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Abstract

Estimating SNP-heritability from summary statistics using LD Score regression provides a
convenient alternative to standard variance component models, because LD Score regression is
computationally very fast and does not require individual genotype data. However, the mathe-
matical relationship between variance component methods and LD Score regression is not clear;
in particular, it is not known in general how much of an increase in standard error one incurs
by working with summary data instead of individual genotypes.

In this paper, I show that in samples of unrelated individuals, LD Score regression with
constrained intercept is essentially the same as Haseman-Elston (HE) regression, which is cur-
rently the state-of-the-art method for estimating SNP-heritability from ascertained case/control
samples. Similar results hold for SNP-genetic correlation.

Introduction

I begin by reviewing three estimators of SNP-heritability that can be applied to GWAS data: HE
regression, REML and LD Score regression. These estimators are described elsewhere, so I provide
only a brief overview, with references to more detailed derivations.

Consider a model where the N-vector of phenotypes Y is generated as y = X + ¢, where X
is an N x M matrix of standardized and centered genotypes, B is a vector of SNP effect sizes of
length M, and € is a vector of length N of residuals (which includes genetic effects orthogonal to
an additive model, environmental effects, measurement error, etc).

If we condition on the study genotype matrix X, the entries of 8 as ¢.7.d. draws from a distri-
bution with mean zero and variance hf; /M, and the entries of € as i.i.d. draws from a distribution
with mean zero and variance 1 — hg, then

Elyny: | X] = h2Api, (1)

[1] where A is a normalized identity-by-state matrix A := XX T /M. Matrix A is typically called
the empirical kinship matrix or genetic relatedness matrix (GRM). Equation 1 shows that we can
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estimate hg by regressing products of phenotypes yny; against GRM entries Ay; for h < 4. This is
called Haseman-Elston regression [2, 1, 3, 4]. The estimator has a closed form:

B2 e COV/[ghyi, Api @)
Var[Ahi]

where the hats over variance and covariance denote the sample variance and covariance. The HE

regression estimator is inefficient, because the datapoints are correlated; conditional on X, ypy; is

correlated with ypy;.

If we are willing to make distributional assumptions about 8 and €, then we can do better: if 8
and e follow a normal distribution (or if g is sufficiently polygenic that X 3 is approximately normal
by a central limit theorem argument), then y is distributed as N (0, th +(1- hf])l ), and we can
estimate hg via maximum likelihood (REML) [5]. This approach is implemented in the software
package GCTA [6] (URLs).

The LD Score regression estimator of heritability [7, 8] takes as input GWAS summary statistics
and LD data instead of a GRM and phenotypes. The precise LD data required are LD Scores, defined
for each SNP j as ¢; = Zj r?k, where the sum is taken over all other SNPs k. In practice, there
is very little LD in human samples outside of small window, so LD Scores are typically estimated
using a 1 centiMorgam (cM) window [7]. The GWAS summary data required are 1 degree-of-
freedom x? statistics. Precisely, let X? denote the Armitage Trend Test (ATT) statistic of SNP j,

X? =N (X]Ty)2 [9]. Under the same model as above, we have the regression equation

2
B[ 2.]——Nhge-+1+N (3)
Nl = T @

where @ is a term that quantifies the average inflation in y? statistics from cryptic relatedness
or population stratification [7]. We can therefore estimate heritability by regressing X? against £;
and multiplying the slope by M/N. If the value of the intercept term 1 4+ Na is known ahead
of time; for example, if the x? statistics were generated from data with relatives removed and PC
covariates [10] such that a ~ 0, then we can improve the efficiency of the regression can be improved
by constraining the intercept. We refer to this estimator as LD Score regression with constrained
intercept. The standard error can also be improved by weighting to account for heteroskedasticity
[7]. Finally, the datapoints in this regression are non-independent (due to LD), so it is necessary to
use a correlation-robust standard error such as a block jackknife [7, 8].

