revealed several new features of TX-TL systems and the sRNA 
regulators used. In particular, we found that there was a need to introduce a TX-TL pre-
incubation step in order for computational analysis to match observed experimental trajectories. 
This is presumably due to certain processes that need to occur for the extract system to 
become active. In addition, we also discovered that the sRNAs used in our circuitry do not 
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appear to be immediately active once synthesized, and we had to include equations that 
captured a maturation process to accurately model experimental SFGFP trajectories. 
 
Several aspects of this work are significant. First, this represents the first validated 
computational model of synthetic RNA transcriptional genetic circuitry. Combined with other 
models that capture the effects of sRNA translational regulation42, this work helps lay the 
foundation for CAD tools that can incorporate RNA regulators into synthetic circuitry design20. 
We anticipate this to be more important as researchers increasingly turn to RNA-mediated gene 
regulatory systems for controlling gene expression in biological systems. 
 
Second, the sensitivity analysis-based parameterization procedure is completely general, and 
could find wide use for establishing parameters for many synthetic regulators and circuits. In 
particular, the same exact procedure could be used to find parameters for the wide array of 
synthetic regulators now at our disposal6, including the exciting CRISPRi-based regulatory 
mechanisms. While we used the speed and experimental convenience of TX-TL reactions to 
perform our circuit parameterization experiments, this method should be extensible to models 
that capture the behavior of networks in vivo. In addition, this methodology could become even 
more powerful when coupled to different methods for implementing parameterization experiment 
design. For example, while we considered experimental design in terms of including different 
concentrations of DNA templates in the TX-TL reactions, one could easily imagine applying 
optogenetic control of component activity to design complex experiments that could allow even 
more efficient parameter estimation38. In these systems, different patterns of input light could be 
used to drive the system in specific ways designed to obtain the maximum number of 
parameters in the minimum amount of time. 
 
Finally, we showed that our overall modeling and parameterization procedure offers a new 
approach for studying the underlying causes of batch-to-batch variation in TX-TL systems. In 
particular we found that different batches of TX-TL led to different distributions for key 
parameters that are directly related to the concentrations of core transcription/translation 
machinery in the batches (Figure 6). Understanding the basis of TX-TL variation will become 
increasingly important as these systems find wide use for a variety of applications including as 
metabolic production systems43, for rapid prototyping and characterization of genetic 
circuits15,35,40, and for new types of molecular diagnostics41.  
 
Methods 
 
Sensitivity Analysis to Design Parameterization Experiments 
   
Our model for RNA circuitry consists of a set of ordinary differential equations that describe the 
time varying rate of change in the concentrations of the molecular species that participate in the 
circuitry, xi(t) (Figure 2). These equations are parameterized by a set of parameters, pj, that we 
want to estimate by fitting model predictions to a small set of experiments. These experiments 
were designed through an iterative process of sensitivity analysis on the set of model equations 
(Figure 2). 
 
An individual experiment was considered to be a TX-TL reaction containing a subset of the DNA 
constructs encoding the full three-level sRNA transcriptional cascade at defined concentrations. 
Each such experiment produces a measureable trajectory of SFGFP fluorescence as a function 
of time, and can be modeled by the subset of equations that describe the gene expression 
processes from the included DNA. For example, if the TX-TL reaction contains only L1, then 
only the last four equations in Figure 2 need to be used with R1=R2=0. After a specific 
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experiment (subset of DNA) was proposed, the next step was to assess which parameters were 
‘identifiable’ from this experiment, which is closely linked with parametric sensitivity analysis. 
Here we used the procedure proposed by McAuley and coworkers44 to first calculate and 
analyze the sensitivity coefficient matrix for the proposed experiment as follows.  
 
For each experiment, the sensitivity coefficient matrix zij(t), is a time-varying matrix that 
encapsulates how sensitive the concentration of the molecular species xi is to a change in the 
parameter pj 

  
zij(t) =

∂xi

∂pj t        
  i = 1,2,...,N

   
  j = 1,2,...,P  

Here P denotes the number of parameters and N denotes the number of molecular species. If 
we write the model equations generally as  

   

dxi

dt
= fi (x,p,t)  

then it can be shown that Zij(t) are the solutions to a set of differential equations given by 

    
   

dzi, j

dt
=

∂fi
∂xk

(x,p,t)zk , j
k=1

N

∑ +
∂fi
∂pj

(x,p,t)  

which are subject to the initial condition zij (0) = 0  . Since our only observable in the TX-TL 

experiment is SFGFP, we focused specifically on zSFGFP,j(t) to determine which parameters were 
identifiable in the experiment. 
 
