
Efficient compression and analysis of large genetic variation datasets 
 

Ryan M. Layer
1*

, Neil Kindlon
2
, Konrad J. Karczewski

3
, Exome Aggregation Consortium, and Aaron R. Quinlan

1*
 

 

1
Departments of Human Genetics and Biomedical Informatics, University of Utah, Salt Lake City, UT 

 
2
Department of Public Health Sciences, University of Virginia, Charlottesville, VA 

3
Analytical and Translational Genetics Unit, Harvard Medical School, Boston, MA 

 
* to whom correspondence should be addressed. 

 
 
 
ABSTRACT  
The economy of human genome sequencing has catalyzed ambitious efforts to interrogate the genomes 
of large cohorts in search of deeper insight into the genetic basis of disease. This manuscript introduces 
Genotype Query Tools (GQT) as a new indexing strategy and powerful toolset that enables interactive 
analyses based on genotypes, phenotypes and sample relationships. Speed improvements are achieved 
by operating directly on a compressed index without decompression. GQT’s data compression ratios 
increase favorably with cohort size and therefore, by avoiding data inflation, relative analysis 
performance improves in kind. We demonstrate substantial query performance improvements over state-
of-the-art tools using datasets from the 1000 Genomes Project (46 fold), the Exome Aggregation 
Consortium (443 fold), and simulated datasets of up to 100,000 genomes (218 fold). Moreover, our 
genotype indexing strategy complements existing formats and toolsets to provide a powerful framework 
for current and future analyses of massive genome datasets. 
 
 
URLS 
All source code for the GQT toolkit is available at https://github.com/ryanlayer/gqt. Furthermore, all 
commands used for the experiments conducted in this study are available at 
https://github.com/ryanlayer/gqt_paper.  
 
 
INTRODUCTION 
For the majority of common human diseases, only a small fraction of the heritability can be explained by 
the genetic variation we know of thus far1,2. One hypothesis posits that the elusive heritability is explained 
in part by rare, and thus largely unknown, genetic variation in the human population3. Multiple efforts are 
therefore underway to sequence hundreds of thousands of human genomes in order to catalog the full 
spectrum of human genetic variation from the common to the vanishingly rare. Extrapolating from current 
and forthcoming efforts, it is likely that more than 1 million human genomes will be sequenced in the very 
near term. Integrated analyses and community sharing of such population datasets will clearly be crucial 
for future discovery. However, in aggregate, the resulting datasets will include roughly 100 trillion distinct 
genotypes from the more than 100 million polymorphic loci that are likely to be discovered. Therefore, the 
development of creative data compression and exploration strategies will be crucial to enable discovery 
and to make these valuable datasets available to all researchers. 
 
The need for computationally efficient representations of genotype datasets is not new. In 2007, Purcell 
et al. introduced the binary PED (BED) format for the popular PLINK variant association testing 
software4. The BED format encodes four biallelic genotypes in each byte using two bits per individual 
genotype. Binary encoding reduces the size of the resulting data file versus a simple text representation. 
The more recent Variant Call Format (VCF)5 represents variants, sample genotypes, and flexible variant 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


annotations from DNA sequencing studies and its binary counterpart (BCF) provides a more efficient 
means of storing such datasets via compression and highly structured data. The BED and VCF/BCF 
formats, as well as their associated toolsets have become the standard for genome variation research. 
However, because these formats are intentionally structured from the perspective of individual variants, 
they are inherently ill suited to variant searches driven by specific genotype and phenotype 
combinations, inheritance patterns, or allele frequency thresholds. 
 
 
RESULTS 
Here we introduce a new, complementary strategy for indexing and mining individual genotypes and 
variants ascertained from millions of genomes. Our approach, which is made freely available in the 
Genotype Query Tools (GQT) software package, reorganizes and indexes genotype data such that it 
optimizes queries screening for variants based on the genotypes of one or more of the individuals in the 
study. GQT also utilizes an efficient data compression strategy to minimize the disk storage requirements 
of its index. Our goal is to provide a genotype compression and indexing scheme that maximizes 
analysis performance by allowing direct measurement and comparison of the compressed data without 
inflation. We demonstrate that these improvements provide extremely efficient genotype compression (as 
low as 0.38 bits per genotype) and efficient queries based on sample genotypes and phenotypes that are 
orders of magnitude faster than existing methods. 
 
Organizing genotype data to expedite individual-centric queries.  
Variant and genotype datasets in the VCF and BCF format are fundamentally structured as a matrix 
whose rows represent sites of genetic variation and columns represent the samples in the study (Figure 
1A). Each cell in this matrix therefore reflects an individual’s genotype at a single polymorphic locus. This 
“variant-centric” strategy is extremely effective for variant searches in a specific genomic region or for 
analyses that apply a test to every variant in the genome. The inherent consequence of a variant-centric 
format is that the data are poorly organized to facilitate queries in search of variants meeting specific 
genotype criteria for subsets of individuals (e.g., those affected with a given disease phenotype, sex, or 
quantitative trait), since one must iteratively extract every variant record (row) to inspect only a subset of 
individual genotypes (columns) (Figure 1B). To address queries of this type and to complement existing, 
variant-centric, indexing strategies, GQT first transposes the variant/genotype matrix such that rows 
represent individuals and columns represent variants. The resulting “individual-centric” organization 
minimizes the number of rows that must be extracted, and allows queries to quickly find and directly 
access the all of the genotypes for a given individual or set of individuals (Figure 1C).  
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


 
Figure 1. Individual-centric data organization. (A) The “variant-centric” VCF standard is essentially a genotype matrix where 
rows correspond to variants and columns to individuals. (B) The VCF standard is inefficient for queries across all genotypes and 
a subset of individuals since each variant row must be inspected to test the genotypes of specific individuals. (C) By transposing 
the matrix such that rows now represent the full set of genotypes for each individual, the data better aligns to individual-centric 
algorithms. (D) Sorting the columns of an individual-centric matrix by alternate allele count (AC) improves compressibility. 
 
 
Optimizing data compression. Given the scale of current and future genetic variation datasets, 
compression must be part of any efficient indexing strategy. Genotypes are easily compressed with the 
variant-centric strategy (Figure 1B) since most genetic variation is quite rare in the human population. 
Therefore, the observed genotypes for the vast majority of variants will be comprised of long runs of 
homozygous reference genotypes that are occasionally disrupted by heterozygous or, less frequently, 
homozygous alternate genotypes. Long runs of identical genotypes are easily compressed with 
strategies such as run-length encoding or the more optimized alternative we discuss below. 
 
