
Efficient Privacy-Preserving String Search and an Application in Genomics

Kana Shimizu,1,4,∗ Koji Nuida2,3 and Gunnar Rätsch4,∗

1 Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science
and Technology, 2-4-7 Aomi Koto-ku, Tokyo 135-0064, Japan

2Information Technology Research Institute, National Institute of Advanced Industrial Science and
Technology, 2-4-7 Aomi Koto-ku, Tokyo 135-0064, Japan,

3Japan Science and Technology Agency (JST) PRESTO Researcher, Tokyo, Japan
4Computational Biology, Memorial Sloan Kettering Cancer Center, 1275 York, New York, NY, USA
∗To whom correspondence should be addressed: shimizu-kana@aist.go.jp and ratschg@mskcc.org

Abstract

Motivation: Personal genomes carry inherent privacy risks and protecting privacy poses major
social and technological challenges. We consider the case where a user searches for genetic
information (e.g., an allele) on a server that stores a large genomic database and aims to receive
allele-associated information. The user would like to keep the query and result private and the
server the database.
Approach: We propose a novel approach that combines efficient string data structures such as
the Burrows-Wheeler transform with cryptographic techniques based on additive homomorphic
encryption. We assume that the sequence data is searchable in efficient iterative query operations
over a large indexed dictionary, for instance, from large genome collections and employing the
(positional) Burrows-Wheeler transform. We use a technique called oblivious transfer that is
based on additive homomorphic encryption to conceal the sequence query and the genomic
region of interest in positional queries.
Results: We designed and implemented an efficient algorithm for searching sequences of SNPs
in large genome databases. During search, the user can only identify the longest match while
the server does not learn which sequence of SNPs the user queries. In an experiment based
on 2,184 aligned haploid genomes from the 1,000 Genomes Project, our algorithm was able to
perform typical queries within ≈2 seconds and ≈20 seconds seconds for client and server side,
respectively, on a laptop computer. The presented algorithm is at least one order of magnitude
faster than an exhaustive baseline algorithm.

1 Introduction

String search is a fundamental task in the field of genome informatics, for which a large variety
of techniques have been developed (see, for instance,[2, 15, 18]). Traditionally, those techniques
have been optimized for accuracy and computational efficiency, however a recent boom of personal
genome sequencing and analyses has spotlighted a new criteria, namely, privacy protection. As
reported in many studies, a genome is considered to be one of the most critical pieces of information
for an individual’s privacy. In fact, it is largely different from any other personal information
because it works as an identifier of an individual while it possesses the information that has strong
correlation with the phenotype of the individual [25, 9]. Therefore, in principle, privacy protection is
an inevitable problem when handling personal genomes. As a practice, the most popular approach is
protecting genomes physically; genomic sequences have been kept at few collaborator sites, and only
a limited number of researchers are allowed to access them. This conservative approach severely
limits the great potential of existing genomic resources. In order to mitigate the stagnation caused
by privacy issues, it appears crucial to develop practical methods that enable searching and mining
genomic databases in a privacy-preserving manner.

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

mailto:shimizu-kana@aist.go.jp
mailto:ratschg@mskcc.org
https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

Figure 1: Outline of the search strategy with PBWT. A set of genotype sequences X = {x0, . . . , x4} illus-
trated in (a) is sorted by the algorithm described in [7] to obtain the positional prefix arrays A illustrated in
(b). Each element Pi,j of PBWT matrix illustrated in (c) is (j+ 1)-th letter of sequence Ai,j . By computing
rank operations with regard to (k + 1)-th query letter on P·,k, one can update an interval corresponding
to (k + 1)-mer match between the query and X. In this figure, the search starts from fourth allele. The
first interval [f1, g1] is initialized by rank operations on P·,3 with regard to first query letter ’1’. The second
interval [f2, g2] is obtained by rank operations on P·,4 with regard to the second query letter ’0’ and [f1, g1].
Similarly, the third interval [f3, g3] is obtained by rank operations on P·,5 with regard to the third query
letter ’0’ and [f2, g2]. See Sections 2.2 and 3.3 for more details.

So far, several groups have tackled related problems. [14] developed secure multi-party compu-
tation protocols for computing edit distance. [5] proposed a protocol to search DNA string against
a DNA profile represented by finite automata. [6] proposed a protocol to detect a match between
two short DNA sequences for the purpose of genetic test. [4] also aimed for genetic test to develop
a method for computing set intersection cardinality. [11] proposed a protocol for searching pre-
defined keywords from databases. [22] proposed a substring search protocol for public databases
while keeping user’s query private. [3] developed a system by using several cryptographic techniques
to find a subset of short reads which includes a fixed-length query string at specific position.

We propose a general approach which utilizes an efficient iteratively queriable data struc-
ture together with cryptographic techniques. Among many variations of such data structures,
the Burrows-Wheeler Transform (BWT[16, 17, 19]) and related techniques such as the positional
BWT (PBWT;[7]) have dramatically improved the speed of genomic database analyses. Those
data structures commonly have an indexed dictionary called a rank dictionary. By referring to
the rank dictionary in iterative operations, one can efficiently search the database. For the case
of BWT, a match between query and database is reported as an interval [f, g], and the interval is
computed by the look-up of the rank dictionary. In our approach, we access the rank dictionary in
privacy-preserving manner by using additive homomorphic encryption and oblivious transfer (OT).

Cryptographic approaches often require significant computational resources. The goal of this
work is to illustrate that privacy-preserving queries are within reach when using current crypto-
graphic techniques and standard computing hardware. We demonstrate that a typical query would
only take about two seconds on the user side and ≈20 seconds on the server, while preserving
privacy of the query string and the database.

The rest of the paper is organized as follows. In Approach, we describe the main ideas of our
approach without going into technical details. In Methods, the detailed algorithm of recursive obliv-
ious transfer is given followed by the description of a practical algorithm, named Crypto-PBWT,
for privacy-preserving search in large-scale genotype databases. We also describe complexity and
security properties of the proposed algorithm. We provide the more intricate details of a more
efficient version of the algorithm in Supplementary Sections A-B. In Experiments, we evaluate the
performance of Crypto-PBWT on datasets created from data of the 1,000 Genomes Project [27]
and compare it to an alternative method for fixed-length k-mer search. Finally, we conclude our
study in Section 5.

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

2 Approach

2.1 Problem Setup

We consider the setting in which a user would like to search a genomic sequence in a database
with the aim to either determined whether this sequence exists in the queried database and/or to
obtain additional information associated with the genomic sequence. An example is the use in a so-
called genomic beacon (for instance, those created within the Beacon Project of the Global Alliance
for Genome & Health (GA4GH).) Another application is the search of a specific combination of
variants, for instance, in the BRCA1 or BRCA2 genes, with the aim to determine whether that
combination of variants is known or predicted to be deleterious (see, for instance, GA4GH’s BRCA
Challenge). For privacy reasons, the user would like to conceal the queried sequence, which would
be particularly relevant for the second example. For both examples it would be important that the
server’s database is protected.

In our algorithm using additive homomorphic encryption, the user generates two keys: one is a
public key which is used for encryption and the other is a secret key which is used for decryption.
The public key is sent to the server before the search starts. After computing a search result in
encrypted form, the sever sends it to the user. By using the secret key, only the user decrypts the
result. Figure 2 illustrates a flow of such algorithm for the case of computing linear communication
size OT. Sections 3.1-3.2 describe more details about additive homomorphic encryption and OT.

2.2 Recursive Search Data Structures

PBWT is an efficient data structure of M aligned (genomic) sequences of length N [7]. PBWT
stores information very efficiently and still allows computations (this is a property of Succinct Data
Structures, see [13]). To search for a query string q over the alphabet Σ, one iteratively operates
on intervals that can later be used to identify the matching genomic regions based on the PBWT.
A substring match starting at a pre-specified position t is represented by an interval [f, g]. The
number of matches is given by the length of the interval g − f . It is known that the (k + 1)-th
interval [fk+1, gk+1] corresponding to a (k + 1)-mer match can be updated from the k-th interval
[fk, gk] and the (k + 1)-th letter of the query q. See Figure 1 for an illustration.

We will provide more details on how to update f and g in Section 3.3. To understand the key
ideas, it is sufficient to understand that the updates can be written in the form of

fk+1 = vc[fk] and gk+1 = vc[gk],

where c = q[k+ 1] and vc ∈ NM×N is a large, static lookup table. Hence, the iterative algorithm of
updating [fk, gk] by using the query q, can be written as a recursive algorithm:

fk+1 = vq[k+1][vq[k][vq[k−1][. . . vq[1][f0]]]].