Results

Derivation

The HE regression estimator is typically written as a function of the GRM. However, in samples
of unrelated individuals, it is possible to re-write the HE regression estimator in terms of linkage
disequilibrium. Starting from the definition of covariance, we can rewrite the numerator of the HE
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regression estimator as

Cov[Ani, ynyi] = ZAhlyhyz (4)
h;éz
= WZZXM ijYnYi (5)
h#i j=1
M
1
= XhjynXijyi (6)
MN(N —1) & ; s
1 M C X
= VNN =T XZ ) =) X272
M
1
e N X? . 8
MN(N_D;( G-y ®

All of the preceding steps are exact and follow from the deﬁnitions of the quantities in question. I
am not aware of a convenient way to simplify the term (MN)~ Z > wal, however, this term
is the mean over a large number of individuals and a large number of SNPs, so the law of large
numbers suggests that replacing this term with its expectation should yield a good approximation.
If the marginal effect size ), 7, 0; of SNP j is small, which is the typical case in GWAS, then Xj;
and y; will be close to uncorrelated. Even if some SNPs have large effect sizes, the average marginal
variance explained will still only be =~ hg[ /M, which is much less than 1 (where ¢ denotes mean
LD Score [7]). Therefore, we approximate ]E[X%Yf] ~ 1. Thus,

1 M 1 M ,
mz NXJ ZXz]yz (N— 1) Z(X]
Jj=1 j=1
_ X1 o)

(N—=1)’

where Y2 denotes mean x2.
Next, we need to express the denominator of the HE regression estimator in terms of linkage
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disequilibrium. Beginning from the definition,

— 1
h#i
1 M ;
= N =T D XXy (11)
hi \ j=1
1 M M
= TNV D) 2 D D X X X X (12)
j=1 k=1 h##i
1 M M N N
" MN(N -1) 2> (Z Xinik) -2 X5 (13)
7=1 k=1 =1 =1
1 M M 1 N
= mZZ (@2'1« - NZX%ka>v (14)
j=1k=1 i=1

where f?k denotes the squared correlation between genotypes at SNPs j and k in our sample. The
preceding steps are exact, and rely only on the definitions of the quantities in question. At this
stage, we again approximate a term with its expectation. The squared sample correlation 72]21@ is
an upwardly biased estimator the squared population correlation [11]. In fact, the bias is equal to
the expectation of + Zz 1 X%ka. This means that the term in parentheses in Equation 14 is an
unbiased estimate of the squared population correlation rjz-k. If we replace the term in parentheses
with its expectation, we have

1 M M N M M
—_ - =) X? X N ——— 2
v (R ) g R
Jj=1k=1 7j=1k=1
M
N
— /.
M(N —1) ; /
N
= 15
et (15)
where ¢ denotes mean LD Score. A similar derivation for the denominator appears in [3].
By dividing Equation 14 by Equation 15, we obtain
R v — 1)
iy~ X1 16
e~ A (16)

The approximation sign hides the fact that we have twice replaced terms with their expectations.
However both of the terms that we replaced with expectations are means over a large number
of terms, so by the law of large numbers, this approximation should be good. We verify this via
simulation later in the paper.

To see that Equation 16 is equivalent to LD Score regression with the intercept constrained to
one and regression weights 1/¢, first observe that by definition, unweighted LD Score regression
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with intercept constrained to one gives the estimator

MZ]‘(X? - 1)£j

h? =
constrain * Z 2

(17)

In general, weighting the regression of y; on x; by w; is equivalent to unweighted regression of
Yi/w; on x;/w;. Therefore, weighting LD Score regression with constrained intercept by 1/¢ is the
same as regressing (X? -1)/ \/67 against £;/ \/67 = \/57 with constrained intercept. This gives the
estimator

e ME (O - DVGVE)
constrain,w "~ NZ E \/}

_2 _ 1
SpeanL} (18)
NY
which is identical to Equation 16.

A parallel derivation in Appendix A shows that the HE regression estimator of genetic covariance
is equivalent to the LD Score regression estimator of genetic covariance with 1/¢; regression weights

and in-sample LD Scores.

