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Abstract 

It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a 

transient state that cells can acquire, either through intrinsic signaling cascades or in 

response to environmental cues. While cancer stem cell plasticity is generally associated 

with increased aggressiveness and treatment resistance, we set out to thoroughly 

investigate the impact of different rates of plasticity on early and late tumor growth 

dynamics and the response to therapy. We develop an agent-based model of cancer stem 

cell driven tumor growth, in which plasticity is defined as a spontaneous transition 

between stem and non-stem cancer cell states. Simulations of the model show that 

plasticity can substantially increase tumor growth rate and invasion. At high rates of 

plasticity, however, the cells get exhausted and the tumor will undergo spontaneous 

remission in the long term. In a series of in silico trials we show that such remission can 

be facilitated through radiotherapy. The presented study suggests that stem cell plasticity 
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has rather complex, non-intuitive implications on tumor growth and treatment response. 

Further theoretical, experimental and integrated studies are needed to fully decipher 

cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches. 

 

Introduction 

After stem cells have been discovered at the top of the hematopoietic system hierarchy 

[1], it became apparent that human acute myeloid leukemia is also organized 

hierarchically. Leukemia is initiated and fueled by a leukemic stem cell that gives rise to 

transit-amplifying progenitor cells and eventually differentiated cancer cells with limited 

lifespan [2]. A cellular hierarchy in a tumor and the accompanying stem cell hypothesis 

has been hailed as a significant breakthrough in the cancer research community, as its 

concept holds new promises for cancer therapy. If only CSC are uniquely able to initiate, 

sustain and propagate a tumor, then selective eradication of CSC – however difficult it 

might be to target them – would be sufficient to cure a cancer [3]. Despite its conceptual 

beauty, recent reports consolidated the skepticism that stemness might not be a prescribed 

cell phenotype but a transient state that cells can acquire and discard dependent on the 

cellular environment and signaling context [4-7]. Then the heterogeneous tumor 

population becomes a dynamic, moving target that is increasingly difficult to treat [8].  

 

The complex biology of stem and non-stem cancer cells and their interactions with each 

other as well as with the intra- and extratumoral environment is yet to be fully deciphered 

experimentally. Inroads have been made to use mathematical and computational models 

to identify first-order principles and key biological mechanisms in cancer plasticity, from 
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which new actionable hypotheses can be derived [7, 9-12]. Herein we propose an in silico 

agent-based computational model to help decipher parts of the complexity that arises 

from the myriads of stem and non-stem cancer cell interactions and phenotypic plasticity. 

Agent-based models are increasingly utilized in theoretical oncology [13-20] to derive 

emerging population level dynamics from defined single cell properties and their 

perturbation. Such modeling approach has previously shown that the proliferation 

capacity (or telomere length [21, 22], or Hayflick limit [23, 24]) of non-stem cancer cell 

(CC) is a pivotal force in driving tumor evolution [25, 26]. Then, early progenitor cells 

that adapt a stem cell state confer different kinetic properties including proliferation 

potential to the new stem cell than de-differentiating cells that are closer to their terminal 

phenotype.  

 

The role of the cellular hierarchy in a tumor has been widely ignored in the modeling 

community, such that CC that transition into a CSC have the same properties as the initial 

population-founding CSC. Thus, in addition to conferring the general CSC traits of 

(a)symmetric division and longevity, the new CSC gets also bestowed with the historic 

initial telomere length with the stupendous consequences of increased aggressiveness and 

treatment failure. Herein we give explicit consideration of the degrading proliferative 

potential in the cellular hierarchy in a phenotypic plasticity model. We show that 

phenotypic plasticity promotes early tumor growth; in the long-term, however, plasticity 

can impede tumor progression and ultimately lead to the collapse of the tumor 

population. We will use radiotherapy as an example of an external catalyst to eventual 

complete remission. 
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Materials and Methods 

Mathematical model 

We adapt an in silico agent-based model [26, 27], in which each cancer cell occupies a 

10x10 µm grid point on a dynamically expanding 2D lattice [28]. A dynamic 

computational domain prevents boundary-imposed spatial constrains that may influence 

outcomes. 