This can be done analogously for gk+1. Other algorithms, including the non-positional Burrows-
Wheeler transform (for instance,[10, 17]), can be expressed in similar ways. In this work we will
refer to data structures that can be queried in the recursive way described above as recursive search
data structures.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

Figure 2: Outline of Oblivious Transfer (OT) based on additive homomorphic encryption. See Sections 2.3
and 3.2 for more details.

2.3 Oblivious Transfer for Privacy-Preserving Search

Concealing the Query: A key idea of our approach is to look-up elements of vc by using a
cryptographic technique called oblivious transfer (OT). By employing OT, the sender (“user”)
learns only the t-th element in the receiver’s (“server”) vector without leaking any information
about t to the receiver [24]. Among several efficient algorithms for this scheme [20, 21, 29], we used
those which are based on additive homomorphic encryption. By this property, our approach enables
the user to obtain the interval [fk+1, gk+1] without revealing [fk, gk] to the server. See Figure 2 for
an illustration. We explain homomorphic encryption and OT in some detail in Sections 3.1-3.2.

Concealing the Database: While this approach protects a user’s privacy, the server leaks in-
formation of vc which may be sufficient to reconstruct parts of the genotypes in the database. In
order to rigorously protect the server’s privacy, we propose a technique that allows for recursive
oblivious transfer where the user does not learn intermediate results but only if a unique match
was found. It is based on a bit-rotation technique which enables the server to return f̂k := R(fk)
and ĝk := R′(gk) which are random values to the user. Only the server can recover fk and gk in
encrypted form (i.e. the server does not see fk and gk when recovering them), and thus the user can
recursively access vc[fk] and vc[gk] correctly. The details of this approach are given in Section 3.2.

In this work, we designed an algorithm based on these techniques that can be used for for
privacy-preserving search in large genotype databases.

3 Methods

3.1 Additively homomorphic encryption

Our main cryptographic tool in this paper is an additive-homomorphic public-key encryption
scheme (KeyGen;Enc;Dec), which enables us to perform additive operations on encrypted values.
Here, the algorithm KeyGen generates a public key pk and a secret key sk; Enc(m) denotes a cipher
text obtained by encrypting message m under the given pk; and Dec(c) denotes the decryption
result of cipher text c under the given sk. The scheme also has the following additive-homomorphic
properties:

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

• Given two cipher texts Enc(m1) and Enc(m2) of integer messages m1 and m2, Enc(m1 +m2)
can be computed without knowingm1, m2 and the secret key (denoted by Enc(m1)⊕Enc(m2)).

• Given a cipher text Enc(m) of a message m and an integer e, Enc(e ·m) can be computed
without knowing m and the secret key (denoted by e⊗ Enc(m)). In particular, Enc(−m) can
be computed in this manner.

This scheme should have semantic security; that is, a cipher text leaks no information about
the original message [12]. For example, we can use either the Paillier cryptosystem [23] or the
“lifted” version of the ElGamal cryptosystem [8]; now the second operation ⊗ can be realized by
repeating the first operation ⊕. It goes beyond the scope of this paper to review the details of these
cryptographic techniques and the reader is referred to a book [28] on homomorphic encryption. A
typical addition operation in the ElGamal cryptosystem takes about 2 · 10−7 seconds on a single
CPU based on AIST’s ElGamal library [1].

3.2 Recursive Oblivious Transfer by Random Rotations

To protect the privacy of the database, we propose a technique for recursively querying a data
structure without obtaining information about intermediate results. Let us define the recursive
oblivious transfer problem as follows:

Model 1 A user has a private value 1 ≤ x1 ≤ N and a server has a private vector v of length
N . Let us denote xk+1 = v[xk] and the user is allowed to access the server ` − 1 times. After the
calculation, the user learns only x` and the server learns nothing about x1, . . . , x`.

Let us explain our idea by extending a simple linear communication size OT where the user
aims to know the t-th element of the server’s vector v. In the first step, the user creates a bit
vector:

q = (q1 = 0, . . . , qt = 1, . . . , qN = 0) ,

and sends the following encrypted vector to the server.

~Enc(q) = (Enc(q1) . . . ,Enc(qN))

The server computes

c =
N⊕
i=1

(
v[i]⊗ Enc(qi)

)
,

and sends c to the user. The user computes Dec(c) and obtains v[t].
Now we consider the case that the server does not leak v[t], but allows the user to access v[v[t]].

Our idea is that the server generates a random value r ∈ {0, 1, . . . , N − 1} and returns the cipher
text

ĉ =
N⊕
i=1

(
((v[i] + r)mod N)⊗ Enc(qi)

)
= Enc((v[t] + r)mod N),

where (a+ b)mod N denotes addition in a number field modulo N . The user decrypts ĉ to know a
randomized result (v[t] + r)mod N , and performs the next query:

q̂ = (q̂1 = 0, . . . , q̂((v[t]+r)mod N) = 1, . . . , q̂N = 0).

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

Note that q̂ is the r-rotated permutation of the ’true’ query:

q′ = (q′1 = 0, . . . , q′v[t] = 1, . . . , q′N = 0).

Therefore, denote Perm(q, r) as the permutation of a vector q such that i-th element moves to
((i− r)mod N))-th position, the server can correctly recover ’true’ query q′ in its encrypted form by
the following permutation: ~Enc(q′) = Perm(~Enc(q̂), r). In this way, the server correctly computes
an encrypted v[t]-th element by

Enc(v[v[t]]) =
N⊕
i=1

(
v[i]⊗ Enc(q′i)

)
,

without learning any information about the user’s query.
By recursively applying these calculations, the user can obtain xk+1 according to Model 1. The

complete algorithm implementing this idea is given in Algorithm 1. It uses a function ROT for
rotating the servers results to conceal intermediate query results in order to protect the database.

3.3 Crypto-PBWT: Privacy-preserving search on genotype databases

In this section, we introduce a practical genotype database search based on recursive oblivious
transfer and PBWT. We only introduce the algorithm to search the longest match starting from
t-th column, however, variations are possible and would allow for a variety of different search types
(see also[7]).

To formulate the problem, let us consider a set X of M haplotype sequences xi, i = 1, . . . ,M
over N genomic positions indexed by k = 1, . . . , N , and a query q which is a user’s haplotype
sequence over the same N genomic positions. We denote k-th allele of a sequence xi by xi[k].
Given two indices k1 and k2, we say that there is a match between q and xi from k1 to k2, if
q[k1] . . . q[k2 − 1] = xi[k1] . . . xi[k2 − 1]. We say that the match is set-longest at k1 if there is no
match between q and any sequence xj (possibly with j = i) from k1 to k2 + 1.

The goal is to find a set-longest match at a given position t between q and X in a privacy-
preserving manner. Here, we consider the case that the user’s private information is the query
string and the position t is not the user’s private information. We later introduce the case that the
both the query string and t are user’s private information. The formal description of the model is
described as follows:

Model 2 The user is a private haplotype sequence holder, and the server is a holder of a set of
private haplotype sequences. The user learns nothing but a set-longest match at a given position t
between the query and the database while the server learns nothing about the user’s query. t is not
a user’s private information and the server knows it.

Let us remember how to search the set-longest match in non-privacy-preserving manner. PBWT
involves a matrix P ∈ NM×N that stores well-compressible information in an efficiently searchable
form. It is created from the genotype matrix X by algorithms described in [7]. By using rank
dictionary operations on P (see below), one can search a match between a query and X. When
operating on P one computes updates of intervals using the following two quantities (see[7]for more
details): i) The rank dictionary for sequence S for letter c ∈ Σ at position t:

Rankc(S, t) = |{ j | S[j] = c , 1 ≤ j ≤ t }| ,

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

where Σ is the alphabet of S. ii) The table CF counting occurrences of letters that are lexicograph-
ically smaller than c in S by

CFc(S) =
∑
r<c

Rankr(S,N) .

