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Abstract

The use of genomic data in the clinic has not been as widespread as was envisioned when sequencing and

genomic analysis became common techniques. An underlying difficulty is the direct assessment of how much

additional information genomic data are providing beyond standard clinical measurements. This is hard to

quantify in the clinical setting where laboratory tests based on genomic signatures are fairly new and there

are not sufficient data collected to determine how valuable these tests have been in practice. Here we focus on

the potential precision gain from using the popular MammaPrint genomic signature in a covariate-adjusted,

randomized clinical trial. We describe how adjustment of an estimator for the average treatment effect using

baseline measurements can improve precision. This precision gain can be translated directly into sample

size reduction and corresponding cost savings. We conduct a simulation study using genomic and clinical

data gathered for breast cancer patients and find that adjusting for clinical factors alone provides a gain in

precision of 5-6%, adjusting for genomic factors alone provides a similar gain (5%), and combining the two

yields a 2-3% additional gain over only adjusting for clinical covariates.

1 Introduction

Incredible progress has been made in the characterization of the human genome, but the direct clinical

benefit of these advances has not been clear for common complex diseases [5]. Problems with reproducibility

[2], interpretability [12], and cost [1] have all slowed the translation of genomic markers to the clinic. One

critical roadblock has been the uncertain value of genomic measurements for improving clinical practice [5].

A small number of laboratory tests based on genomic signatures have been approved for clinical use. Tests

such as MammaPrint [20], Oncotype DX [14], and Prosigna [15] rely on measurement of expression for a set

of genes that are associated with differential survival and severity of breast cancer cases.

It is difficult to evaluate the clinical value these genomic signatures add beyond standard clinical factors

measured for all breast cancer patients, such as age, estrogen receptor status, tumor size, and tumor grade.

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2015. ; https://doi.org/10.1101/018168doi: bioRxiv preprint 

https://doi.org/10.1101/018168
http://creativecommons.org/licenses/by/4.0/


It is also known that tests based on genomic signatures are not part of the standard of care in many cases

[9, 5]. Ongoing clinical trials are being performed to evaluate the value of some of these signatures to make

adaptive treatment decisions [3].

Here we propose to evaluate the use of genomic signatures in a different setting by considering the value

added from using genomic signatures in designing a randomized clinical trial of a new treatment versus

control. One of the principal goals of a randomized trial is to estimate the average treatment effect. We

propose to use a genomic signature measured at baseline (pre-randomization) as a covariate that will be

adjusted for in the analysis at the end of the randomized trial. If the genomic signature is prognostic for the

primary outcome in the trial, this can lead to improved precision in estimating the average treatment effect

[8].

Our aim is to determine the additional prognostic value of the genomic signature beyond the outcome

variability already explained by standard clinical baseline variables. We describe a measure of prognostic

value that directly translates into a reduction in the sample size required to achieve a desired power in

a randomized trial. Prior work exists on using baseline variables to improve precision in the analysis of

randomized trials (called covariate adjustment) [21, 22, 7, 19, 17, 10]. To the best of our knowledge, the

value added by a genomic signature in this context has not yet been assessed.

We present results from a Monte Carlo study based on the data used to validate the MammaPrint model

[6]. We compare the precision gain when clinical covariates are supplemented with genomic predictions to

the gain when using clinical covariates alone to assess how much additional value is provided by the genomic

data. This technique allows us to approximate the added value of certain genomic predictions in increasing

precision in the analysis of randomized trial data.

2 Methods

2.1 Data

Microarray data used to validate the MammaPrint model [6] were gathered as described by the appendix of

[13]. This dataset consists of 307 breast cancer patients and is characterized in Table 1. This table describes

the key clinical factors gathered for these patients as well as their MammaPrint risk prediction, which is a

classification based on the risk score calculated by the MammaPrint model [20]. We dropped 11 patients

whose estrogen receptor (ER) status or tumor grade were unknown and conducted our analysis using the

296 remaining patients.

We also provide three external breast cancer data sets to supplement our main result derived from the

MammaPrint validation data. These datasets are described in the Supplement.