Fixed Effects and Covariates

Suppose we model phenotypes as y = X + F + ¢, where F' is a matrix of covariates, and y, X, 8
represent phenotypes, genotypes and effect sizes as before. Let 3/ denote y residualized on F, and let
X’ denote X residualized on F. Then the HE regression estimator of h? controlling for fixed effects
F is obtained by applying HE regression to 3’ and X’. Similarly, we can incorporate fixed effects
into the ATT y? statistic by taking X? (F):=N(X j’-Ty’ )2. By the Frisch-Waugh-Lovell theorem [13],
this x? statistic is equivalent to N times the squared standardized regression coefficient of Xj in
the multivariate regression y ~ X; 4 F'. It then follows immediately from the previous section that
HE regression with covariates is equivalent to LD Score regression with constrained intercept, 1/¢
regression weights, F-adjusted x? statistics x2(F), and LD Scores computed from X

What are the properties of LD Scores computed from X’? If F' is a matrix of covariates that
are uncorrelated with genotype in the population, i.e., covariates that are not heritable, then X’ is
equal to X in expectation, and LD Scores computed from X’ are equal to LD Scores computed from
X in expectation. If I is a matrix of heritable covariates, then X and X’ will differ in expectation.
For example, if F' is a matrix of the first 10 principal components of X, and X is a structured
sample, then X’ will be X with most of the population structure removed [10], and LD Scores
computed from X’ will be equal to LD Scores from X, except with spurious LD due to population
structure removed.

The above derivations do not make any assumptions about sample structure; for example, the
sample could include related individuals or a mixture of individuals with different ancestry. In these
cases, HE regression is equivalent to LD Score regression with in-sample LD Scores estimated using
a genome-wide window (i.e., by taking the sum Z L “ over all M SNPs).

The standard 1mplementatlon of LD Score regression approximates in-sample LD by using LD
Scores estimated from an external reference panel (such as 1000 Genomes [12]) and a 1cM window
for estimating LD Scores [7]. Using a 1cM window can be viewed as a form of regularization: by
taking the sum over only SNPs in a 1¢cM window, we reduce the variance of the estimate compared
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to taking the sum over all SNPs, and in samples where there is no long-range LD, we introduce
only a small amount of bias. In structured samples, there will be long-range LD due to population
structure; however, this LD will mostly be removed by regressing the top PCs out of the genotype
matrix. If the out-of-sample LD Scores computed with a 1cM window are a good approximation
to in-sample LD Scores computed with a genome-wide window after residualizing the genotypes on
all principal components included as covariates in the GWAS, then the relationship between LD
Score regression and HE regression should hold. If in-sample LD Score is inflated due to population
structure or the inclusion of related individuals in the sample, then out-of-sample LD and in-sample
LD will differ, and the estimates from HE regression and the standard implementation of LD Score
regression will not be the same.

Simulations

In order to check the approximations in the preceding derivations, I performed a series of simu-
lations. I simulated phenotypes according to an infinitesimal model using 98,839 HapMap 3 [14]
SNPs on chromosome 2 and an approximately unstructured sample of 2,062 Swedish controls from
[15], chosen to be representative of a typical GWAS cohort of unrelated individuals. In all simu-
lations, the true hg was 0.5 and effect sizes were drawn from a normal distribution. I performed
100 total simulations. I estimated heritability with five estimators: residual maximum likelihood
(REML, as implemented in the software package GCTA [6]), HE regression, LD Score regression
with unconstrained intercept and default weights (as implemented in 1dsc [7]), LD Score regres-
sion with intercept constrained to 1 and default weights, and LD Score regression with intercept
constrained to 1 and 1/¢ regression weights. For all LD Score regression estimates, I used in-sample
LD estimated with a 1 ¢cM window, following [7].

Figure 1 shows a scatterplot of simulation results from all five estimators. The squared correla-
tion between the estimates from HE regression and LD Score regression with constrained intercept
and 1/¢ weights in these simulations was 0.999.

Mean SD
REML 0.50  0.050
HE 0.51  0.065
LDSC, intercept 0.52  0.091
LDSC, no intercept 0.52 0.060
LDSC, 1/¢ weights 0.52  0.066

Table 1: Comparison of Heritability Estimators. This table displays the mean and standard deviation

of the hf] estimates from several estimators across 100 simulations of quantitative traits. The true value of

hg was 0.5. As expected, all estimators are approximately unbiased. REML gives the lowest standard error,
followed by LD Score regression with default weights and intercept constrained to 1.