Based on these two quantities, we can compute the updates [fk+1, gk+1] using two simple operations

fk+1 = CFc(P·,k) + Rankc(P·,k, fk) ,

gk+1 = CFc(P·,k) + Rankc(P·,k, gk) ,

where we denoted the k-th column vector by P·,k . Let us define a look-up vector vc for the column
k where

vc[i] =

{
CFc(P·,k) (i = 0)
CFc(P·,k) + Rankc(P·,k, i) (1 ≤ i ≤M)

(1)

for c ∈ Σ. Then, updating an interval is equivalent to two look-ups in the vector vc:

fk+1 = vc[fk] and gk+1 = vc[gk]. (2)

Given a position t and a PBWT P of the database sequences, the first match is obtained as an
interval [f1 = vc[0], g1 = vc[M]] where c = q[1] and vc is a look-up vector for (t− 1)-th column of P
(see the definition of vc in equation 1). For the case of t = 1, a column t(x1[0], . . . , xM [0]) is added
to P as 0-th column, in order to compute the first match. The match is extended by one letter by
an update of the interval. The update from the k-th interval to (k+ 1)-th interval is conducted by
specifying c = q[k + 1], re-computing vc for (k + 1)-th column of P and referring vc[fk] and vc[gk]
as fk+1 and gk+1 (see (2)). The set-longest-match is found when f = g.

In order to achieve the security described in the model 2, for each update, the user has to
specify c without leaking c to the server, and obtain only vc[f] and vc[g] without leaking f and
g. To satisfy the second requirement, the user accesses the server’s vc through the function ROT,
which allows the user to obtain a specific element in the specified vector. To achieve the first
requirement, the server computes all possible intervals (i.e., computing [f , g] for the all case of
c = 1, . . . , |Σ|). This allows the user to obtain the correct interval, however, the sever leaks extra
information (i.e., intervals for c 6= q[k]). To avoid this, the user sends Enc(q[k]), and the server
adds a conditional randomization factor r× (q[k]− c) to f and g with different random value r for
all c ∈ Σ. Note that this factor becomes equivalent to 0 iff. q[k] = c, and user only obtains the
interval for c = q[k].

In order to identify the set-longest match, the user has to know if f = g. The user cannot
compute the identity of f and g directly from the server’s return, because ROT returns a value
which is a random value to the user (but the ’true’ value is recovered in encrypted form only at
the server side). Therefore, the server also sends an encrypted flag d which shows whether or not
f = g. Since f and g are represented as indices of q′f = Perm(qf , r

′(f)) and q′g = Perm(qg, r
′(g))

(see the functions PrepQuery and ROT), the server computes d by following:

d =

M⊕
i=1

Enc
(
ri × (q′f [i]− q′g[i])

)
where ri is a random value. Dec(d) is equal to 0 iff. qf = qg. See Supplementary Algorithm 7
which defines a function isLongest. In addition to finding a set-longest match at t, it is convenient

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

to find a longest substring which matches to at least ε sequences. This operation enables to avoid
detecting unique haplotype and provides ε-anonymity result and is implemented by replacing the
function: isLongest by another function: isLongestGT ε which computes flags each of which shows
if the interval matches to 0, . . . , ε − 1 respectively and returns shuffled flags, and the user knows
the result by checking if there is a flag which is equal to zero. See Supplementary Algorithm 7 for
more details.

The detailed algorithm of Crypto-PBWT is shown in Algorithm 2.

3.4 Concealing the Search Position

By the algorithm introduced above, the match position t needs to be provided to the server. Let
us consider the case that t needs to be concealed (e.g., the used would not like to reveal which gene
is analyzed). In practical genotype database search, it is often sufficient for the user to hide t in a
set of multiple columns. Therefore, here we assume following security model.

Model 3 The user is a private haplotype sequence holder, and the server is a holder of a set of
private haplotype sequences. The user has a vector of D positions T = (t1, . . . , tD). The user
learns nothing but a set-longest match at a given position t ∈ {t1, . . . , tD} between the query and
the database while the server learns nothing about the user’s query string. The server knows T but
cannot identify which element the user queries.

Conceptually, the user could query multiple positions at the same time to conceal the search posi-
tion. In the extreme case the user would query all search positions to avoid leaking any information
about t. However, every answered query would leak more information from the database and query-
ing would become computationally prohibitive. We therefore propose joint processing using OT
that simultaneously uses multiple search positions. Let us define Vc as another look-up vector for
a letter c as follows:

Vc[oj + i] =

{
CFc(P·,(tj+k)) + oj (i = 0)

CFc(P·,(tj+k)) + Rankc(P·,(tj+k), i) + oj (i 6= 0)

(1 ≤ j ≤ D, 0 ≤ i ≤M)

where oj = (j− 1)(M + 1) is an offset and k is an index which is initialized by −1 and incremented
by 1 in each iteration of the recursive search. Note that (Vc[oj], . . . , Vc[oj + M]) corresponds to
vc for tj-th column. The algorithm for the Model 3 is designed by replacing the lookup tables vc
by Vc (see Step 2a, item 1 in Algorithm 2) and initialize f and g by ox and ox + M , respectively,
where t = tx (see Step 1 in Algorithm 2). As a result the tables get D times larger which has an
impact on computing requirements and data transfer size (see Section 3.7). We therefore suggest
using this algorithm for small D.

3.5 Reducing Communication Size

As we will describe in the Complexity analysis in the following section, the Crypto-PBWT algorithm
using standard OT requires O(M |Σ|) in communication size per iteration in the best case, which
makes core algorithm less practical. We propose to use an algorithm for sublinear-communication
OT (SC-OT) proposed in [29]. Using this approach we can reduce the communication size of
Crypto-PBWT to O(

√
M |Σ|) (best case). Here, we only outline the key ideas of SC-OT and its

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

adaptation of Crypto-PBWT. In the SC-OT, the one encodes the position t by in a two dimensional
representation: t0 = t /d

√
N e+1, t1 = (t)mod d

√
N e + 1, where d·e denotes the ceil of the argument.

The user sends Enc(t0) and ~Enc(q) to the server, where

~Enc(q) = (Enc(q1 = 0) . . . ,Enc(qt1 = 1), . . . ,Enc(qd
√
N e = 0)).

The server obtains random values rk, k = 1, . . . , d
√
N e, and computes

ck =

d
√
N e⊕
i=1

(
v[(k − 1)× d

√
N e+ i]⊗ Enc(qi)

)
⊕
(
rk ⊗ Enc(t0 − k)

)
,

and sends c = (c1, . . . , cd
√
N e) to the user. The user knows the result by the decryption: Dec(ct0).

Note that Enc(t0 − k) = Enc(0) iff. t0 = k, therefore the decryption of ci becomes a random value
when i 6= t0.

In order to apply bit-rotation technique naturally to SC-OT, the server needs to return v[t] in
the same two dimensional representation. The key idea here is that the server creates v0 and v1

where v0[i] = v[i]/d
√
N e+ 1 and v1[i] = (v[i])mod d

√
N e + 1, i = 1, . . . , N , and searches on both v0

and v1. Similar to the linear communication size function ROT, the removable random factors are
added to server’s returns. More details on SC-OT is given in Section A. The complete algorithm
for privacy-preserving search based on SC-OT is given in Supplementary and Algorithm 4.

3.6 An Exhaustive Baseline Algorithm

Since there is no obvious candidate to compare our algorithm to, we briefly describe a baseline
algorithm based on exhaustive enumeration of k-mers. In order to identity the match, the user
queries the server about the presence of a k-mer. Here, the server stores all k-mers, there are
O(|Σ|k) of them, and we use SC-OT. Such a strategy is efficient for short queries as |Σ|k is not
too large. However, the resource requirements will be dominated by queries for large k and the
algorithm quickly gets intractable.

3.7 Complexity

Most of the computing and transfer on server and user side is related to the encryption/decryption
and the computational cost of the search is negligible. While PBWT requires essentially O(1) to
update the intervals per iteration, Crypto-PBWT needs to conceal the query and requires M |Σ|
operations on the server, where M is the number of sequences in the database and |Σ| is the size
of the alphabet. When multiple queries are performed at the same time, i.e., D > 1, the effort
increases linearly in D, i.e., the server sides compute effort is O(MD|Σ|) per iteration. When
using SC-OT, the communication size and effort for the user is O(

√
MD|Σ|) (see Section 3.5 and

Supplementary Section A for details).

Table 1 summarizes the time, data transfer overhead and space complexities of the Crypto-
PBWT, when the server’s PBWT is M ×N matrix consisting of a set of alphabet letters Σ and the
user’s query length is ` and the number of queries positions is D (including D− 1 decoy positions;
see Section 3.4 for details). For the purpose of comparison, we consider the method outlined in
Section 3.6 that achieves the same security and utility as Crypto-PBWT. Since the complexity of
the exhaustive approach is exponential to the query length, its performance deteriorates quickly for

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

long matches. On the other hand, the time and data transfer overhead complexity of the Crypto-
PBWT are linear and sub-linear to the query length, which enables the user to find a long match
efficiently.
Table 1: The summary of the time, communication and space complexities of Crypto-PBWT (CP) and an
exhaustive method (EX). Both algorithms use SC-OT. M is the number of haplotype sequences (server side),
D is the number of queried positions (including D− 1 decoy position to conceal the query position), ` is the
length of query and |Σ| is the alphabet size.