We have chosen an alternative individual-centric data organization strategy that, while it facilitates 
queries based on individual genotypes, destroys the inherent compression of the genotype runs in the 
variant-centric approach. This loss of compression is the direct consequence of the fact that records in 
the individual-centric approach reflect the genotypes for a given individual at each site of variation in the 
genome. Runs of identical genotypes are far shorter, on average, than with the variant-centric approach 
and therefore, the individual-centric strategy will yield poor compression. The question then becomes 
how to leverage the query efficiency of individual-centric data organization while also retaining the 
opportunity for data compression? GQT solves this by sorting the variant columns of the transposed 
matrix in order of allele frequency (Figure 1D). This results in fewer, longer runs of identical genotypes in 
each individual’s row of genotypes (Figure 2). For example, we compared the effect of sorting variants 
on genotype runs using chromosome 20 from Phase 3 of the 1000 Genomes Project. As expected, 
sorting variants by allele frequency caused both a dramatic increase in the mean length (10.7 versus 
23.2) of identical genotype runs and a reduction in the median number of runs per individual (158,993.5 
versus 70,718.5). Fewer, longer identical genotype runs allows greater compression of the each 
individual’s (reordered) variant genotypes. 
 

#CHROM POS ID REF ALT QUAL FILTER INFO  FORMAT I1  I2  I3  I4  I5 
1      105 V1 G   A   100  PASS   AC=5  GT     0/0 0/1 0/1 0/1 0/0 
1      106 V2 C   G   100  PASS   AC=1  GT     0/1 0/0 0/0 0/0 0/0
1      133 V3 C   T   100  PASS   AC=18 GT     0/1 1/1 1/1 1/1 1/1

Variant call format (VCF) Individuals

Va
ria

nt
s

Color-coded genotypes

I10I1 I2 I3 I4 I5 I6 I7 I8 I9

V10

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10V1 V2 V3 V4 V5 V6 V7 V8 V9

I10

I1

I2
I3

I4

I5

I6

I7

I8
I9

V3V2 V4 V5 V7 V8 V6 V10 V1 V9

for each variant:
  read row
  for each (I2,I6,I8):
    test genotype

for each (I2,I6,I8):
  read row
  for each variant:
    test genotype

Variant-centric form Individual-centric formTranspose

Va
ria

nt
s

Individuals

In
di

vi
du

al
s

Variants
Sorted by Allele Count

AC=3

AC=13

No. runs 5 v. 2
Max run 5 v. 8

No. runs 6 v. 3
Max run 5 v. 7

A

B C D

0/0 homozygous reference
0/1 heterozygous
1/1 homozygous alternate

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


 
Figure 2. Sorting variants by allele frequency improves compression. (A) A graphical comparison of the genotype 
distribution of individuals (rows) and variants (columns) before and after sorting. These data represent genotypes from the 1000 
Genomes Project, phase 3, for a portion chromosome 20.  (B) The run length distribution for unsorted and sorted genotypes.  
(C) The distribution of the number of runs for sorted and unsorted data.  In both cases the second peak is composed 
predominantly of individuals from African decent (AFR); 604/661 AFR are in the second peak in the sorted case, and 640/661 
AFR in the unsorted case. 
 
 
Representing sample genotypes with bitmap indices. The fundamental advantage of individual-
centric data organization is the fact that all of an individual’s genotypes can be accessed at once. This 
enables algorithms to quickly compare all variant genotypes from multiple samples in search of variants 
that meet specific inheritance patterns, allele frequencies, or enrichment among subsets of individuals. 
Despite the improved data alignment, comparing sample genotypes can still require substantial 
computation. For VCF, which encodes diploid genotypes as “0/0” for homozygotes of the reference 
allele, “0/1” for heterozygotes, “1/1” for homozygotes of the alternate allele, and “./.” for unknown 
genotypes (Figure 3A, Figure S1), comparing the genotypes of two or more individuals requires iterative 
tests of each genotype for each individual. 
 
Recognizing this inefficiency, we encode each individual’s vector of genotypes with a bitmap index. A 
Bitmap index (“bitmap”) is an efficient strategy for indexing attributes with discrete values that uses a 
separate bit array for each possible attribute value. In this case of an individual’s genotypes, a bitmap is 
comprised of four distinct bit arrays corresponding to each of the four possible (including “unknown”) 
diploid genotypes. As illustrated in Figure 3A, the bits in each bit array are set to true (1) if the 
individual’s genotype at a given variant matches the genotype the array encodes. Otherwise, the element 
is set to false (0). In turn, bitmap encoding facilitates the rapid comparison of individuals’ genotypes with 
highly optimized bitwise logical operations. As an example, a bitmap search for variants where all 
individuals are heterozygous involves a series of pairwise AND operations on the entire heterozygote bit 
array from each individual. The intermediate result of each pairwise AND operation is subsequently 
compared with the next individual, until the final bit array reflects the variants where all individuals are 
heterozygous (Figure 3B). Such queries are expedited owing to the ability of modern CPUs to 
simultaneously test multiple bits (i.e., genotypes) with a single bitwise logical operation. 

 
 

In
di

vi
du

al
s

Variants

0/0
0/1 
1/1 

Unsorted

Sorted by Allele Count

A B C

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


 
Figure 3. Bitmaps enable rapid genotype comparisons en masse. (A) A bit array marks the existence of one genotype state 
(for example, homozygous reference; “0/0”) for all variants. Similarly, a bitmap index is composed of a distinct bit array for each 
possible genotype state.  (B) Example genotypes in VCF format are presented for three individuals (I1, I2, I3) at 10 variant sites 
(V1-V10). A bitwise AND of the bit arrays corresponding to the heterozygous genotype yields the variant that is heterozygous in 
all individuals. 
 
 
Using Word-Aligned Hybrid to directly query compressed data. Efficient methods for population-
scale cohorts must address both data analysis and data compression challenges. Combining bitmap 
indices and bitwise logical operations to represent and compare genotypes has the potential to minimize 
processing time and compression reduces the size of the resulting datasets. Unfortunately, these two 
strategies are often at odds. The tradeoff for most compression algorithms is that they require inflation of 
the compressed data prior to analysis; moreover, higher compression ratios typically come at the cost of 
longer inflation times.  
 
GQT strikes a balance between these two interests by compressing bitmap indices using Word-aligned 
Hybrid (WAH) encoding6. WAH is a succinct data structure that provides near-optimal compression while 
also enabling algorithms to directly process the compressed genotype data. Fundamentally, WAH 
encoding is similar to classical run-length encoding. However, WAH compresses bit arrays using an 
improved run encoding strategy that maintains bit alignment (see Supplementary Note for details). 
Maintaining bit alignment across words (hence the name) preserves the ability to perform logical 
operations between compressed values without full inflation. The cumulative advantage of the WAH 
compression strategy is three-fold.  First, compression results in a substantial reduction in the index size.  
Second, the runtime of these comparisons becomes a function of the compressed input size and not the 
number of variants. Lastly, logical operations on compressed bit arrays can compare hundreds of 
(compressed) genotypes with a single operation. 
 