Means and standard deviations across 100 simulations for all five estimators are displayed in
Table 1. As expected, all estimators give approximately unbiased estimates. REML is the most
efficient, followed by LD Score regression with default weights and constrained intercept. The
worst performing estimator is LD Score regression with unconstrained intercept. Nevertheless; LD
Score regression with unconstrained intercept has some advantages that may compensate for the
increased standard error. Fitting an intercept protects from bias due to cryptic relatedness and
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Figure 1: HE Regression vs LD Score Regression. Scatterplot displaying the relationships among the
five heritability estimators across 100 simulation replicates. As predicted by the derivations, HE regression
(HE) and LD Score regression with constrained intercept and 1/¢ regression weights were almost equivalent
(R? = 0.999).

population stratification [7]; however, these advantages come at the cost of an increased standard
error, due to the fact that LD Score regression with unconstrained intercept fits an extra parameter.
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Discussion

I have derived an approximate equivalence between HE regression and LD Score regression with
constrained intercept and 1/¢ regression weights. Although this equivalence is only approximate,
mathematical arguments and simulations show that the approximation error is small. This provides
a connection between standard kinship-based estimators of heritability and the LD Score regression
estimators based on LD, and bounds the loss of precision incurred by working with summary statis-
tics. In addition, several recent papers [3, 1] have shown that estimates of heritability from REML
are biased downwards in ascertained case/control studies and recommended using HE regression
instead. Since HE regression is approximately equivalent to LD Score regression, it follows that
for case/control studies for which ancestry-matched LD Scores are available, LD Score regression
should perform comparably to HE regression, but at lower computational cost (O(M N?) time and
O(N?) space for HE regression vs O(MN) time and O(M + N) space for LD Score regression [7]).

URLs

1. GCTA software (REML):
http://www.complextraitgenomics.com/software/gcta/

2. ldsc software:
github.com/bulik/ldsc

3. Coffee:
http://www.trianglecoffeeshop.com
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Appendix A: Genetic Covariance

To begin, I will describe three estimators of genetic covariance that can be applied to GWAS data:
HE regression, REML and LD Score regression. These estimators are derived elsewhere, so I provide
only a brief overview, along with references to more detailed descriptions.

Consider a model where the vectors of phenotypes y; and s are generated as y; = Y5+ d and
Yo = Z~+ € where Y, Z are matrices of normalized and centered genotypes, 3,y are vectors of SNP
effect sizes, and d, € are vectors of residuals (which includes genetic effects orthogonal to an additive
model, environmental effects, measurement error, etc). Let N7 denote the number of individual in
matrix Y, Ny the number of individuals in matrix Z, and Ng the number of individuals who appear
in both matrices.

I model the entries of (8,7) as i.i.d. draws from a distribution with mean zero and covariance
matrix

2
Verl(8;, )1 = 37 (0 74 ). 19

and the entries of (d,€) as i.i.d. draws from a distribution with mean zero and covariance matrix

(1—h)I .
(45 0 S ) 20)

where p. denotes the environmental covariance. who have been phenotyped for both y; and yo. If
we condition on the study genotype matrices Y and Z, the covariance matrix of the vector (y1,y2)
of phenotypes is

1 RYYT? pvZzT (1=h)I  pel
Var[(yl’yQ)]_M< pe2¥T B2zzT )T\ pr (w1 ) (21)

Let A := YTZ/M. This means that E[yy0;] = pgAni, so we can estimate genetic covariance by

regressing y1py2; against Ap;. This estimator is the HE regression estimator of genetic covariance,

which is inefficient for the same reasons that the HE regression estimator of heritability is inefficient.
The closed from expression for the estimator is

Cov[Ani, yinyai]
Var[Ap;]

Pg.HE = 7 (22)

the variance and covariance are taken over all pairs (h, ) such that h # i. That is, if an individual
1 is one of the Ny individuals phenotyped for both traits, we do not include the term yq;19; in the
regression. However, if h # ¢ but both h and i are among the N; individuals phenotyped for both
traits, we include both of the terms y1,y2; and yi1;y9, in the regression. This is a slight difference
from the single-phenotype case: if y; = yo then the terms yipy2; and yi;y0, are identical, so it
makes sense to include only one of these in the regression. If the phenotypes are not identical, then
these two terms are distinct, so we would lose information by excluding one of them. There are
NiNy — N, terms in the regression.