Time Communication Space

CP (user) O(`
√
MD|Σ|) O(`

√
MD|Σ|) O(

√
MD|Σ|)

CP (server) O(`MD|Σ|) O(`
√
MD|Σ|) O(MD|Σ|)

EX (user) O(
√
D|Σ|`) O(

√
D|Σ|`) O(

√
D|Σ|`)

EX (server) O(D|Σ|`) O(
√
D|Σ|`) O(D|Σ|`)

3.8 Security Notion

In this paper, we assume the security model called Semi-honest model where both parties follow
the protocol, but an adversarial one attempts to infer additional information about the other
party’s secret input from the legally obtained information. The semantic security of the encryption
scheme used in the protocol (see Section 3.1) implies immediately that the server cannot infer
any information about the user’s query q during the protocol. Also, the user can not infer any
information about server’s return except for the result.

We do not consider Malicious model where an adversarial party cheats even in the protocol (e.g.,
by inputting maliciously chosen invalid values) in order to illegally obtaining additional information
about the secret, however, we would like to mention that it is possible to design an algorithm for
the Malicious model with a small modification by using a known cryptographic technique [26].

4 Experiments

In this section, we evaluate the performance of the proposed method on the datasets created from
the chromosome 1 data from the 1,000 Genomes Project phase 1 data release which consists of
2,184 haploid genomes [27]. In our experiments and as in [7], we used alleles having SNPs, but we
did consider indel variants.

We implemented the proposed algorithm in C++ based on an open source C++ library of elliptic
curve ElGamal encryption [1]. We used the standard parameters called secp192k1, according to
the recommendation by The Standards for Efficient Cryptography Group. For comparison, we
also implemented an exhaustive baseline method (see Section 3.6) that achieves the same security
and utility as Crypto-PBWT. In order to perform a fair comparison, both Crypto-PBWT and
the exhaustive method used the same SC-OT module where computation of ck (see Algorithm 1)
is simply parallelized by OpenMP. Since our implementation is a prototype, it does not support
communication over the network, instead, the data is transferred by file I/O which is also included
in run time.

In the first experiment, we used all the 2,184 genomes of original data and the user selected
a true start position together with 49 decoys. In this experiment, both Crypto-PBWT and the
exhaustive method were run on the same laptop computer equipped with Intel Core(TM) i7 3.00GHz
CPU (four cores with hyper-threading) and 16GB memory. The user side programs used a single

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

http://www.secg.org
http://openmp.org/
https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

thread while the server side programs used eight threads. Figures 3 and 4 show run time and data
transfer overhead of Crypto-PBWT and of the exhaustive method. The observed run time and data
transfer size of Crypto-PBWT is linear in the query length, while that of the exhaustive approach
is exponential. For query lengths larger than 30 bit, the computation of the exhaustive method did
not finish within 24 h. These results fit the theoretical complexity described in Section 3.7.

The user’s run time of Crypto-PBWT is relatively small making it suitable for a practical case
where computation power in a server side is generally stronger than that of user side. Since the
memory usage of Crypto-PBWT does not depend on query length, it used less than 60 MB while
that of the exhaustive method exponentially increases according to the query length and required
12 GB when the query length is 25 bit.

Although the exhaustive method is efficient for short queries, we consider that Crypto-PBWT
is more practical when taking into account that the bit length of a unique substring for a human
genome is greater than 31 bits. Moreover, since there are large linkage blocks, even queries with
more than 100 bits would not always lead to unique matches in the 1,000 genomes data. Hence,
the exhaustive search strategy would either not always be able to return a unique match or would
be very inefficient. The proposed iterative privacy-preserving technique is efficient also for long
queries.

In the second experiment, we evaluated the performance of the run time of Crypto-PBWT on a
laptop with one CPU socket (4 cores with hyper-threading) and a compute node equipped with four
CPU sockets (Intel Xeon 2.40GHz CPU; total of 32 cores with hyper-threading). In this experiment,
all the 2,184 genomes were also used and the user selected search position of interest together with
0, 4, 9, 14 and 49 additional decoy positions (see Section 3.4 for details). Although the current
implementation is a prototype and there is room for improvement in terms of parallelization, the
server’s run time was at an acceptable level in practical configurations (Table 2). We note, that
with improvements in parallelization, the server run time may be reduced to 3-4 seconds.

Table 2: The run time of a typical query with Crypto-PBWT on M=2,184 aligned haploid genomes on a
laptop with 4 cores and a compute node with up to 32 cores (both with hyper-threading) and a query length
of 25 SNP positions. Wall time includes server (89%) and user time (11%). D is the number of positions
queried simultaneously to conceal the query position (if required). The current prototype implementation
supports only a limited degree of parallelization and we observe a close to linear speedup only for large D
and a relatively small number of cores.

Compute System Laptop Compute node

Parallel Compute Cores 4 4 8 16 32

Run time (sec) with D = 1 22 27 20 17 16
Run time (sec) with D = 5 78 88 57 47 36
Run time (sec) with D = 10 144 161 98 69 54
Run time (sec) with D = 20 283 306 180 118 89
Run time (sec) with D = 50 698 757 425 277 190

5 Conclusion

In this paper, we have proposed a novel approach for searching genomic sequences in a privacy-
preserving manner. Our approach combines an efficient data structure that can be used for recursive

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

search and a novel approach for recursive oblivious transfer. It achieves high utility and has strong
security features and requires acceptable compute and communication resources.

The developed novel algorithm can find the longest match between a query and a large set of
aligned genomic sequences indexed by PBWT. We implemented our algorithm and tested on the
dataset created from the 1,000 Genomes Project data [27]. Compared to an exhaustive baseline
approach, our algorithm, named Crypto-PBWT, was orders of magnitude more efficient both in
run time and data transfer overhead for practical query sizes. When the prototype program was
run on a laptop machine, the combined user’s and server’s run time was 22 sec for searching on
2,184 genomes without concealing the query position. Searches with with concealed query position
using a compute node took between 36 and 190 seconds depending on the level of privacy.

As the original data structure supports many useful search options such as wild card search and
set maximal search, Crypto-PBWT could also support those options by using the same techniques
used in the original structures in combination with cryptographic techniques, including OT. More-
over, the approach could be easily applied for BWT and has a potential to be applied for other
recursively searchable data structures.

To the best of our knowledge, the proposed algorithm is the first that is allows set-maximal
search of genomic sequences in a privacy-preserving manner for user and database. We note that
the implementation can still be improved and the overall run time can likely be reduced to not more
than a few seconds per query. This would make it practical to use our approach in a genomic Beacon
(see GA4GH’s Beacon Project) that would allow the privacy-preserving search for combinations of
variants. It also appears practical to use our approach to enable the search by a user that has access
to his/her genomic sequence and would like to query the database, for instance, for information
related to disease risk without sharing this information with anybody. Finally, the algorithm can
also be used to facilitate sharing of genetic information across institutions and countries in order
to identify large enough cohorts with a similar genetic backgrounds. This is in spirit of the mission
of the Global Alliance for Genome and Health.

Acknowledgement

We are thankful to Stephanie Hyland for proof-reading the manuscript. We would also like to ac-
knowledge an encouraging discussion by Richard Durbin. We gratefully acknowledge funding from
AIST (to K.S.), Memorial Sloan Kettering Cancer Center (to G.R.) and NIH (grant 1R01CA176785-
01A1). This study was also supported by the Japan-Finland Cooperative Scientific Research Pro-
gram of Japan Science and Technology Agency (JST; to K.S.).

A The sublinear communication size recursive oblivious transfer

In this section, we describe the detailed algorithm of the sublinear communication size recursive
oblivious transfer. In Section 3.2, we introduced the bit-rotation technique for the case of the
linear communication size oblivious transfer. As mentioned in Section 3.5, the same technique is
also applied for the O(

√
N)-communication size oblivious transfer (SC-OT).

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

A.1 The sublinear communication size oblivious transfer

Let us review the SC-OT algorithm. In the SC-OT, the one encodes the position t by in a two
dimensional representation: t0 = t /d

√
N e+ 1, t1 = (t)mod d

√
N e + 1, where d·e denotes the ceil of

the argument. The user sends Enc(t0) and ~Enc(q) to the server, where

~Enc(q) = (Enc(q1 = 0) . . . ,Enc(qt1 = 1), . . . ,Enc(qd
√
N e = 0)).