Index compression performance. We assessed GQT’s index compression performance by comparing 
its encoding of the VCF file from phase 3 of the 1000 Genomes project (2,504 individuals and 
84,739,846 variants, 1.3 TB) to the compressed encodings produced by the BCF and PLINK BED 
formats. To understand how compression scales with the number of individuals in the dataset, we also 
considered subsamples of 1,000, 500, and 100 individuals with 58.2, 44.1, and 24.7 million variants, 
respectively.  

 

ASCII genotypes:

Bit array for 0/0:

Bitmap indices:

0/1   0/1   ./.   0/1   0/0   0/0   0/0   1/1   0/0   0/0

 0     0     0     0     1     1     1     0     1     1

 0/0:  0     0     0     0     1     1     1     0     1     1
 0/1:  1     1     0     1     0     0     0     0     0     0
 1/1:  0     0     0     0     0     0     0     1     0     0
 ./.:  0     0     1     0     0     0     0     0     0     0   

     V1    V2    V3    V4    V5    V6    V7    V8    V9    V10
I1   0/1   0/1   ./.   0/1   0/0   0/0   0/0   1/1   0/0   0/0
I2   0/1   0/0   0/0   0/0   0/0   0/0   0/0   0/0   0/0   0/0
I3   0/1   1/1   1/1   1/1   1/1   1/1   1/1   1/1   1/1   0/1

 0 0 0 0 1 1 1 0 1 1
 1 1 0 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 1 0 0
 0 0 1 0 0 0 0 0 0 0   

 0 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0   

 0 0 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0 1
 0 1 1 1 1 1 1 1 1 0
 0 0 0 0 0 0 0 0 0 0   

ASCII genotypes:

Bitmap indices:

Bitwise 
logical operation

find loci that are heterozygous 
across all individuals 1 0 0 0 0 0 0 0 0 0   

A

B

 0/0: 
 0/1: 
 1/1:
 ./.:  

I1 I3I2

ANDAND
V1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


Direct compression comparisons must account for the fact that each tool compresses different subsets of 
the variant and sample genotype sections of a VCF file (Figure 4A). By default, the BCF format encodes 
all of the data and metadata in both sections into binary values, and then compresses those values using 
blocked LZ77 encoding. Therefore, complete BCF files exhibited constant compression across 
population sizes with a 9.6X improvement (138.4 GB) for the 2,504 individuals dataset. PLINK ignores 
both variant and sample genotype metadata, does not compress the variant data, and simply encodes 
each genotype with two bits without compression. Since it ignores metadata, PLINK’s absolute 
compression was higher than BCF and its compression ratio was also constant, yielding 24.1X reduction 
(55.1 GB) for the full data set. In contrast, GQT uses a hybrid strategy for compressing VCF files. It 
retains all of the variant data and only the genotype values (no metadata) in the genotype section. The 
variant data is compressed with LZ77 encoding. In addition, the GQT index of individual genotypes is 
created with the above strategy of transposition, sorting and WAH-compression.  
 
 

 
Figure 4. GQT compression and query performance for 1000 Genomes data.  (A) VCF files are composed of a variant data 
section and a sample genotype section and each of these include both core information (e.g. variant position and alleles, and 
genotype, respectively) and extra metadata. BCF encodes both sections into a binary format, and then compresses the data 
using blocked LZ77 compression.  GQT compresses all variant data with LZ77 and genotypes (without metadata) with WAH. 
PLINK (not shown) omits all metadata, uses binary encoded for genotypes, and does not compress. (B) File size reduction for 
1000 genomes phase 3, which is comprised of 2,504 individuals and over 84 million variants. Compression ratios describe the 
fold reduction in file size relative to an uncompressed VCF file. BCF* omits sample metadata. (C) Fold speedup for computing 
the alternate allele frequency count for a targeted subset of 10% of the 2,504 individuals. The baseline for comparison was the 
BCFTOOLS “stats” command. (D) Fold speedup for finding the variants where all individuals in a target 10% are 
heterozygous.  The baseline for comparison was BCFTOOLS “view -C".  Note that PLINK v1.9 was excluded from this 
comparison because it does not directly compute this operation.  
 
 
By using the WAH encoding to compress genotypes, we are, in principle, sacrificing some amount of 
compression so comparison can be made without inflation. In practice, we saw GQT’s compression 

20  143  v1  G  A  29  PASS  NS=2;DP=14;AF=0.5   GT:GQ:DP  0/1:48:1  0/1:48:8
20  173  v2  T  A  3   q10   NS=2;DP=11;AF=0.25  GT:GQ:DP  0/1:49:3  0/0:3:5
20  181  v3  A  G  67  PAS   NS=2;DP=10;AF=1.0   GT:GQ:DP  1/1:21:6  1/1:2:0
20  223  v4  T  G  47  PASS  NS=2;DP=13;AF=0     GT:GQ:DP  0/0:54:7  0/0:48:4¬«««««««««««««­«««««««««««««® # #

Transpose, sort, bitmap index,

and WAH compress
Sort and LZ77 compress

¬ « « « « « « « « « « « « « « « « « « « « « « ­ « « « « « « « « « « « « « « « « « « « « « « ®

Binary encode and LZ77 compress

Sample dataVariant data

BCF

VCF

GQT

A

B C D

mdid gt md gt md

138GB

55GB

14GB

156.3s

58.4s

4.2s

51.5s

3.1s

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


performance steadily improving as the number of individuals and variants increased, yielding a 92.7X 
(14.3 GB) reduction for 2,504 individuals and requiring, on average, 0.54 bits per genotype. Interestingly, 
when we excluded genotype metadata (BCF* in Figure 4B), BCF and GQT compression are essentially 
identical.  This means that, for genotypes from a large-scale human cohort, WAH is compressing on par 
with the LZ77 algorithm and GQT is not sacrificing any amount of compression. 
 