 

The tumor population is divided into cancer stem cells (CSCs) and non-stem cancer cells 

(CCs) with an individual proliferation capacity, ρ, representative of the telomere length 

[21, 29]. Telomeres are shortened during mitosis [22, 30] reducing the proliferation 

capacity in each daughter cell (ρ-1), which is a visualization of the Hayflick limit [24, 

31]. CSCs are believed to upregulate telomerase which rebuilds telomeric DNA and thus 

prevents telomere erosion and confers longevity to the cell [32-35]. We assume a cell 

with exhausted proliferation capacity (ρ=0) to undergo cell death in the next mitotic 

attempt as previously assumed [25, 36] without explicit consideration of replicative 

senescence [18, 37]. In addition to replicative cell death we consider spontaneous cell 

death in CC with probability α, which is prevented in CSC. Without considering cell 

plasticity, CC and CSC populations are only connected through asymmetric division of a 

CSC, when one of the progeny adopts a CC phenotype (Fig. 1A). We denote the 

probability of symmetric CSC division by ps. Plasticity may occur at successful 

proliferation with probabilities pd (CSC differentiation) and pdd (CC de-differentiation). If 

pd=pdd=0, plasticity is averted and cells have a persistent phenotype. With pd>0 and 

pdd>0, cell phenotypes are plastic and stemness becomes a transient state. We note that 
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stemness is defined by the ability to divide (a)symmetrically and prevention of telomere 

erosion [34, 38]. Therefore, a CC that adopts a CSC state through dedifferentiation will 

be equipped with current telomere length, i.e. ρ, which will be bequeathed to subsequent 

daughter cells (Fig. 1B). This is in stark contrast to previous modeling attempts that in 

addition to conferring general CSC traits also re-set time and equip new CSC with 

historic uniform initial telomere length.  

 

At discrete simulation time steps representative of Δt = 1 hour, cell are randomly selected 

and updated. In case of a CC, spontaneous cell death is considered with probability α. 

Proliferation and migration of surviving cells are mutually exclusive (pp=1/24, i.e. once 

per day; pm=15/24, i.e. 150µm per day) subject to available space in the immediate cell 

neighborhood. The simulation procedure is summarized in a flowchart in Fig. 1C. 

 

Tumor morphology analysis 

In case of frequent migration events, defining tumor periphery on a two-dimensional 

lattice is not straightforward, as cells may separate from the main tumor mass. In order to 

define the tumor periphery we first transform the lattice into binary information (cell 

present or not). Then we substitute the value of each pixel by the average number of 

positive pixels in the immediate 8-neighbors Moore neighborhood, and apply an image 

intensity threshold of 3/8 (this includes vacant sites with more than 2 cancer cells in the 

neighborhood) and select regions containing more than 104 cells. We define the tumor 

periphery as the periphery of the selected regions. All transformations are made using 

MATLAB with Image Processing Toolbox. 
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Tumor circularity is calculated as 

Circularity = 4πA
S2

,  

where A is the tumor area and S is the perimeter length. For a perfect circle the circularity 

is equal to 1. Both A and S are calculated using the regionprops function from the 

MATLAB Image Processing Toolbox. 

 

In order to calculate the CSC fraction in the proximity of the tumor boundary, we dilate 

the tumor periphery by 20 pixels in four orthogonal directions and select all cells within 

the dilated area. This procedure selects cells that are within 200 µm in from the tumor 

boundary. 

 

Metastatic potential 

We estimate the potential for metastatic spread using a virtual 5-well plate, where wells 

are connected sequentially by a narrow canal of 100 µm width and 400 µm length. Each 

well is circular with a 50 µm diameter. Each simulation is initiated with a single CSC in 

the geometric center of the first well. Metastatic spread is simulated until the first CSC 

enters the last blind-ended canal. 