To begin the experimental design process, we first determined a set of parameters that closely 
matched experiments by hand-fitting the parameters against SFGFP trajectories measured from 
TX-TL reactions containing subsets of the cascade DNA elements, using initial guesses based 
on the literature findings34,45-47. We next proposed the simplest experimental design (a fixed 
concentration of the bottom level L1) to the sensitivity analysis procedure. Using the hand-fit 
parameters, zSFGFP,j(tk) was calculated by solving the equations shown in Figure 2 using Matlab 
over a set of discrete time steps, tk, and then scaled by multiplying by pj/xSFGFP(tk). Identifiability 
was then performed according to McAuley44.This was done by finding the column of this matrix 
that had the biggest magnitude (indicating the most sensitive parameter), calculating a residual 
matrix which removed this column and controlled for correlations between parameters, and 
iterating this procedure on the resulting residual matrix until a threshold was reached on the 
largest remaining column magnitude. In this way a set of parameters was determined that 
maximally influenced the modeled trajectory of the proposed experiment (Figure 3A). 
 
After performing this procedure on the simplest experiment (L1), we proposed a further 
experiment and performed the same analysis, except that parameters already identified by 
previous experiments were marked as ‘determined’ by setting their columns in the sensitivity 
matrix to 0. Rounds of experimental design and sensitivity analysis were performed until all 15 
parameters were able to be identified by four TX-TL experiments (Figure 3). 
 
Parameter Estimation 
 
Parameters were estimated from each designed experiment by fitting the identifiable 
parameters of that experiment to measured SFGFP expression time trajectories. The parameter 
estimation problem is given by: 
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min

P
Gtk

experiment,mean −Gtk

simulated(P)⎡
⎣

⎤
⎦   

where 
 
Gtk

experiment,mean  denotes the average value of the experimentally observed SFGFP 

expression at a certain time tk. The vector P contains all of the identifiable parameters in the 
experiment being analyzed. 

  
Gtk

simulated (P)  denotes the model simulated SFGFP expression at 

time tk. For a specific experiment, optimal P vectors were found using the Matlab function 
fmincon. Certain parameters were constrained to lie within specific values. For example, the 
repression concentrations K1 and K2 were constrained to be close in magnitude to each other 
based on the known similarity in repression of the two sRNA transcription repressor variants12. 
A complete list of constraints used is in Table S3. 
 
Sets of identifiable parameters were estimated from the corresponding experimental trajectories 
in turn. We first used the estimation procedure to optimize the initial guesses used in the 
identifiability analysis above. To do this, we constructed uniform distributions (100 points) 
around each parameter value (± 15%), generating 100 sets of parameters. Each set of 
parameters served as a different starting point for finding optimal parameter estimates. Each 
estimate set was found by sequentially applying the fitting procedure above to each of the 
designed experiments, only fitting the identifiable parameters for that experiment. Fit parameters 
from one experiment were then used to update and replace the initial guesses before moving on 
to the next experiment until each of the 13 parameters was fit from the four experiments. This 
was repeated for each initial set of parameters to produce 100 sets of estimated parameters. 
We then chose the set that produced the closest simulated trajectory compared to the 
experimental data and used this as the guessed parameter set for the next iteration. We 
repeated this process 10 times. The final optimal parameter set was used in the same 
procedure to generate 10,000 sets of estimated parameters, which were then subject to the 
analysis outlined in the main text. 
 
To plot our results, we scaled 

  
Gtk

simulated(P)
 
by the observed experimental values according to: 

  
Ĝtk

simulated =
Gtk

simulated −Gt0

simulated

Gmax
experiment −Gt0

experiment  

where  Gmax
simulated  and 

  
Gt0

simulated  are the SFGFP expression level at any time tk and initial time t0, 

respectively, and  Gmax
experiment  is the maximum experimental data point of the entire trajectories 

and 
 
Gt0

experiment
 is the experimental data point at t=0. 

  
Gtk

experiment  was also scaled as: 

              
  
Ĝtk

experiment =
Gtk

experiment

Gmax
experiment   

where 
  
Gtk

experiment is the experimental expression of SFGFP at any time tk. In order to make all 

trajectories comparable, all experimental and modeled trajectories were scaled by the 
experimentally observed SFGFP fluorescence value of the first parameterization experiment at 
100 minutes (Figure 4A). 
 
Plasmid construction and purification 
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A table of all the plasmids used in this study can be found in Supporting Table S2, with key 
sequences found in Supporting Table S1. The pT181 attenuator and repressor plasmids, pT181 
mutant attenuator and antisense plasmids, and the no-antisense control plasmid were 
constructs pAPA1272, pAPA1256, pAPA1273, pAPA1257, and pAPA1260, respectively, from 
Lucks et al.12. The second level of the cascade (JBL069) was modified from construct 
pAPA1347 from Lucks et al.12. The double attenuator and modified level 2 constructs for 
prediction were created using Golden Gate assembly48. Plasmids were purified using a Qiagen 
QIAfilter Plasmid Midi Kit (Catalog number: 12243) followed by isopropanol precipitation and 
eluted with double distilled water. 
 