Data query performance. The typical tradeoff for high data compression is the requirement that 
compressed data must be inflated prior to analysis. We chose WAH to compress genotypes precisely to 
avoid this tradeoff, as it enables algorithms to operate directly on compressed data without inflation. To 
demonstrate the analytical efficiency of WAH-encoded VCF files, we compared the query performance of 
GQT to both BCFTOOLS and a recent, vastly more efficient implementation of PLINK (version 1.9). 
When computing the alternate allele frequency among a target set of 10% of individuals from the 2504 
samples in the 1000 Genomes VCF, BCFTOOLS required 1517.5 seconds. Both PLINK and GQT were 
substantially faster, requiring 156.3 and 58.4 seconds, respectively, yielding 9.6 fold and 26.0 fold 
speedup over BCFTOOLS. GQT’s performance also improved more substantially than PLINK’s as the 
number of individuals in the dataset increased (Figure 4C). Moreover, the majority of GQT’s runtime is 
spent emitting the results of the query. Whereas GQT’s complete runtime was 58.4 seconds for the full 
2,504 individual dataset, merely 4.2 seconds were required to calculate the alternate allele frequencies 
from the WAH index (Figure 4C).  
 
The speed with which GQT can summarize genotypes across individuals is partly owing to the use of 
Advanced Vector Extensions (AVX2), which exploits the Single Instruction Multiple Data (SIMD) 
parallelism available on modern CPUs. As the name implies, SIMD instructions perform the same 
operations across many elements in an array. This allows AVX2 to operate on up to eight 32-bit integers 
at a time and provides a nearly four-fold speedup over the default sequential calculation. 
 
The GQT indexing strategy also enables queries that identify variants based on the genotypes of specific 
subsets of samples. We illustrate the performance of such queries by measuring the time required to 
identify rare (AAF<1%) variants among a randomly chosen subset of 10% of the individuals (Figure 4D). 
GQT demonstrated similar performance improvements over BCFTOOLS for such queries, yielding up to 
45.8-fold (51.5 seconds) over BCFTOOLS (2360.5 seconds). 
 
Scaling to extremely large cohorts. Based on the observation that GQT’s performance for both data 
compression and query efficiency improves as more individuals are included in the analysis, we explored 
its performance for datasets involving larger cohorts than that of the 1000 Genomes Project.  
 
We first simulated variants on a 100Mb genome for cohorts ranging from 100 (588,830 variants) to 
100,000 (2,061,889 variants) individuals (Methods). As expected, GQT’s data compression and query 
performance improved dramatically with larger cohorts, and, since the simulation did not include 
genotype metadata, compression performance remained on par with that of the BCF format (Figure 5). 
Simulating variants from one million or more individuals is computationally intractable for this study; 
however, linear regression predicted compression ratios of at least 51.1 fold and query performance that 
was at least 218.1 fold faster than BCFTOOLS. We emphasize that the MACS variant simulation tool 
assumes a constant population size that creates far smaller proportion of very rare variants than have 
been observed in recent large-scale studies of human genetic variation. As such, these simulations likely 
serve as a lower bound; we anticipate that actual compression and query performance will far exceed 
these estimates when applied to forthcoming datasets.  
 
The Exome Aggregation Consortium (ExAC)7 has recently released a catalog of 9.36 million exonic 
variants identified among an aggregation of 60,706 human exomes. Given that the ExAC dataset 
contains 568.4 billion genotypes largely comprised of extremely rare (indeed, more than half of the 
variants are heterozygous in a single individual) variants, it is an informative predictor of the scale of data 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


compression and query performance we can expect for emerging, population-scale datasets. Indeed, a 
GQT index of the 14.1TB ExAC dataset used merely 0.38 bits per genotype (28GB). Moreover, GQT 
required only 2.1 minutes to find and report rare variants (9.98 seconds when excluding the time required 
to report the variants) among a target 10% of the individuals, whereas BCFTOOLS required 931.4 
minutes, which represents a 443.5 fold speedup. 
 
 

 
Figure 5. GQT compression and query performance for simulated genomes. A comparison of BCFTOOLS, GQT, and 
PLINK for simulated genotypes on a 100 Mb genome with between 100 and 100,000 individuals. (A) The fold reduction each 
tool provided relative to the original, uncompressed VCF file. (B) Fold speedup for computing the alternate allele frequency count 
for a target 10% of individuals as in Figure 4. (C) Fold speedup for finding the variants where all individuals in a target 10% are 
heterozygous as in Figure 4. Note that this simulation did not include either variant or sample metadata and that the metrics for 1 
million individuals (est.) were estimated using a simple linear fit. As in Figure 4, PLINK was excluded from this comparison 
because it does not directly compute this operation. 
 
 
 
A simple query interface for flexible data exploration. While the GQT index achieves high 
compression and performance for large genome datasets, greater analytical power comes from the 
ability to easily leverage the index to answer a broad range of questions. The GQT toolset provides a 
simple interface for variant queries based on sample genotypes and metadata (Figure 6). GQT creates 
an SQLite database from a PED file describing the names, relationships, phenotypes, and other 
attributes of the samples in an associated VCF file (Figure 6A). The sample database complements the 
GQT index of the original VCF/BCF file and allows GQT to identify the rows of sample genotypes in the 
GQT index that match the query. Figure 6B demonstrates a hypothetical GQT query in search of 
variants where all affected individuals (“phenotype==2”) are heterozygous. Using these criteria, the 
GQT query tool issues the appropriate SQL query to the sample database to retrieve the relative position 
within the index of the WAH-compressed genotype bitmaps of three affected individuals. Once identified, 
the bit arrays for heterozygous genotypes are AND’ed (see Figure 3) to isolate the one variant where all 
three individuals are heterozygous. 
 
Queries may be based on any attribute that is defined in the PED file and queries may combine multiple 
criteria. As examples, one may search for variants having markedly different minor allele frequencies in 
different world sub-populations (Figure 6C) or case versus control samples (Figure 6D). Moreover, 
query results are returned in VCF format, thereby allowing sophisticated analyses combining GQT 
queries with other, variant-centric tools such as BEDTOOLS8, VCFTOOLS5 and BCFTOOLS 
(unpublished).  
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


 
Figure 6. GQT enables queries based on sample genotypes and phenotypes. (A) GQT creates an index of the sample 
genotypes in a VCF or BCF file. In addition, GQT will create a SQLite database of a PED file describing the familial relationships, 
gender, ancestry, and various phenotypes of the samples in the VCF file. (B) The PED database allows GQT to quickly find the 
specific sample genotype rows in the genotype index that correspond to the samples that meet a user’s search criteria. For 
example, a search for variants where all affected individuals are heterozygous begins with a query to the PED database, which 
identifies samples 3,5 and 9 as affected. In turn, the GQT index is used to quickly find the sole variant where samples 3,5, and 9 
are all heterozygous. (C) Providing multiple query conditions can further refine variant searches. (D) Since GQT returns the 
identified rows in VCF format, it can be combined with other, variant-centric tools such as BEDTOOLS and BCFTOOLS to 
enable sophisticated analyses based on sample genotypes, variant properties, and genome annotations. This also supports 
visualization or variant-centric indexing with tools such as TABIX.  
 