 

Radiotherapy 

We simulate fractionated radiotherapy of 30 fractions of dose d=2 Gy applied every 24h 

hours. The dose-dependent surviving fraction SF(d) is calculated using the linear-

quadratic formalism 
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SF(D) = e−ξλ aD+bD2( ),  

where ξ<1 describes radioresistence of quiescent cell, i.e. for cell with no available space 

in the neighborhood, and ξ = 1 otherwise, and λ<1 describes increased radioresistance of 

CSC [39, 40]. For CC, λ = 1. In line with previous estimates we set ξ=0.5, λ = 0.1376���, 

a=0.3859 ��� and b= 0.01148 [40]. ��� 

 

Results and Discussion 

We initiate each simulation with a single CSC with proliferation capacity ρ =10 and 

probability of symmetric division ps = 1%, and simulate tumor growth for 720 days. We 

consider bidirectional plasticity with equal probabilities pd = pdd = 0% (static 

phenotypes), 0.01%, 0.1%, 1% and 10%. For each set of parameters we performed 100 

simulations, and statistical analyses were performed using the Student’s t-test. 

 

Impact of plasticity on tumor growth characteristics 

Phenotypic plasticity increases initial tumor growth rate yielding larger tumors after 720 

days than the tumors with static phenotypes (Fig. 2A). However, for larger plasticity (pd 

= 10%), tumor growth saturates around day 320 keeping the tumor in a dormant state 

followed by a decrease in total cell number. In contrast to initial growth that is favored by 

higher plasticity rates, increasing phenotypic plasticity inhibits tumor growth later. This 

population level behavior mimics the evolution of CSC number (Fig. 2B) and ratio (Fig. 

2C). CSC fraction in phenotypic plasticity tumors appears to saturate around the value of 

50% for all considered transition rates, but this ratio is only achieved in the considered 

time frame with pd = pdd =10%.  
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In addition to increasing the average tumor size during the growth phase, plasticity 

reduces the amount of variation in tumor size (Fig. 2D). For pd = 1%, standard deviation 

is only 20% at t=720 days, compared to 3 times larger S.D.=60% for tumors with static 

phenotypes. The source of variation in tumor size across independent simulation is 

opportunistic competition for available space between CSC and CC in the tumor interior 

where most CSC are located without plasticity [19, 25, 36, 41]. Phenotypic plasticity 

partially averts intratumoral CSC inhibition and prolonged phases of population-level 

dormancy [42] as new CSC are continuously created at the boundary with fewer spatial 

constrains. 

 

Interestingly, in case of pd = 0.1% one simulate tumor died spontaneously early during 

development. In that simulation, the initial CSC differentiated before the first stochastic 

symmetric division event, and all of its CC progenies died before a de-differentiation 

event. In the Appendix we show analytically that the probability of that event is 

approximately 0.5% for all considered plasticity rates and, thus, is large enough to 

manifest in numerical simulations. 

 

To analyze analytically if tumors with phenotypic plasticity can undergo spontaneous 

remission, we first consider the possible division fates of a CSC with proliferation 

capacity i (CSCi). With probability pd the CSC will differentiate before a symmetric 

division and it will be lost. In case of a de-differentiation event of a CC, the new CSC 

will have a proliferation capacity ρ < i (Fig. 3A). If the CSC divides symmetrically, a 
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new CSCi will be created. In case of asymmetric division we need to follow the fate of 

the CC progeny. At each iteration, the CC can die spontaneously with probability α. Let 

us denote by α’ the probability that the newly created CC will die before a proliferation 

attempt (α’≥α). Then, no new CSCi will be created with probability α’. If the CC divides, 

a new CSCi is only created in case of a de-differentiation event with probability pdd. If 

after de-differentiation the CSCi undergoes symmetric division, then two new CSCi are 

be created. This theoretical consideration has four possible outcomes: the number of 

CSCi 1) decreasees with probability p1 = pd, 2) remains the same with probability p2 = (1-

pd)(1-ps)[α’+(1- α’)(1-pdd)], 3) increases by one with probability p3 = (1-pd)[ps+(1-ps)(1- 

α’)pdd(1-ps)], and 4) increases by two with probability p4 = (1-pd)(1-ps)(1- α’)pdd ps. 