TX-TL extract and buffer preparation 
 
Extract preparation: 
 
Cell extract and reaction buffer was prepared according to Shin and Noireaux49 and Sun et al.35.  
In brief, E. coli BL21 Rosetta cells were grown to an OD600 of 1.5, pelleted via centrifugation, 
and washed with a buffer at pH 7.7 containing Mg-glutamate, K-glutamate, Tris and DTT. Lysis 
was performed via bead-beating, followed by centrifugation to remove beads and cell debris. 
The resulting supernatant was incubated at 37°C for 80 minutes and then centrifuged, to 
remove endogenous nucleic acids. The supernatant was dialyzed against a buffer at pH 8.2, 
containing Mg-glutamate, K-glutamate, Tris and DTT. The extract was then centrifuged, and the 
supernatant flash-frozen in liquid nitrogen and stored at -80°C.  The cell extract for Batch A had 
a protein concentration of 30 mg/mL, and its expression was optimized via the addition of 1 mM 
Mg and 40 mM K. For Batch B: 30 mg/mL protein,1 mM Mg, and 80 mM K.  
 
Buffer preparation: 
 
The reaction buffer was prepared according to Sun et al.35, and consists of an energy solution 
(HEPES pH 8 700 mM, ATP 21 mM, GTP 21 mM, CTP 12.6 mM, UTP 12.6 mM, tRNA 2.8 
mg/ml, CoA 3.64 mM, NAD 4.62 mM, cAMP 10.5 mM, Folinic Acid 0.95 mM, Spermidine 14 
mM, and 3-PGA 420 mM) and amino acids (leucine, 5 mM, all other amino acids, 6 mM). 
Extract and buffer were aliquoted in separate tubes (volume appropriate for seven reactions) 
and stored at -80°C. 
 
TX-TL experiment 
 
TX-TL buffer and extract tubes were thawed on ice for approximately 20 min. Separate reaction 
tubes were prepared with combinations of DNA representing a given circuit condition. 
Appropriate volumes of DNA, buffer, and extract were calculated using a custom spreadsheet 
developed by Sun et al.35. Buffer and extract were mixed together and incubated for another 20 
min at 37°C. DNA for the specific experiment was then added into each tube according to the 
previously published protocol35. Ten µL of each TX-TL reaction mixture was transferred to a 
384-well plate (Nunc 142761), covered with a plate seal (Nunc 232701), and placed on a Biotek 
SynergyH1m plate reader. We note that special care was needed when pipetting to avoid air 
bubbles, which can interfere with fluorescence measurements. Temperature was controlled at 
29°C. SFGFP fluorescence was measured (485 nm excitation, 520 emission) every five min for 
100 min. Each reaction was run with a minimum of triplicate repeats, and repeated three times 
independently (minimum of nine total replicates). A ten µL sample of each TX-TL buffer and 
extract mixture was run together with each independent reaction as blank. All data points were 
thenprocessed with blank values subtracted. 
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Supporting Information 
 
Supporting Tables 1-4, Supporting Figures 1-7, Supporting Appendix 1. Software for performing 
the identifiability and parameter estimation procedures in this work is available free of charge via 
the Internet at 
https://github.com/LucksLab/Hu_RNA_Circuit_Parameterization_ACSSynBio_2015 . 

Abbreviations 
 
Transcription-translation (TX-TL), super folder green fluorescent protein (SFGFP), attenuator 
(Att), antisense (AS). 
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Tables 
Table	  1	  Model	  Parameters	  
Model 
Parameters	  

Number	   Definition	   Unit	  

β2	   1	   Maximal transcriptional rate of level of R2 (determined 
from βm )	  

Conc./sec	  

β1	   2	   Maximal transcriptional rate of level of R1 (determined 
from βm )	  

Conc./sec	  

βm	   3	   Maximal transcriptional rate of M 	   Conc./sec	  
K2	   4	   Repression coefficient of R2 on the production of R1	   Conc.	  
K1	   5	   Repression coefficient of R1 on the production of M 	   Conc.	  
kE	   6	   Translational elongation rate of SFGFP	   1/sec	  
d2	   7	   Degradation rate of the repressor R2	   1/sec	  
d1	   8	   Degradation rate of the repressor R1	   1/sec	  
dm	   9	   Degradation rate of M	   1/sec	  
α	   10	   Maturation rate of SFGFP protein 	   1/sec	  
kI	   11	   Translational initiation rate of SFGFP	   1/sec	  
rm2	   12	   Maturation rate of R2 

	  
1/sec	  

rm1	   13	   Maturation rate of R1 

	  
1/sec	  

pc	   14	   Relative crosstalk level 1 experiences from level 3 	   N/A	  
Pt	   15	   Probability of that an attenuator auto terminates itself	   N/A	  
N1	   16	   Number of tandem attenuator in level 1	   N/A	  
N2	   17	   Number of tandem attenuator in level 2	   N/A	  
	  
	  
	  
Table	  2	  Model	  species	  

	  
  
 
 
 
 
 

Model species Definition Unit 
R2

’ Immature repressor R2 Conc. 
R2 Mature repressor R2 Conc. 
R1

’ Immature repressor R1 Conc. 
R1 Mature repressor R1 Conc. 
M mRNA of SFGFP protein Conc. 
Mi Translationally Initialized mRNA of SFGFP protein Conc. 
G Immature SFGFP protein Conc. 
Gm Observable SFGFP protein Conc. 
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