 
The flexible query framework accommodates many different experimental contexts, ranging from 
population genetics research to complex and rare disease studies, as well as more clinically focused 
datasets curated by health care systems or biotechnology companies. For example, we screened for 
high confidence de novo mutations in the CEPH 1473 pedigree sequenced as part of the Illumina 
Platinum Genomes project (Supplementary Figure 3A). A naïve search for candidate de novo 
mutations in the extensively studied NA12878 daughter involves screening for variants that are 
homozygous for the reference allele in NA12878’s parents, yet are heterozygous in NA12878. GQT 
identifies 11,172 such candidates from more than 8 million total variants in 0.04 seconds 
(Supplementary Figure 3B). A more sophisticated GQT query recognizes that true de novo mutations 
in the germline of NA12878 should be inherited by her offspring, reducing the set of candidates to 3,002 
(Supplementary Figure 3C). Excluding suspicious variants that lie in low-complexity regions 
(http://arxiv.org/abs/1404.0929) reduces the set of de novo mutation candidates by another 12% 
(N=2,659). While there are many more remaining candidates than would be predicted by the 1.2 × 10−8 

per generation base pair mutation rate observed in the CEU pedigree1, the 1000 Genomes Project 

VCFA BPED

SQL databaseGQT index

In
di

vi
du

al
s

Variants

3 4

5 6 9

gqt convert pedgqt convert vcf

3

5

9

A
ffe

ct
ed

 in
di

vi
du

ls

DC Find variants that are common in
cases and rare in controls. bedtools intersect

 -a - -b enh_prom.bed
gqt query study.gqt study.db

  -p "phenotype == 2"

  -g "maf() > 0.05"

  -p "phenotype == 1"

  -g "maf() < 0.05"

gqt query 1kg.gqt 1kg.ped.db

  -p "phenotype == 2"

  -g "HET"

bcftools view

 -i 'CSQ[*]~"stop_gained"'
VCF

Intersect with enhancer/promoters

Filter on predicted consequence

Visualization

Index with TABIX

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


employed additional filters based on genotype likelihoods, proximity other variants, and other properties 
of the sequence alignments1. Moreover, the intent of this analysis is to demonstrate GQT’s analytical 
power in the context of both large studies of unrelated individuals as well as family-based studies of 
disease. 
 
 
DISCUSSION 
Recognizing the scaling challenges posed by current and future genome datasets, our motivation was to 
explore new data compression and indexing strategies that minimize storage requirements while also 
enabling highly efficient analyses of the underlying data. We have shown that variant searches driven by 
sample genotypes and phenotypes are substantially faster when genotype data is transposed from a 
variant-centric to individual-centric organization. Competitive data compression is achieved by arranging 
variants in order of allele frequency, followed by word-aligned hybrid encoding of genotype bitmaps. 
Moreover, because WAH compression of the genotype index minimizes data inflation, GQT also 
achieves substantially better analysis performance for queries that interrogate the genotypes of the 
individuals in the dataset.  
 
The GQT approach is well suited to very large datasets where many variants are extremely rare (and 
thus highly compressible), but provides less benefit for datasets involving few variants, samples, or both. 
This is illustrated in our comparisons to PLINK and BCFTOOLS for smaller subsets of the 1000 
Genomes project dataset (Figure 4), and in our analyses (Supplementary Table 1) of variant datasets 
from the Mouse Genome Project (28 samples, 68.1 million variants) and the Drosophila Genome 
Reference Panel (205 samples, 6.1 million variants). However, we emphasize that while our analyses 
have been focused on human genomes, the strategies we have devised are generally applicable to 
large-scale datasets from any organism.  
 
Individual-centric data organization also has the potential to expedite a wide range of population genetics 
statistics such as kinship coefficients and PCA-based measures of genetic similarity since these 
measures fundamentally depend on the comparison two or more individuals’ genotypes. In contrast, 
haplotype-based analytical approaches9 and statistical measures10,11,12 are not appropriate for GQT 
indices since variant sites are ordered not by chromosome position but by allele frequency. However, 
WAH-compressed bitmaps are not inherently constrained to this organization. We plan to explore the 
development of variant-centric bitmap indices to enable efficient screens for selective sweeps and to 
quickly search for haplotypes that are identical by descent. 
 
GQT’s current indexing strategy is restricted to queries in search of variants based on sample genotypes 
and phenotypes. We recognize that more general queries will require indices of other genotype metadata 
such as allele-specific sequencings depths, genotype phase, and genotype likelihoods in order to impose 
stricter quality control over the variants that are returned, especially in the context of disease studies. 
Bitmap indices are poorly suited to attributes having continuous values (e.g., genotype likelihoods), since 
one bit array must be created for each distinct value. However, based on the success of previous 
studies13, binning continuous values into large sets of discrete values is likely to be a straightforward 
approach to indexing continuous values with minimal information loss. Indeed, such binning is already 
employed in the VCF specification for Phred-scaled14 integer representations of genotype likelihoods.  
 
Since GQT optimizes individual-centric and genotype-focused analyses, it is a natural complement to the 
variant-centric indexing strategies employed by methods such as Tabix15 and BCFTOOLS. Integration of 
these naturally complementary indexing strategies will provide the basis for a rich query interface 
supporting genetic data exchange efforts such as the Global Alliance for Genomics and Health. Based on 
the efficiency and inherent flexibility of WAH-encoded bitmap indices, we expect GQT to be a broadly 
useful general indexing strategy enabling the exploration of massive genomics datasets involving 
thousands or even millions of genomes. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


METHODS 
We compared GQT v0.0.1 to PLINK v1.90p and BCFTOOLS (https://github.com/samtools/bcftools) 1.1 in 
terms of file size and query runtime against four large-scale cohorts and simulated data sets.  The 
cohorts included: 2,504 human genomes from the 1000 Genomes Project phase 3, 28 mouse genomes 
from the Mouse Genomes Project, 205 fly genomes from the Drosophila Genetic Reference Panel 
(DGRP), and 60,706 human exomes from Exome Aggregation Consortium (ExAC). Query comparisons 
included time to compute the alternate allele frequency count for a target 10% of the population, and time 
to find rare (details below) variants among a target 10% of the population.  Both target sets were 
comprised of the last 10% of individuals.  For all runtime comparisons BCFTOOLS considered a BCF file, 
PLINK considered a BED and BIM file, and GQT considered a GQT index and BIM file. Runtimes for 
GQT considered two different modes, the default mode that reports all matching variants in valid VCF 
and the “count” mode (specified by the “-c” option) that only reports the number of matching variants. 
The count mode is a useful operation in practice, and also demonstrates speed without I/O overhead. 
 