The server obtains random values rk for k = 1, . . . , d
√
N e, and computes

ck =

d
√
N e⊕
i=1

(
v[(k − 1)× d

√
N e+ i]⊗ Enc(qi)

)
⊕
(
rk ⊗ Enc(t0 − k)

)
,

and sends c = (c1, . . . , cd
√
N e) to the user. The user knows the result by the decryption: Dec(ct0).

Note that Enc(t0 − k) = Enc(0) iff. t0 = k, therefore the decryption of ci becomes a random value
when i 6= t0. See the function SCOT in Algorithm 3 for detailed description.

A.2 Bit-rotation technique for the sublinear communication size oblivious trans-
fer

In order to apply bit-rotation technique naturally to SC-OT, the server needs to return v[t] in the
same two dimensional representation. The key idea here is that the server creates v0 and v1 where
v0[i] = v[i]/d

√
N e + 1 and v1[i] = (v[i])mod d

√
N e + 1, i = 1, . . . , N , and searches on both v0 and

v1. We designed the server’s function SCROT which adds the removable random factors to the
server’s returns based on the approach similar to the function ROT for the linear communication
size algorithm. SCROT which is described in Algorithm 3 takes nine arguments: user’s query
Enc(t̂0), ~Enc(q̂) = (q̂1 = 0, . . . , q̂(t̂1)mod L1

= 1, . . . , q̂N = 0), a target vector vx (x ∈ {0, 1}), a random

value r for randomizing the result, random values r′0 and r′1 which were used for randomizing ’true’
values t0 and t1 (i.e., t̂0 = t0 + r′0 and t̂1 = (t1 + r′1)mod L1) and row length L0 and column length
L1 of the two dimensional representation (i.e., L0 = L1 = d

√
N e for this case). Figure 5 illustrates

the server process for removing random factors previously added to the server’s return. Since
Enc(t̂0 − r′0) causes the position shift from t̂0 to (t̂0 − r′0)mod L0 in server’s return c, the server also
needs another permutation Perm(c, −r′0) before returning the result. See Algorithm 3 for detailed
description. By this function SCROT, the server can add removable random factor to the result,
and therefore it enables user to search v recursively.

A.3 Solving the problem caused by the ambiguity of the server’s results

In the function SCROT, the server generates random value r and conducts randomization by:

(v[i] + r)mod d
√
N e,

and returns Enc((v[i] + r)mod d
√
N e) to the user.

Since the modulo operation yields different results for the same r according to the two conditions:

v[i] + r ≤ d
√
N e

and
v[i] + r > d

√
N e ,

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

and neither the user nor the server knows which condition is applied (note that the user’s choice
v[i] and server’s random value are their private information), the server needs to return two results
assuming both conditions in the next round. For the case of computing Enc(t0), the sever needs to
compute both

c0 ← SCROT(Enc(t0), ~Enc(q),v0, r0, d
√
N e, r′0, r′1, d

√
N e, d

√
N e)

and
c′0 ← SCROT(Enc(t0), ~Enc(q),v0, r0, d

√
N e, (r′0 − d

√
N e), r′1, d

√
N e, d

√
N e) .

Since only one of c0,t0 and c′0,t0 becomes an encryption of a correct result and the other becomes
an encryption of a random value, user is able to obtain the next t0 by checking if 1 ≤ Dec(c0,t0) ≤
d
√
N e or 1 ≤ Dec(c′0,t0) ≤ d

√
N e (see the function: ChooseDec in Algorithm 3). In similar way,

the user also obtains t1. Algorithm 4 shows the full description of sublinear communication size
recursive oblivious transfer algorithm taking into account of the above problem.

B The sublinear communication algorithm for Crypto− PBWT

In Section 3.3, the linear size communication algorithm for Crypto− PBWT is introduced. Here
we introduce the sublinear communication size algorithm by adapting SC −ROT to the search by
PBWT . The goal is to find a set-longest match at a given position t between a query S and a set
of genotype sequences X in a privacy-preserving manner. in this section, we consider that both t
and S are private information and use the following model which is the same model as Model 3 in
Section 3.4.

Model 4 The user is a private haplotype sequence holder, and the server is a holder of a set of
private haplotype sequences. The user has a vector of D positions T = (t1, . . . , tD). The user
learns nothing but a set-longest match at a given position t ∈ {t1, . . . , tD} between the query and
the database while the server learns nothing about the user’s query string. The server knows T but
cannot identify which element the user queries.

Similar to the linear size communication algorithm for Crypto− PBWT , the server creates vc
which is a look-up vector for a letter c as follows:

vc[oj + i] =

{
CFc(P·,(tj+k)) + oj (i = 0)

CFc(P·,(tj+k)) + Rankc(P·,(tj+k), i) + oj (i 6= 0)

(1 ≤ j ≤ D, 0 ≤ i ≤M)

where oj = (j−1)(M+1) is an offset and k is an index which is initialized by −1 and incremented by
1 in each iteration of recursive search. In order to search v(c) by SC-ROT, the server converts each

element in v(c) into the two dimensional representation and stores them in v
(c)
0 and v

(c)
1 . In addition,

we designed an algorithm such that a single SC-ROT is conducted for the search of all letter tables
in stead of conducting SC-ROT for each letter table in order to minimize communication size.
To this end, all the letter tables vc for c ∈ Σ are concatenated into one single vector. When
updating the interval to extend matches by a letter S[i], the user needs to specify the region of
the single vector, which corresponds to a letter table v(S[i]). In our algorithm, we designed row
length L0 and column length L1 for the two dimensional representation (L0 and L1 are not the

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

matrix size of PBWT) such that elements of the same position in the different letter tables should

be placed in the same column after concatenating all the tables (i.e., (i)mod L1 = (i+ |v(1)
0 |)mod L1 =

(i+ |v(1)
0 |+ |v

(2)
0 |)mod L1 , . . .,= (i+

∑
c∈{1,...,|Σ|−1} |v

(c)
0 |)mod L1) in order that the user can specify

the letter table by controlling an offset of row value of the query. For this purpose, the server
configures L1 =

√
D(M + 1)|Σ|, an offset unit size L′0 = D(M + 1)/L1 + 1, L0 = L′0 × |Σ|, and

|v(1)
0 | =, . . . ,= |v(|Σ|)

0 | = |v(1)
1 | =, . . . ,= |v(|Σ|)

1 | = L′0L1. The server creates vectors v0 and v1 by

the concatenations v0 = v
(1)
0 , . . . ,v

(|Σ|)
0 and v1 = v

(1)
1 , . . . ,v

(|Σ|)
1 . Figure 6 is a graphical view of

the rearrangement of v0 and v1.

Now the user is able to search v(c) recursively in an oblivious manner by using SC-ROT. In
PBWT, the match is reported as an interval [f, g] and the number of matches is equivalent to g−f .
Since the user wants to start the search from tx-th column on PBWT, user initialized f and g by
f = ox, g = ox + M where oj = (j − 1)(M + 1) and computes two dimensional representation of
them: f0 = f/L1 + 1, f1 = (f)mod L1 + 1, g0 = g/L1 + 1, g1 = (g)mod L1 + 1. Then the user
recursively searches v(c) for updating f and g until he/she finds the match. For the i-th round
of the recursive search, meaning that the user updates the interval for finding matches ending
with S[i], he/she adds an offset to f0 and g0 in order to specify S[i] by: f0 ← f0 + (S[i] − 1)L′0,
g0 ← g0 +(S[i]−1)L′0. For each round, the server also computes an encrypted flag whose plain text
is equal to 0 iff. f = g. The detailed description of this part is described in the function isSCLongest
in Algorithm 5. Finally, the user learns the set-longest match at t by Dec(d). In order to hide the
length of the set-longest match to the server, the user keep sending decoy queries until it reaches
to `-th round. Algorithm 6 and Algorithm 5 show a detailed algorithm of Crypto-PBWT.

B.1 Modification of SCOT and SCROT

Due to the randomization method described in Section A, the server computes SC-ROT with two
configurations for each update of f0, f1, g0 and g1. For the case of updating f0, the sever needs to
computes both:

SCROT(Enc(f0), ~Enc(qf),v0, r
(f)
0 , L′0, r

′(f)
0 , r

′(f)
1 , L0, L1),

and
SCROT(Enc(f0), ~Enc(qf),v0, r

(f)
0 , L′0, (r

′(f)
0 − L′0), r

′(f)
1 , L0, L1) .