Hence, the probability P that all CSCi will die after the initial seeding of one CSCi fulfills 

the relation P = p+qP2+(1-p-q)P3, where p = p1/(p1+p3+p4) and q = p3/(p1+p3+p4), from 

which we obtain that  

 
(A) 

Obviously for pd = 0, i.e. no possible differentiation event, we have P = 0, and for α’ = 1 

the problem reduces to P = min{(1-q)/q,1}. Importantly, if P = 1, then all CSC will die 

off regardless of the initial number of CSC. Eqn. (A) contains only one unknown 

parameter, α’, which depends on the extend of spatial inhibition and the proliferation 

probability pp. However, the probability, p, is an increasing function of α’, and α’ ≥ α. 

Thus, if a tumor dies spontaneously with probability 1 for α’=α, then it also dies 

spontaneously with probability one for any larger α’. Similarly, if P < 1 for α’ = 1, then 

the tumor will not die spontaneously in each single simulation iteration. It is worth to 

P =min p−1+ −3p2 − 4pq+ 2p+1
2(1− p− q)
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mention that a non-zero value of parameter α is crucial for relating the agent-based model 

to probability P, as the average time between the CSC proliferation events can grow 

without bound if α =0, due to intratumoral spatial inhibition. 

 

Fig. 3B shows the probability P of a CSC population vanishing for α’=1 and α’=0.01 if 

pd=pdd. All simulated tumors will eventually die off spontaneously for pd values larger 

than ≈ 9.09%. This explains the previously observed decrease in the average tumor size 

for pd=10% (c.f., Fig. 2A). For pd = 0.1% in the initially presented tumor growth 

simulations, P~0.1 for α’ = 1, and thus about 90% of tumors will grow successfully.  

 

Let us consider 100 independent simulations initialized with CSC3 and pd = pdd = 10%. 

As predicted by the above theory, all 100 tumors will undergo remission as P = 1 in that 

case (Fig. 3C). Increase the probability of symmetric division from ps=1% to ps=3%, only 

17 of 100 tumors die out (Fig. 3D). However, the above theory cannot conclusively 

predict if all of these tumors will eventually die off. 

 

Impact of plasticity on tumor morphology 

Fig.4A shows the largest tumors after simulated 720 days of 100 independent simulations 

for different plasticity probabilities. Although the average tumor size for pd = 10% is 

larger than for pd=0% (c.f., Fig. 1A), the biggest simulated tumor is smaller (114,950 vs. 

283,504 cells). This is a manifestation of the larger coefficient of variation in the static 

phenotype cohort (c.f., Fig. 1D).  
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The morphology of tumors with static phenotypes is described as self-metastatic [36] 

with low circularity [43]. Tumors with intermediate plasticity probabilities, pd=0.1% and 

pd=1%, feature a regular, almost circular morphology at day 720 as the self-metastatic 

morphology caused by the spatial inhibition of CSCs is averted by spontaneous CCs de-

differentiation at the tumor periphery (Fig. 4B).  For larger plasticity probabilities (pd = 

10%), clusters of cells at the tumor periphery die off stochastically, which yields a less 

regular boundary and decreasing tumor circularity. 

 

Low values of plasticity probabilities (pd=0.1% and pd=1%) are associated with a five-

fold increase in the fraction of quiescent cells compared to tumors with static phenotypes, 

arguably at least in part due to the larger size and thus reduced surface-to-volume ratio 

(Fig. 4C). For pd = 10% the exhaustion and spontaneous death of CC is not effectively 

filled and thus a larger proportion of cells is actively proliferating, which is comparable 

to the one in the non-plastic tumor.  

 

A monotonic dependence on plasticity probability is the fraction of cancer stem cells in 

the proximity of the tumor boundary (Fig. 4D). For pd = 10%, more than 50% of the CSC 

are close to the tumor boundary, which represents almost the entire cancer stem cell 

fraction (c.f. Fig. 2C). The prevalence of CSC in the tumor periphery suggests that 

plasticity may lead to increased potential for metastatic spread.  
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Impact of plasticity on invasiveness 

For each considered value of plasticity probability we simulated 100 virtual 5-well plate 

experiments. For pd = 0%, 0.1% and 1%, in all simulations a CSC successfully reached 

the right boundary of the experimental setup. However, for pd = 10% as many as 97 out 

of 100 simulations ended with spontaneous death of all cancer cells before invading all 

wells.  Time to reach the right boundary was significantly lower in all plastic tumors, 

with almost 1.5-fold and 2-fold reduction for pd = 0.1% and pd = 1%, respectively, when 

compared to tumors with static phenotypes (Fig. 5A). However, the invasion speed 

follows a non-monotonic behavior in plastic populations, as the time needed to reach 

right boundary for is reduced for pd =1% compared to both pd = 0.1% and pd = 10%, 

indicating a exhaustion of the population as discussed above. 