File size. File size comparisons used an uncompressed VCF as a baseline, BCFTOOLS used a 
compressed binary VCF (BCF) to store both variant and sample data, PLINK used the binary plink format 
(BED) to store sample data and a BIM file to store variant data, and GQT used a GQT index file to store 
WAH-encoded sample genotype data as well as a BIM file to store LZ77-compressed variant data.  
 
Alternate allele count.  The baseline runtime for finding the alternate allele count was the BCFTOOLS 
“stats” command with the “-S” option to select the subset of individuals, the PLINK command was “--
freq” with the “--keep” option to select individuals, and the GQT command was “query”  (with and 
without the “-c” option) with the “-g "count(HET HOM_ALT)"” option to specify the allele count 
function and the “-p "Ind_ID >= N"” option to select the subset (where N was the ID of the range that 
was considered). 
 
Identifying rare variants.  The baseline runtime for selecting the variants was the BCFTOOLS “view” 
command with the “-S” option to select the subset of individuals and the “-C” option to limit the frequency 
of the variant, and the GQT command was “query”  (with and without the “-c” option) with the “-g 
"count(HET HOM_ALT)<=F"” option to specify the allele count filter (where F was the maximum 
occurrence of the variant) and the “-p "Ind_ID >= N"” option to select the subset (where N was the 
ID of the range that was considered).  In both cases the limit was set to either 1% of the subset size or 1, 
whichever was greater.  PLINK was omitted from this comparison because third-party tools are required 
to complete this operation, and in our opinion it is not fair assign the runtime of those tools to PLINK.  
 
Experimental Data sets. 

• 1000 Genomes phase 3:  Individual chromosome VCF files were retrieved from [2] (last 
accessed December 10, 2014) and combined into a single file using the BCFTOOLS “concat” 
command.  To understand how each tool scaled as the number of samples and variants 
increased, we subsampled the full data set (which included 2,504 individuals) to create new sets 
with 100, 500, and 1,000 individuals. To create each data set size, we randomly selected the 
target number of samples, then used the BCFTOOLS “view” command with the “-s” option to 
return just the genotypes of the target samples.  We then recomputed the allele frequency of each 
variant with the BCFTOOLS “fill-AN-AC” plugin, and filtered all non variable sites with the 
BCFTOOLS “view” command and the “-c 1” option. 

• Mouse Genomes Project. Data was retrieved in VCF format from (ftp://ftp-
mouse.sanger.ac.uk/current_snps/mgp.v4.snps.dbSNP.vcf.gz) and was last accessed November 
25, 2014. 

• Drosophila Genetic Reference Panel.  Data was retrieved in VCF format from 
(http://dgrp2.gnets.ncsu.edu/data/website/dgrp2.vcf) and was last accessed November 25, 2014. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


• Exome Aggregation Consortium (ExAC). Version 3 of the ExAC dataset was analyzed and run 
times were measure on the computing infrastructure at the Broad Institute. 

• CEPH 1473 pedigree. A VCF file of variants in the CEPH 1473 pedigree that was sequenced as 
part of the Illumina Platinum Genomes Project was downloaded from ftp://ftp-
trace.ncbi.nih.gov/giab/ftp/data/NA12878/variant_calls/RTG/cohort-illumina-wgs.vcf.gz. 

 
Simulated data sets. Genotypes were simulated using the MaCS16 simulator version 0.5d with the 
mutation rate and recombination rate per site per 4N generations set to 0.001, and the region size set to 
100 megabases.  Since our simulation considered between 100 and 100,000 diploid samples, and MaCS 
only simulates haplotypes, we simulated 2X haplotypes for each case and combined 2 haplotypes to 
create a single diploid genome.  It was computationally prohibitive to produce a data set for 1 million 
individuals (the 100,000 simulation ran for over four weeks), so we used a simple linear fit to estimate the 
file size and runtimes for 1 million individuals. 
 
32-bit WAH word size. A fundamental choice for WAH-encoding bit arrays is the word size. Modern 
processors support up to 64 bits, but smaller words of 32, 16, and 8 are also possible, and the choice will 
affect both the compression ratio and query runtime. Since WAH uses one bit of each word to indicate 
the type of word (fill or literal), it would seem that larger words would be more efficient. An eight-bit word 
will have seven useful bits to every overhead bit, while a 64-bit word will have a 63:1 ratio. However, 
there is a significant amount of waste within fill words.  Considering that the first two bits of a fill indicate 
the word type and run value, and the remaining give the length of the run in words, a 64-bit fill word can 
encode a run that is 1.4e20 bits long. That is enough bits to encode 46.1 billion human genomes. In fact, 
we only need 27 bits to cover the full genome, meaning that every 64-bit fill word would have at least 35 
wasted bits. This would seem to indicate that smaller words are more efficient, but as the word size 
decrease the speed up of the bit-wise logical operations also declines. A single operation between two 
64-bit words compares 32x more bits (and their associated genotypes) than an operation between two 8-
bit words. Taken together, our test show that 32-bits gives the best balance between size and speed. 
 
Computing environment. GQT is a tool and API written in C, which uses the htslib 
(https://github.com/samtools/htslib) to interact with VCF and BCF files and zlib (http://www.zlib.net/) to 
compress and inflate variant metadata.  All experiments were run on Ubuntu Linux v3.13.0-43, with gcc 
v4.9.2, 4 Intel Core i7-4790K 4.00GHz CPUs with the Haswell microarchitecture, and a 550 MB/s 
read/write solid-state hard drive. 

 
 
 
 
 
ACKNOWLEDGEMENTS 
 
We are grateful to Colby Chiang for conceptual discussions, Igor Levicki for helpful advice on AVX2 
operations, and both Shane McCarthy and Petr Danecek for their guidance with htslib. The authors 
would also like to thank the Exome Aggregation Consortium and the groups that provided exome variant 
data for comparison. A full list of contributing groups can be found at http://exac.broadinstitute.org/about 
This research was supported by an NHGRI award to A.R.Q. (NIH R01HG006693). 
 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


REFERENCES 
 
1. 1000 Genomes Project Consortium et al. An integrated map of genetic variation from 1,092 human genomes. 

Nature 491, 56–65 (2012). 

2. Keinan, A. & Clark, A. G. Recent Explosive Human Population Growth Has Resulted in an Excess of Rare 

Genetic Variants. Science 336, 740–743 (2012). 