Since the look-up table v0 is a concatenation of all the letter tables v
(c)
0 for c = {1, . . . , |Σ|}, the

configuration which does not match the user’s true query leaks an unnecessary element of v0. If
the user’s true request is t, the server leaks either v0[t+ L′0L1] or v0[t− L′0L1].

To avoid leaking extra information, we slightly generalize the SCOT algorithm to support ad-
ditional filtering of the result, taking a hash function H and a hash value for auxiliary filtering γ
(see the function SCOT† in Algorithm 5 for details). According to the modification of the func-
tion SCOT, the function SCROT also takes H and γ as arguments (see the function SCROT† in
Algorithm 5 for details). Algorithm 6 shows full description of Crypto− PBWT with auxiliary
filtering.

References

[1] C++ library implementing elliptic curve elgamal crypto system [8]. https://github.com/

aistcrypt/Lifted-ElGamal, 2015. URL accessed April 13, 2015.

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://github.com/aistcrypt/Lifted-ElGamal
https://github.com/aistcrypt/Lifted-ElGamal
https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

[2] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myer, and David J. Lipman. Basic
local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[3] Erman Ayday, Jean Louis Raisaro, Urs Hengartner, Adam Molyneaux, and Jean-Pierre
Hubaux. Privacy-preserving processing of raw genomic data. In Data Privacy Management
and Autonomous Spontaneous Security - 8th International Workshop, DPM 2013, and 6th
International Workshop, SETOP 2013, Egham, UK, September 12-13, 2013, Revised Selected
Papers, pp. 133–147, 2013.

[4] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Coun-
tering GATTACA: efficient and secure testing of fully-sequenced human genomes. In Proceed-
ings of the 18th ACM Conference on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011, pp. 691–702, 2011.

[5] Marina Blanton and Mehrdad Aliasgari. Secure outsourcing of DNA searching via finite au-
tomata. In Data and Applications Security and Privacy XXIV, 24th Annual IFIP WG 11.3
Working Conference, Rome, Italy, June 21-23, 2010. Proceedings, pp. 49–64, 2010.

[6] Fons Bruekers, Stefan Katzenbeisser, Klaus Kursawe, and Pim Tuyls. Privacy-preserving
matching of dna profiles. IACR Cryptology ePrint Archive, 2008:203, 2008.

[7] Richard Durbin. Efficient haplotype matching and storage using the positional burrows-wheeler
transform (PBWT). Bioinformatics, 30(9):1266–1272, 2014.

[8] T ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Loga-
rithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[9] Yaniv Erlich and Arvind Narayanan. Routes for breaching and protecting genetic privacy.
Nature Reviews Genetics, 15:409–421, 2014.

[10] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM
(JACM), 52(4):553, 2005.

[11] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and
oblivious pseudorandom functions. In Theory of Cryptography, Second Theory of Cryptography
Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings, pp. 303–
324, 2005.

[12] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–
299, 1984.

[13] G. J. Jacobson. Succinct static data structures. PhD thesis, Carnegie Mellon University
Pittsburgh, PA, USA, 1988. ACM Order number AAI8918056.

[14] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. Towards practical privacy for genomic
computation. In IEEE Symposium on Security and Privacy, pp. 216–230, 2008.

[15] W. James Kent. BLAT - the BLAST-Like Alignment Tool. Genome Research, 12(4):656–664,
2002.

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

[16] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient align-
ment of short dna sequences to the human genome. Genome Biol, 10(3):R25, 2009.

[17] H. Li and R. Durbin. Fast and accurate short read alignment with burrows-wheeler transform.
Bioinformatics, 25(14):1754–60, 2009.

[18] Heng Li and Nils Homer. A survey of sequence alignment algorithms for next-generation
sequencing. Briefings in Bioinformatics, 11(5):473–483, 2010.

[19] R. Li, C. Yu, Y. Li, T. W. Lam, S. M. Yiu, K. Kristiansen, and J. Wang. Soap2: an improved
ultrafast tool for short read alignment. Bioinformatics, 25(15):1966–7, 2009.

[20] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In Infor-
mation Security, 8th International Conference, ISC 2005, Singapore, September 20-23, 2005,
Proceedings, pp. 314–328, 2005.

[21] Helger Lipmaa. New communication-efficient oblivious transfer protocols based on pairings.
In Information Security, 11th International Conference, ISC 2008, Taipei, Taiwan, September
15-18, 2008. Proceedings, pp. 441–454, 2008.

[22] Ken Naganuma, Yoshino Masayuki, and Hisayoshi Sato. Private string search using the block-
sorting algorithm. In The proceedings of SCIS 2012 (In Japanese), 2012.

[23] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Proceedings of the 17th international conference on Theory and application of cryptographic
techniques, EUROCRYPT’99, pp. 223–238, Prague, Czech Republic, 1999.

[24] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report 81,
Harvard University, 1981.

[25] Patricia A. Roche and George J. Annas. Protecting genetic privacy. Nature Reviews Genetics,
2:392–396, 2001.

[26] Yusuke Sakai, Keita Emura, Goichiro Hanaoka, Yutaka Kawai, and Kazumasa Omote. Methods
for restricting message space in public-key encryption. IEICE Transactions, 96-A(6):1156–
1168, 2013.

[27] The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092
human genomes. Nature, 491:56–65, November 2012.

[28] Xun Yi, Russell Paulet, and Elisa Bertino. Homomorphic Encryption and Applications.
Springer Briefs in Computer Science. Springer, 2014.

[29] Bingsheng Zhang, Helger Lipmaa, Cong Wang, and Kui Ren. Practical fully simulatable
oblivious transfer with sublinear communication. In Financial Cryptography and Data Security
- 17th International Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected
Papers, pp. 78–95, 2013.

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

Algorithm 1 Recursive oblivious transfer

1: function PrepQuery(t, N)
2: q = (q1 = 0, . . . , qt = 1, . . . , qN = 0)
3: ~Enc(q) = (Enc(q1), . . . ,Enc(qN))
4: return ~Enc(q)
5: end function
6:

7: function ROT(~Enc(q̂), v, r, r′, N)
8: ~Enc(q′) = Perm(~Enc(q̂), r′)
9: ĉ =

⊕N
i=1

(
((v[i] + r)mod N ⊗ Enc(q′i)

)
10: return ĉ
11: end function
12:

13: v is a server’s private vector of length N .
14: x1 is a user’s private value.
15: x` is the value of user’s interest.
16: ` is known to both user and server.
17: User’s initialization: t← x1

18: Server’s initialization: r′ ← 0
19: Common initialization: i← 1
20: while i < ` do
21: The user computes: ~Enc(q)← PrepQuery(t,N)
22: if i == (`− 1) then
23: Server sets: r = 0
24: else
25: Server generates random value r
26: end if
27: Server computes: ĉ← ROT(~Enc(q), v, r, r′, N)
28: Server sets: r′ ← r
29: Server sends ĉ to user
30: User computes: t← Dec(ĉ)
31: end while
32: User obtains x` = t.

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

Algorithm 2 The detailed description of Crypto-PBWT finding a set-longest match at position t.

• Public input: The length of column M , the length of row N and a set of alphabet letters Σ =
{1, 2, .., |Σ|}, the position t ∈ {1, . . . , N} at which the search starts

• Private input of user: A query sequence S of length `

• Private input of server: PBWT matrix P ∈ NM×N

0. (Key setup of cryptosystem) User generates key pair (pk, sk) by key generation algorithm KeyGen for
additive-homomorphic cryptosystem and sends public key pk to server (only user knows secret key sk).

1. (User initialization) Set initial interval [f, g] by f = 0, g = M .

2. (Recursive search)
Initializes query and position index: i← 1; k ← t− 1

while (i ≤ `) do

(a) (Query entry) The user performs the following steps:

• Prepares next query:
~Enc(qf)← PrepQuery(f,M)

~Enc(qg)← PrepQuery(g,M)

• Sends Enc(S[i]), ~Enc(qf), ~Enc(qg) to the server.