Visualizations of successful simulations show a plasticity-dependent gradient of cancer 

stem cell fraction values in subsequent wells (Fig. 5B). With lower values of plasticity 

the difference between the composition of population in the first and the last well 

increases, with about 16-fold change for non-plastic tumor. For the largest considered 

value of pd=10%, however, there is no significant difference in composition between the 

wells.  

 

Impact of plasticity on the radiation outcome 

We simulated the impact of radiotherapy on tumors consisted of 250,000 cells generated 

for different plasticity probabilities. As expected, the tumor without plasticity responds 

best to radiotherapy (Fig. 6A), as it has the smallest fraction of CSC with decreased 

radiosensitivity λ (c.f., Fig. 2C) and small proportion of quiescent cells with decreased 
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radiosensitivity ξ (c.f., Fig. 4C). The tumors with relatively low plasticity, pd=0.1% and 

pd=1%, show similar response to radiation, with number of cells reduced about 20 times 

compared to the pre-treatment state. Tumor with the highest plasticity event probability, 

pd = 10%, shows an intermediate response, what can be explained by lower fraction of 

quiescent cells compared to other plastic tumors (Fig. 4C) and larger fraction of stem 

cells compared to the plasticity free tumor (Fig. 2C). However, in none of simulations 

tumor was eradicated during the course of treatment.  

 

Simulations of tumor growth following the treatment show that for tumors without and 

with low plasticity show regrowth to pre-treatment cell counts within 200 days after the 

onset of treatment (Fig. 6B). However, all of the simulated tumors with pd = 10% 

undergo spontaneous remission (Fig. 6C) within two years after transient regrowth. 

Radiotherapy on highly plastic tumors may serve as an accelerator of CSC exhaustion 

due to frequent differentiation events with subsequent loss of proliferation potential. 

 

Conclusions 

The observation of cancer stem cell plasticity has lead to the general belief of more 

aggressive tumor growth and reduced treatment response [12]. We introduced an in silico 

agent-based model of cancer stem cell driven tumor growth to study the impact of 

different rates of phenotypic plasticity on tumor growth, morphology, invasion and 

treatment response. Simulations of our model show that plasticity accelerates early tumor 

growth, as prolonged phases of tumor dormancy due to intratumoral competition [42] is 

averted by cells on the periphery acquiring stem cell traits and propagating the tumor 
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population. Whilst tumors with fixed phenotypes show a gradual increase in CSC over 

time, phenotypic plasticity yields relatively constant population fractions, with CSC 

predominantly located at the tumor boundary – thereby facilitating invasion and 

metastatic spread. The explicit consideration of the cellular hierarchy within a tumor and 

the accompanying reduction of proliferation potential, however, offer a previously 

unappreciated aspect of CSC plasticity. Transitions between stem and non-stem cancer 

cell states at high frequencies yield a reduction of proliferation potential in each cell, 

thereby reducing the lifespan of each daughter cell and inevitably cell death. This may 

lead to population level dormancy and ultimately collapse of the tumor with complete 

remission.  

 

Mathematical and computational models, by virtue of their very purpose, are subject to 

gross oversimplifications of reality [44]. However, they may provide interesting and non-

intuitive insights into the tumor progression dynamics, including novel discussion points 

in understanding cancer stem cell plasticity. Further theoretical, experimental and 

integrated studies are needed to fully decipher cancer stem cell plasticity and how it can 

be harnessed for novel therapeutic approaches. 
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Figure legends 

 

Figure 1. A) Schematic of the proliferation potential erosion in the non-cancer cell (CC) 

population after asymmetric division of cancer stem cell (CSC) that occurs with 

probability ps. B) Schematic of cellular differentiation and de-differentiation 

(probabilities pd and pdd, respectively), in which the proliferation potential is memorized 

in course of evolution. C) Schematic of the simulation procedure and cell cycle 

evaluations. 