3. Zuk, O. et al. Searching for missing heritability: Designing rare variant association studies. Proc. Natl. Acad. Sci. 

111, E455–E464 (2014). 

4. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. 

Hum. Genet. 81, 559–575 (2007). 

5. Danecek, P. et al. The variant call format and VCFtools. Bioinforma. Oxf. Engl. 27, 2156–2158 (2011). 

6. Kesheng Wu, Otoo, E. J. & Shoshani, A. Compressing bitmap indexes for faster search operations. in 99–108 

(IEEE Comput. Soc, 2002). doi:10.1109/SSDM.2002.1029710 

7. Exome Aggregation Consortium (ExAC), Cambridge, MA. (URL: http://exac.broadinstitute.org, version 0.3) 

[January 2015]. 

8. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 

26, 841–842 (2010). 

9. Durbin, R. Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT). 

Bioinforma. Oxf. Engl. 30, 1266–1272 (2014). 

10. Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. 

Nature 419, 832–837 (2002). 

11. Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A Map of Recent Positive Selection in the Human 

Genome. PLoS Biol. 4, e72 (2006). 

12. Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. 

Nature 449, 913–918 (2007). 

13. Hsi-Yang Fritz, M., Leinonen, R., Cochrane, G. & Birney, E. Efficient storage of high throughput DNA 

sequencing data using reference-based compression. Genome Res. 21, 734–740 (2011). 

14. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. 

Genome Res. 8, 186–194 (1998). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


15. Li, H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinforma. Oxf. Engl. 27, 

718–719 (2011). 

16. Chen, G. K., Marjoram, P. & Wall, J. D. Fast and flexible simulation of DNA sequence data. Genome Res. 

19, 136–142 (2008). 

 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


SUPPLEMENTARY NOTE 
 
Efficient comparisons using bitmaps.  
By using bitwise logical operations we can compare many genotypes in a single operation, rather than 
comparing each individual value. At a low level, bitwise logical operations are performed on words, which 
are the fixed-size unit of bits used by the CPU. Modern processors typically use either 32- or 64-bit 
words. When a bitwise logical operation is performed between two bit arrays (each of which correspond 
to the genotypes of two individuals), the processor completes this operation on one pair of words at a 
time. For example, if the word size is 32, then computing the bitwise AND of two bit arrays that are each 
320 bits long would require only 10 ANDs. This optimization is equivalent to a 32-way parallel operation 
with zero overhead. This concept is demonstrated in Figure S1, where we are searching for the loci 
where all three individuals are heterozygous among eight variants. When genotypes are encoded in 
ASCII (as they are in VCF), the algorithm must loop over every individual and every variant to find the 
common sites. In total, this requires 24 iterations (Figure S1A). In contrast, encoding genotypes with a 
bitmap allows the same computation to be completed with only three bit-wise AND operations (Figure 
S1B). In effect, bit-wise logical operations compare all eight genotypes in parallel in a single step.  For 
brevity an 8-bit word is used, and only the heterozygous bit arrays are show, but the same principles hold 
for the larger word sizes employed by GQT. 
 

 
 
Figure S1. Efficiency improvements for genotype comparisons when using a bitmap index. (A) When considering 
genotypes in ASCII format (e.g., VCF), an algorithm searching for the set of variants that are heterozygous in all individuals must 
operate on every genotype for each for every individual separately. (B) In contrast, when genotypes are represented with a 
bitmap index, where a set of genotypes are encoded into a single CPU word (for brevity, only the bit arrays associated with the 
heterozygous state are shown), bitwise logical operations can be used to operate on all of the genotypes in the word with a 
single operation. This example assumes a word size of 8, but modern CPU support up to a 64-bit word. For the 24 genotypes 
given here (3 individuals, 8 genotypes each), the ASCII-base algorithm executes the “if” statement 24 times, while the bit-wise 
algorithm executes the logical AND (“&”) only three times, with both algorithms producing equivalent results. 
 
Compressing bit arrays.  
While bitwise logical operations can drastically improve query runtime performance, bitmap indices 
require double the amount of space over the minimum two bits per genotype. To address this issue we 
can look to compressing that data. While genotype data can be compressed with standard run-length 
encoding, bitwise logical operations require that the bits associated with variants must be aligned, which 
is difficult to ensure with run-length encoding (RLE). Instead we use the Word Aligned Hybrid (WAH) 
encoding strategy, which represents run length in words not in bits. As shown in Figure S2A, RLE 
encodes stretches of identical values (“runs”) to a new value where the first bit indicates the run value 
and the remaining bits give the number of bits in the run. WAH is similar to RLE, except that it uses two 
different types of values. The “fill” type encodes runs of identical values, and the “literal” type encodes 
uncompressed binary. This hybrid approach address an inefficiency in RLE where short runs map to 

A
I1: 0/1 0/0 0/1 0/0 0/0 0/1 0/1 0/1

I2: 0/1 0/0 1/1 0/0 0/0 0/1 0/1 0/0

I3: 0/1 0/0 0/0 0/1 0/0 0/1 0/0 0/0

I1: 10100111

I2: 10100110

I3: 10010100

Bit arrays for 1/0

IS_HET = [1,1,1,1,1,1,1,1]

for ind in [I1, I2, I3]
  for i in [1..8]
    if ind[i] != "0/1" then  
      IS_HET[i] = 0

IS_HET = 0xff // hex of binary 11111111

for ind in [I1, I2, I3]
 IS_HET = IS_HET & ind

0x84 // hex of binary 10000100[0,1,0,0,0,0,1,0,0]

ASCII Genotypes:

ASCII-based algorithm Bit-wise algorithm:

ASCII result Binary result

B

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


larger encoded values. The first bit in a WAH value indicates whether it is a fill (1) or literal (0). For a fill, 
the second bit gives the run value and the remaining bits give the run length in words (not bits, like in 
RLE).  For a literal, the remaining bits directly encode the uncompressed input.  Since each WAH-
encoded value represents some number of words, and bitwise logical operations are performed between 
words, these operation can be performed directly on compressed values. 
 