(b) (Search) The server performs the following steps:

• Compute look-up tables for all c ∈ Σ :

vc[j] =

{
CFc(P·,k) (j = 0)
CFc(P·,k) + Rankc(P·,k, j) (1 ≤ j ≤M)

• Obtain random values r(f), r(g)

• Set r′(f) = r′(g) = 0 iff. i == 0

• Compute next possible intervals for all c ∈ Σ :

e
(f)
c ← ROT

(
~Enc(qf),vc, r

(f), r′(f),M
)

e
(g)
c ← ROT

(
~Enc(qg),vc, r

(g), r′(g),M
)

• Randomize return values except for user’s target interval by computing followings for all
c ∈ Σ
Generate temporary random values r0, r1

e
(f)
c ← e

(f)
c ⊕ Enc

(
r0 × (S[i]− c)

)
e
(g)
c ← e

(g)
c ⊕ Enc

(
r1 × (S[i]− c)

)
• Compute an encrypted flag showing if match is longest
d← isLongest

(
~Enc(qf), ~Enc(qg), r′(f), r′(g)

)
• Store random values r′(f) ← r(f), r′(g) ← r(g)

• Send d, e(f), e(g) to the user

(c) (Decryption of encrypted flag and randomized interval) The user performs the following steps:

if (Dec(d) == 0)

Sends decoy queries to server until i == `

Reports result S[1, . . . , i− 2]

else

Computes f ← Dec(e
(f)
S[i]), g ← Dec(e

(g)
S[i]),

end if

i← i+ 1, k ← k + 1

end while
19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 5 10 15 20 25 30 35 40 45 50

R
un

 ti
m

e
(s

ec
)

Query length (bit)

Crypto PBWT (user)
Crypto PBWT (server)

Exaustive (user)
Exaustive (server)

Figure 3: Run time of Crypto-PBWT and the exhaustive method on 2,184 aligned haploid genomes on a
laptop with 4 cores. The user selected 49 decoy positions for concealing the true query position. The server
used 8 threads while the user used a single thread.

 1

 10

 100

 1000

 10000

 100000

1 5 10 15 20 25 30 35 40 45 50

D
at

a
tra

ns
fe

r o
ve

rh
ea

d
(K

 b
yt

e)

Query length (bit)

Crypto PBWT (user to server)
Crypto PBWT (server to user)

Exaustive (user to server)
Exaustive (server to user)

Figure 4: Data transfer overhead of Crypto-PBWT and the exhaustive method on 2,184 aligned haploid
genomes on a laptop with 4 cores. The user selected 49 decoy positions for concealing the true query
position.

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

Figure 5: The illustration of the remove of random factors in the server side. q and t0 show the plain text of
the user’s ’true’ query while q̂ and t̂0 show the plain text of the user’s query. The server recovers correct t1
by computing -r′1 rotated permutation of the server’s query q̂. It also recovers correct t0 by the homomorphic
encryption: Enc(t̂0 − r′0).

Figure 6: The arrangement of elements of v0 when Σ = {1, 2, 3}. The length of v
(c)
0 for c ∈ Σ is designed

such that v
(1)
0 [i], v

(2)
0 [i] and v

(3)
0 [i] are aligned in the same column after the concatenation. The elements of

v1 is also arranged in the same manner.

21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

Algorithm 3 Building blocks for sublinear communication size recursive oblivious transfer and
Crypto− PBWT

1: function SCPrepQuery(t0, t1, L1)
2: q = (q1 = 0, . . . , qt1 = 1, . . . , qL1 = 0)
3: ~Enc(q) = (Enc(q1) . . . ,Enc(qL1))
4: return Enc(t0), ~Enc(q)
5: end function
6:

7: function SCOT(Enc(t0), ~Enc(q), v, L0, L1)
8: for k = 1 to L0 do
9: Generate random value rk

10: x = (k − 1)× L1

11: ck =
⊕L1

i=1

(
v[x+ i]⊗ Enc(qi)

)
⊕ rk ⊗ Enc(t0 − k)

12: end for
13: return c = (c1, . . . , cL0)
14: end function
15:

16: function SCROT(Enc(t̂0), ~Enc(q̂), v, r, r′0, r′1, L, L0, L1)
17: v̂ ← v + (r)mod L

18: c← SCOT(Enc(t̂0 − r′0), Perm(~Enc(q̂), r′1), v̂, L0, L1)
19: c← Perm(c,−r′0) B recovering the original position
20: return c = (c1, . . . , cL0)
21: end function
22:

23: function ChooseDec(c0, c1, L)
24: for x = 0 to 1 do
25: m← Dec(cx)
26: if (1 ≤ m ≤ L)
27: return m
28: end if
29: end for
30: end function

22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

Algorithm 4 The detailed protocol of the sublinear communication size recursive oblivious transfer.

• Public input: the database size N , query length `

• Private input of a user: a start position t

• Private input of a server: a vector v of length N

0. (Key setup of cryptosystem) The user generates a key pair (pk, sk) by the key generation algorithm
KeyGen for the additive-homomorphic cryptosystem and sends public key pk to the server (the user
and the server share public key pk and only the user knows secret key sk).

1. (Server initialization) The server computes v0[i] = v[i]/d
√
N e + 1, v1[i] = (v[i])mod d

√
N e + 1 for

i = 1, . . . , N .

2. (User initialization) The user computes t0 = t/d
√
N e+ 1, t1 = (t)mod d

√
N e + 1.

3. (Recursive search)

Initializes the index by i← 1

while (i ≤ `) do
(a) (Query entry) The user performs the following steps:

• Prepare query

if (i 6= 1)
t0 ← Dec(c0,t0), t1 ← Dec(c1,t0)

end if

Enc(t0), ~Enc(q)← SCPrepQuery(t0, t1, d
√
N e)

• Sending Enc(t0), ~Enc(q) to the server.

(b) (Searching) The server performs the following steps:

if (i 6= `)

Generating random values r0, r1

else

r0 = 0, r1 = 0

end if
B ROT removes r′0, r′1 from a query and add r0 or r1 to each result.

c0 ← SCROT(Enc(t0), ~Enc(q), v0, r0, d
√
N e, r′0, r′1,d

√
N e, d

√
N e)

c′0 ← SCROT(Enc(t0), ~Enc(q), v0, r0, d
√
N e, (r′0 − d

√
N e), r′1,d

√
N e, d

√
N e)

c1 ← SCROT(Enc(t0), ~Enc(q), v1, r1, d
√
N e, r′0, r′1,d

√
N e, d

√
N e)

c′1 ← SCROT(Enc(t0), ~Enc(q), v1, r1, d
√
N e, (r′0 − d

√
N e), r′1,d

√
N e, d

√
N e)

r′0 ← r0, r′1 ← r1
• Sending c0, c

′
0, c1, c

′
1 to the user.

i← i+ 1

end while

4. (Decryption of the result) The user performs the following steps to obtain result x.

t0 ← ChooseDec(c0,t0 , c
′
0,t0 , d

√
N e), t1 ← ChooseDec(c1,t0 , c

′
1,t0 , d

√
N e)

x = t0 × (d
√
N e − 1) + t1

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

Algorithm 5 Building blocks for sublinear communication size Crypto− PBWT

1: function isSCLongest(~Enc(qf), ~Enc(qg), r′(f), r′(g))

2: ~Enc(q′f) = Perm(~Enc(qf), r′(f))

3: ~Enc(q′g) = Perm(~Enc(qg), r
′(g))

4: for i = 1 to M do
5: Generating random value r
6: d = d⊕ Enc

(
r × (q′f [i]− q′g[i])

)
7: end for
8: return d
9: end function

10:

11: function isSCLongestGTε(~Enc(qf), ~Enc(qg), r′(f), r′(g), ε)
12: for k = 1 to ε do
13: ~Enc(q′f) = Perm(~Enc(qf), r′(f))

14: ~Enc(q′g) = Perm(~Enc(qg), r
′(g))

15: ~Enc(q′g) = Perm(~Enc(qg), k) . q′f = Perm(q′g, k) iff. (g − f) = k
16: for i = 1 to M do
17: Generating random value r
18: d = d⊕ Enc

(
r × (q′f [i]− q′g[i])

)
19: end for
20: dk = d
21: end for
22: d = (d1, . . . , dε)
23: Shuffling order of elements in d
24: return d
25: end function
26:

27: function SCOT†(Enc(t0), ~Enc(q), v, L0, L1, H, Enc(γ))
28: B H is a hash function, γ is a hash value for auxiliary filtering
29: B (it becomes ordinary OT when H ≡ γ (or H is ignored))
30: for k = 1 to L0 do
31: Generate random values rk, r

′
k

32: x = (k − 1)× L1

33: ck =
⊕L1

i=1

(
v[x+ i]⊗ Enc(qi)

)
⊕ rk ⊗ Enc(t0 − k)

34: ck ← ck ⊕ r′k ⊗ Enc(γ −H(k)) B auxiliary filtering
35: end for
36: return c = (c1, . . . , cL0)
37: end function
38:

39: function SCROT†(Enc(t̂0), ~Enc(q̂), v, r, L, r′0, r′1, L0, L1, H, Enc(γ))

40: c← SCOT†(Enc(t̂0 − r′0), Perm(~Enc(q̂), r′1), (v + r)mod L, L0, L1, H, Enc(γ))
41: c← Perm(c,−r′0) B recovering the original position
42: return c = (c1, . . . , cL0)
43: end function

24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

Algorithm 6 The detailed description of sublinear communication size Crypto− PBWT for finding a set-longest
match at position t.