 

Figure 2. Average total cell count (A), cancer stem cell, CSC, number (B) and fraction 

(C), and coefficient of variation, i.e. standard deviation/mean, for the total cell count (D) 

as a function of time for tumor without plasticity (pd = 0%, blue solid curve) and with 

plasticity probability of 0.1% (red dashed curve), 1% (yellow dot-dashed curve) and 10% 

(purple dotted curve). Shown are means from 100 simulation runs (only successfully 

grown tumors are considered). Error bars omitted for clarity. 

 

Figure 3. (A) Possible outcomes of the cancer stem cell (CSC) division when one 

considers survival of CSC with proliferation potential i (CSCi). (B) Probability of 

spontaneous tumor remission, P, described by Eqn. (A), for different values of probability 

that the non-stem cancer cell will die before proliferation attempt, α’, and plasticity event 

frequencies, pd = pdd. (C) Spontaneous remission of all 100 simulated tumors initiated 

with single CSC equipped with proliferation capacity ρ = 3 and probability of symmetric 

division ps = 1%. (D) Spontaneous remission of 17 out of 100 simulated tumors initiated 
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with single CSC equipped with proliferation capacity ρ = 3 and probability of symmetric 

division ps = 3%. 

 

 

Figure 4. (A) Simulation snapshots of the biggest tumor at t = 720 days for each consider 

plasticity event probability. s: number of cancer stem cells; n: number of cancer cells. 

Comparison of circularity (B), percent of quiescent cells (C), and cancer stem cells 

fraction in 200µm proximity of tumor boundary (D) for different probabilities of 

plasticity event. Shown are means +- SD from 100 simulation runs (only successfully 

grown tumors are considered). 

 

Figure 5.  (A) Average ± SD number of days until the right boundary of 5-well plate is 

reached by cancer stem cell for different probabilities of plasticity event (pd). (C) 

Simulation snapshots at the moment when first cancer stem cell reach the right boundary 

for different probabilities of plasticity event (pd). Percentages above each well indicate 

the fraction of cancer stem cells within each well.  

 

Figure 6. Response to radiotherapy (RT) consisted of 30 x 2Gy dose applied every day of 

tumors with about 250,000 initial cell count for different probabilities of plasticity event 

(pd). (A) Average radiation response. (B) Regrowth for low pd. (C) Remission for pd = 

10%. N = 10 simulations. 
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Figure 3.  
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Appendix 

 

Probability of early tumor death event 

We set on to approximate analytically the probability that the initial CSC with 

proliferation capacity ρ will differentiate before first symmetric division and all of its 

non-stem progenies will die before any de-differentiation event, which we denote as Dρ. 

We consider a very early stage of tumor development and, thus, we can neglect space 

inhibition (we have large migration probability of 15/24). The probability that non-stem 

cell with given proliferation potential, ρ, and all its progenies won’t de-differentiate 

before dying off, ωρ, follows recurrence relation 

ωρ =
α

α + 1−α( ) pp
+
(1−α)(1− pdd )pp
α + 1−α( ) pp

ωρ−1
2 ,  

with ω0 = 1 – pp(1-α)pdd/(α+pp(1-α)). The probability that the CSC will undergo 

differentiation before first symmetric division is equal to pd/((1-pd)ps+pd) and the number 

of non-symmetric divisions follows geometric distribution with probability of success p = 

(1-pd)ps+pd. Thus, we obtain the following expression for Dρ 

Dρ = pdωρ−1
2 ωρ

k

k=0

∞

∑ 1− (1− pd )ps − pd( )k =
pdωρ−1

2

1−ωρ 1− (1− pd )ps − pd( )
.  

In Fig. A1 we plotted Dρ under the assumption that pd=pdd and for parameters considered 

in the main text. We see that for all considered plasticity event probabilities the 

probability of early tumor death is close to 0.5%. It is worth to notice that if spatial 

inhibition will increase value Dρ more for lower probabilities of plasticity event, as on 

average more non-stem progenies are created before differentiation event. 
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Figure A1. Probability of early tumor death event for different plasticity event 

probability and for parameters considered in the main text. 
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