 
 
Figure S2.  A comparison of binary encodings and associated bit-wise logical operations. (A) Two bit arrays are given in 
three different binary encodings: the uncompressed bit array on top, followed by the run-length encoding (RLE) and word-
aligned hybrid encoding (WAH).  RLE maps each set of consecutive bits to a new value that uses one bit for the run value, and 
the remaining bits for the number of bits in the run. WAH maps bits to one of two types of values: those that include runs and 
those that encode the raw binary. The first bit in a WAH value indicates if the value encodes a run (the fill bit). If that bit is set 
then the second bit gives the run value and the remaining bits give the run length in number of words (i.e., not number of bits as 
in RLE). If the fill bit is not set then the remaining bits are the uncompressed binary values. (B) The logical OR for the three 
encodings is given. For the uncompressed binary, the OR follows bit for bit across both values. For RLE, the logical OR is 
undefined (without inflation) because the two encoded values have different lengths. For WAH, the values are aligned based on 
their run length, then the logical OR is performed (in this case) between the value bit and the associated uncompressed values. 
 
The algorithm that performs bitwise logical operations is straightforward (Figure S2B). To operate on two 
uncompressed bit arrays we simply move in unison between the two arrays from the first to last word, 
and find the result of each pair of words. Since each WAH value encodes one or more words, we need to 
move across each WAH array independently. At each step we track the number of words that have been 
considered in the current value and only move to the next word once the words have been exhausted. 
Bitwise logical operations improve the performance of most queries by computing many genotype 
comparisons in parallel, but some higher-level queries cannot be resolved with these operations alone.  
 
Finding the allele frequency among a set of individuals is one such query. In this case, each bit 
corresponds to the genotype of a particular individual at a particular genomic position, and the allele 
frequency for that position is the summation of the corresponding bits across all individuals. Since 32 bits 
are packed into a single word, this process can be reduced to a series of bitwise sums between words, 
which, unfortunately, is not a standard operation. While no architecture provides single-instruction 
support for bitwise sum, the operation does exhibit a high-degree of parallelism. The sum of each 
position is independent of all other positions, which allows (in principle) the sum of all positions to be 
found concurrently. This classic Single Instruction Multiple Data (SIMD) scenario can be exploited 
through the use of the vector processor registers and instructions that are supported by the most recent 
Intel CPUs (Haswell and beyond). These special registers are designed to perform instructions on a list 
of values in parallel, and by combining several instructions (logical shift, AND, and sum) from the AVX2 
instruction set we can perform the bitwise sum of 8 words in parallel. While the 8-way parallelism lags 
behind what is possible for other operations, it still represents a significant speed up for an operation that 

0000000 0000000 0000001 1111000

1111111 1000000 0000000 0000000

A

Run-length encoding

01111111 01000000 10000010

10000010 00000001 01111000

fill bit
value

no. words(2)

¬ « ­ « ®

fill bit
uncomp. value

¬ « ­ « ®

Word Aligned Hybrid 

Bit arrays

01111111 01000000 10000010

10000010          00000001 01111000

B

1111111  1000000  0000001  1111000

10001000 00010100

00010100 10000101 00000011

value
no. bits(20)

¬ « ­ « ®

OR

10001000 00010100

00010100 10000101 00000011

OR

0000000 0000000 0000001 1111000

1111111 1000000 0000000 0000000OR
1111111 1000000 0000001 1111000

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


is expected to be part of many queries.   The index we describe above has the ability to identify variants 
that meet a complex set of conditions among millions of individuals and billions of genotypes in seconds. 
 
 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


SUPPLEMENTARY DATA 
 

 
 
Figure S3. De novo mutation discovery in the CEPH 1463 pedigree. (A) The CEPH 1463 pedigree. Our analysis is focused 
on the discovery of de novo mutations in NA12878, the daughter of NA12891 and NA12892. (B) A GQT query for de novo 
mutations based on the expected genotypes (homozygous for the reference allele) in NA12878’s parents, as well as an 
expected heterozygous genotype in NA12878. (C) True de novo mutations in NA12878’s germline should be passed on to 50% 
of her offspring, on average. Allowing for genotyping error and binomial expectation, we filter for more confident de novo 
mutation candidates by requiring that the apparent mutation allele is passed on to at least 30% of NA12878’s children. (D) A 
GQT query that further filters candidate mutations by excluding those lying in low complexity regions of the genome. 
 
 
 
 

NA12889 NA12890 NA12891 NA12892

NA12877 NA12878

NA12879

NA12880

NA12881

NA12882

NA12883

NA12884

NA12885

NA12886

NA12887

NA12888

NA12893

gqt query -i ceph1463.gqt -d ceph1463.ped.db 
  -p "sample_id in ('NA12891','NA12892')" -g "HOM_REF" 
  -p "sample_id = 'NA12878'" -g "HET"

A

B

gqt query -i ceph1463.gqt -d ceph1463.ped.db 
  -p "sample_id in ('NA12891','NA12892','NA12877')" -g "HOM_REF" 
  -p "sample_id = 'NA12878'" -g "HET" 
  -p "maternal_id = 'NA12878'" -g "pct(HET)>=0.3"

C

11,172 candidates (0.04 seconds)

3,002 candidates (0.19 seconds)

gqt query -i ceph1463.gqt -d ceph1463.ped.db 
  -p "sample_id in ('NA12891','NA12892','NA12877')" -g "HOM_REF" 
  -p "sample_id = 'NA12878'" -g "HET" 
  -p "maternal_id = 'NA12878'" -g "pct(HET)>=0.3"
| bedtools intersect -a - -b LCR-hs37d5.bed.gz -v -sorted

D

2,659 candidates (0.82 seconds)

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/


Experiment Tool 

MGP 
(28 samples;  
68.1 million 

variants) 

DGRP 
(205 samples;  

6.1 million 
variants) 

1KGp3 
(2,504 samples; 

84.7 million 
variants) 

ExAC 
(60,706 samples; 

9.3 million 
variants) 

File size (Gb) 
BCFTOOLS 14.94 2.99 138.41 2119.7 

PLINK 2.37 0.47 55.10 142.29 
GQT  2.97 0.43 14.33 27.96 

Alternate allele 
count time 

(min.) 

BCFTOOLS 2.79 0.43 14.30 544.30 
PLINK 0.41 0.05 2.61 20.10 
GQT 1.07 0.04 0.97 1.50 

Rare variant 
search time 

(min.) 

BCFTOOLS 4.44 0.64 39.34 931.40 
PLINK NA NA NA NA 
GQT 0.75 0.03 0.86 2.10 

 
Table S1. The performance of BCFTOOLS, PLINK, and GQT across four cohorts of different sizes and sample 
populations.  This analysis included three whole-genome data sets from three different species: mouse genome project (MGP), 
Drosophila genome reference panel (DGRP), human from 1000 Genomes phase 3 (1KGp3), and a whole-exome for human 
from the Exome Aggregation Consortium (ExAC). 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2015. ; https://doi.org/10.1101/018259doi: bioRxiv preprint 

https://doi.org/10.1101/018259
http://creativecommons.org/licenses/by/4.0/