• Public input: The length of column M , a set of alphabet letters Σ = {1, 2, .., |Σ|} and a set of (D−1) decoy positions
and true position T = (t1, . . . , tD).

• Private input of a user: A starting column tx ∈ T , a query sequence S of length `

• Private input of a server: PBWT matrix P ∈ NM×N

0. (Key setup of cryptosystem) The user generates a key pair (pk, sk) by the key generation algorithm KeyGen for the
additive-homomorphic cryptosystem and sends public key pk to the server (while only the user knows secret key sk).

1. (Server initialization)

• The server computes L1 =
√
D(M + 1)|Σ|, L′0 = D(M + 1)/L1 + 1, L0 = L′0 × |Σ| and announces L0, L1 and

L′0 to the user.

• The server defines a hash function H by H((γ − 1)L′0 + a) = γ for any γ ∈ Σ and 1 ≤ a ≤ L′0.

2. (User initialization)

• The user set initial interval [f, g] by f = ox, g = ox +M where oj = (j − 1)(M + 1).

• The user computes two dimensional representation of [f, g] by f0 ← f/L1 + 1, f1 ← (f)mod L1 + 1, g0 ←
g/L1 + 1, g1 ← (g)mod L1 + 1

3. (Recursive search) Initializes the indices by i← 1 k ← −1

while (i ≤ `) do

(a) (Query entry) The user performs the following steps:

• Prepare next query:
f0 ← f0 + (S[i]− 1)L′0, g0 ← g0 + (S[i]− 1)L′0 B Setting offset to search matches ending with S[i](
Enc(f0), ~Enc(qf)

)
← SCPrepQuery(f0, f1, L1),

(
Enc(g0), ~Enc(qg)

)
← SCPrepQuery(g0, g1, L1)

• Sending Enc(f0), ~Enc(qf), Enc(g0), ~Enc(qg), Enc(S[i]) to the server.

(b) (Searching) The server performs the following steps:

• Computes vectors v(c) of length D × (M + 1) for all c ∈ Σ :

vc[oj + u] =

{
CFc(P·,(tj+k)) + oj (u = 0)

CFc(P·,(tj+k)) + Rankc(P·,(tj+k), u) + oj (1 ≤ u ≤M)

where oj = (j − 1)(M + 1) for j = 1, . . . , D.

• Creates vectors v
(c)
0 ,v

(c)
1 of length L′0 × L1 for c = 1, . . . , |Σ|.

• Computes v
(c)
0 [i] = v(c)[i]/L1 + 1, v

(c)
1 [i] = (v(c)[i])mod L1 + 1 for i = 1, . . . , D(M + 1) and c = 1, . . . , |Σ|.

• Creates vectors v0 and v1 by concatenating v0 = v
(1)
0 , . . . ,v

(|Σ|)
0 and v1 = v

(1)
1 , . . . ,v

(|Σ|)
1 .

• Generates random values r
(f)
0 , r

(f)
1 , r

(g)
0 , r

(g)
1

• Computes next intervals and an encrypted flag showing if the match is the longest
c

(f)
0 ← SCROT†(Enc(f0), ~Enc(qf), v0, r

(f)
0 , L′0, r

′(f)
0 , r

′(f)
1 , L0, L1, H, Enc(S[i])),

c′
(f)
0 ← SCROT†(Enc(f0), ~Enc(qf), v0, r

(f)
0 , L′0, (r

′(f)
0 − L′0), r

′(f)
1 , L0, L1, H, Enc(S[i]))

c
(f)
1 ← SCROT†(Enc(f0), ~Enc(qf), v1, r

(f)
1 , L1, r

′(f)
0 , r

′(f)
1 , L0, L1, H, Enc(S[i])),

c′
(f)
1 ← SCROT†(Enc(f0), ~Enc(qf), v1, r

(f)
1 , L1, (r

′(f)
0 − L′0), r

′(f)
1 , L0, L1, H, Enc(S[i]))

c
(g)
0 ← SCROT†(Enc(g0), ~Enc(qg), v0, r

(g)
0 , L′0, r

′(g)
0 , r

′(g)
1 , L0, L1, H, Enc(S[i])),

c′
(g)
0 ← SCROT†(Enc(g0), ~Enc(qg), v0, r

(g)
0 , L′0, (r

′(g)
0 − L′0), r

′(g)
1 , L0, L1, H, Enc(S[i]))

c
(g)
1 ← SCROT†(Enc(g0), ~Enc(qg), v1, r

(g)
1 , L1, r

′(g)
0 , r

′(g)
1 , L0, L1, H, Enc(S[i])),

c′
(g)
1 ← SCROT†(Enc(g0), ~Enc(qg), v1, r

(g)
1 , L1, (r

′(g)
0 − L′0), r

′(g)
1 , L0, L1, H, Enc(S[i]))

d← isSCLongest(Enc(f0 − r′(f)
0), Enc(g0 − r′(g)

0), Perm(~Enc(qf),−r′(f)
1), Perm(~Enc(qg),−r′(g)

1))

• Storing random values r
′(f)
0 ← r

(f)
0 , r

′(f)
1 ← r

(f)
1 , r

′(g)
0 ← r

(g)
0 , r

′(g)
1 ← r

(g)
1

• Sending c
(f)
0 , c′

(f)
0 , c

(f)
1 , c′

(f)
1 , c

(g)
0 , c′

(g)
0 , c

(g)
1 , c′

(g)
1 , d to the user

(c) (Decryption of the encrypted flag and the randomized interval) The user performs the following steps:

if (Dec(d) == 0)

Reports the result S[1, . . . , i− 2] and sending the server decoy queries until i == `

else

Computes f0 ← ChooseDec(c
(f)
0,f0

, c′
(f)
0,f0

, L′0), g0 ← ChooseDec(c
(g)
0,g0

, c′
(g)
0,g0

, L′0),

f1 ← ChooseDec(c
(f)
1,f0

, c′
(f)
1,f0

, L1), g1 ← ChooseDec(c
(g)
1,g0

, c′
(g)
1,g0

, L1) B for choosing correct results

end if

i← i+ 1 k ← k + 1

end while

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

Algorithm 7 Building blocks for linear communication size Crypto− PBWT

1: function isLongest(~Enc(qf), ~Enc(qg), r′(f), r′(g))

2: ~Enc(q′f) = Perm(~Enc(qf), r′(f))

3: ~Enc(q′g) = Perm(~Enc(qg), r
′(g))

4: for i = 1 to M do
5: Generating random value r
6: d = d⊕ Enc

(
r × (q′f [i]− q′g[i])

)
7: end for
8: return d
9: end function

10:

11: function isLongestGTε(~Enc(qf), ~Enc(qg), r′(f), r′(g), ε)
12: for k = 1 to ε do
13: ~Enc(q′f) = Perm(~Enc(qf), r′(f))

14: ~Enc(q′g) = Perm(~Enc(qg), r
′(g))

15: ~Enc(q′g) = Perm(~Enc(qg), k) . q′f = Perm(q′g, k) iff. (g − f) = k
16: for i = 1 to M do
17: Generating random value r
18: d = d⊕ Enc

(
r × (q′f [i]− q′g[i])

)
19: end for
20: dk = d
21: end for
22: d = (d1, . . . , dε)
23: Shuffling order of elements in d
24: return d
25: end function

26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 21, 2015. ; https://doi.org/10.1101/018267doi: bioRxiv preprint

https://doi.org/10.1101/018267
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Approach
	Problem Setup
	Recursive Search Data Structures
	Oblivious Transfer for Privacy-Preserving Search

	Methods
	Additively homomorphic encryption
	Recursive Oblivious Transfer by Random Rotations
	Crypto-PBWT: Privacy-preserving search on genotype databases
	Concealing the Search Position
	Reducing Communication Size
	An Exhaustive Baseline Algorithm
	Complexity
	Security Notion

	Experiments
	Conclusion
	The sublinear communication size recursive oblivious transfer
	The sublinear communication size oblivious transfer
	Bit-rotation technique for the sublinear communication size oblivious transfer
	Solving the problem caused by the ambiguity of the server's results

	The sublinear communication algorithm for Crypto-PBWT
	Modification of SCOT and SCROT