If we are willing to assume that all distributions above are multivariate normal, then the distri-
bution of the vector of phenotypes (y1,¥2) is normal with mean zero and the variance equal to the
matrix from Equation 21. The REML estimator of genetic covariance is obtained by maximizing
the corresponding likelihood [16].

10
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The LD Score regression estimator of genetic covariance [8] takes as input GWAS summary
statistics and LD Scores instead of a GRM and phenotypes. Let Bj and v; denote the estimates of
the effect size of SNP j on y; and ys, respectively from marginal linear regression. Under the same
model from above, we have the regression equation from [§]

N
B3] = 556+ Ny (23)

where p is the phenotypic correlation. We can therefore estimate genetic covariance by regressing
Bj%’ against £; and multiplying the slope by M. If the value of the intercept term pNg/NiNy is
known ahead of time, the efficiency of the regression can be improved by constraining the intercept.
The standard error can also be improved by weighting to account for heteroskedasticity. Finally,
the datapoints in this regression are non-independent (due to LD), so it is necessary to use a
correlation-robust estimator of the standard error [8].

Genetic Covariance HE Regression and LD Score Regression

As with the heritability estimators, there is a connection between the HE regression and LD Score
regression estimators of genetic covariance. If we let S denote the set of individuals shared by both
studies, then the numerator of the HE estimator is

Cov[Ani, yinyei] = NN, N, N2 — ZAhzylhyQ
- Y;
M(N1N2 — %Z hj ZijY1hy2i

)

M
=1

1 N
— M(N1N2 — Z ((Z }/z]?ﬂ]) (Z; }/ijylj> Z Jy11y21>

J €S

M
N1 Ny
— Y.
M (N1 Ny — Ny) z; ( Z ZJylZyQZ)
j= €S
N1N> <A . PN
R B — . 24
M(N.Ny — N,) Z i T NN, (24)

—_

<

The approximation in the last line is valid in the regime of small effects, where Yj and Y1;Y2;
are approximately uncorrelated, in which case E[Y2yhygz] = E[)@?]E[yliygi] =p.

11
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The denominator of the HE regression estimator is

Varldn] = Nz_ ZA

M=

Yii Zij

M(N1N2— s) v (]

Ms
M L

= Y3i ZniYij Z;
M(N1N2—N) — L hj 4k Yij Zik
1 M M 1 Ny
T M(N N, — ZZ (ZYmsz> (Z ZijZik> —ZE?Y;%)
1 J:1k:1 1 i=1 icS
M M
NN, o N,
~ K25k T NN, 25
M(NlNz—N)ZZ<TYukTZuk N1N2>, (25)

1

o

=1

.
Il

where 7y j; denotes the sample correlation between j and k in matrix Y and likewise for 77 ;. The
approximation in the second-to-last line results from observing that almost all pairs of SNPs j, k
are in linkage equilibrium, so since our genotype matrix is normalized to mean zero and variance
one, then the variance of their product Y;;Y;; will be approximately equal to the product of their
variances, which is one. Observe that 7y ji7z jr — Ns/(N1N2) is an unbiased estimator of r2, so

N1No A N N1No
9M (N1 Ny — Z_:Z_: <TY’J’“TZ’J’“ N N1N2> ~ OM(NiN, — Zéﬂ’“

NNy
~ 2(N1Ny — Ns>£' (26)

Thus, we can rewrite the HE regression estimator as

. M - pN.
2 E A s
hiyp ~ 7 <ﬁj'7j - N1N2) . (27)

J

This is equivalent to LD Score regression with the intercept constrained to pNg/(N1N3) and re-
gression weights 1/¢. To see this, first observe that unweighted LD Score regression with intercept
constrained to one yields the estimator

A2 . MZj(Bjﬁ/j - pNs/(N1N2))€j
pg,constrain = Z 2 .

(28)
Weighting the regression by 1/¢ is the same as regressing (,@jﬁj — pNs/(NlNg))/\/?j against
;/\/t; = \/{;. This yields the estimator
p .: MZj((/Bj’YJ pNs /\/> )¢5 /\/>
g,w g \/7
> <ﬁm NINQ) 29)
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which is identical to equation 27. Using 1// for regression weights is more efficient than unweighted
LD Score regression, but still sub-optimal [8]).
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