2.2 Statistical Method to Adjust for Baseline Covariates

We define the average treatment effect to be the difference between the population mean of the primary

outcome under assignment to treatment and the population mean under assignment to control. The term
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Characteristic Summary

n 307

Age (years) 47.08 (7.27)

Five-Year Recurrence

Yes 47

No 260

Tumor Size (mm) 21.48 (7.71)

Grade

1 47

2 126

3 126

Unknown 8

ER

+ 212

− 90

Unknown 5

MammaPrint Risk Prediction

High 194

Low 113

Table 1: Baseline characteristics of curated dataset Abbreviations: ER - estrogen receptor status,

Grade - tumor severity grading (3 is most severe), Five-Year Recurrence - whether or not cancer has reap-

peared after five years, MammaPrint risk prediction - high or low risk for cancer recurrence. Age, Tumor

Size are given as means with standard deviations.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2015. ; https://doi.org/10.1101/018168doi: bioRxiv preprint 

https://doi.org/10.1101/018168
http://creativecommons.org/licenses/by/4.0/


“covariate adjustment” means that information from baseline variables is used to improve the precision

in estimating the average treatment effect. This is done by adjusting for chance imbalances in baseline

variables between treatment and control arms. Since our focus is improved precision for estimating the

average treatment effect, we do not consider effects within subgroups; investigating the latter is an area for

future research.

Increased precision for estimation of the average treatment effect can lead to trials with fewer participants

and shorter duration if analysis timing is based on information monitoring [11, Chapter 7]. This means that

analyses take place when preplanned amounts of information have accrued, where information is defined as

the reciprocal of the estimator variance. Our definition of precision gain in Section 2.4 equals the percent

sample size reduction from using an adjusted estimator compared to the unadjusted estimator (defined

below), when information monitoring is used. This can equivalently be thought of as the percent sample size

reduction to achieve a desired power at a local alternative, comparing these two estimators, asymptotically.

These gains occur even when the treatment effect is zero, which is the setting of our simulation study.

Each participant in the trial contributes a data vector D = (W,A, Y ), where W = (W1, . . . ,Wj) is a

vector of covariates measured at baseline, A is an indicator of study arm (0 = control, 1 = treatment),

and Y is a binary outcome of interest which in our case is the indicator of cancer recurrence within 5

years from baseline. The trial data consist of n independent, identically distributed participant data vectors

{Di}ni=1 drawn from unknown distribution P . We assume a nonparametric model except that W and A are

independent by randomization, and we assume the regularity conditions in [18, Section 2.2].

The goal is to estimate the average treatment effect,

ψ = E[Y |A = 1]− E[Y |A = 0] = P (Y = 1|A = 1)− P (Y = 1|A = 0). (1)

The unadjusted estimator of ψ is defined as

ψ̂una =

∑n
i=1 YiAi∑n
i=1Ai

−
∑n

i=1 Yi(1−Ai)∑n
i=1(1−Ai)

.

This estimator is consistent (i.e., converges in probability to the population average treatment effect ψ)

but ignores the baseline variables W . If W is prognostic for Y then it is possible to improve precision by

appropriately adjusting for W . Throughout, we do not assume that W contains information about treatment

effect heterogeneity, i.e., who benefits more or less from treatment; we only use W as prognostic variables

that explain some of the variation in Y . This variation could be unrelated to treatment.

To leverage the information in W , we apply two approaches: an enhanced efficiency, doubly-robust

estimator of Rotnitzky et. al. [18], and a special case of their class of estimators that is slightly modified

for use in the randomized trial context by Colantuoni and Rosenblum [8, Section 4.2]. We call these ψ̂rot

and ψ̂col, respectively. Software to compute the former estimator using R is given by [18], and software to

compute the latter estimator is given in R and SAS by [8].

These estimators use parametric working models for the mean of the outcome given baseline variables

and study arm. We call these working models since we do not assume they are correctly specified. The true

data generating distribution may differ arbitrarily from the functional form of the model.
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Computation of ψ̂col is accomplished via the following steps:

1. Let α = (α0, . . . , αj)
T . Fit the following propensity score working model for P (A = 1|W ): g(W,α) =

logit−1 (α0 + α1W1 + . . .+ αjWj) via maximum likelihood parameter estimation. From this model fit,

obtain estimates α̂.

2. For each arm a ∈ {0, 1}, define the working modelQ(a)(W,β(a)) = logit−1
(
β
(a)
0 + β

(a)
1 W1 + . . . β

(a)
j Wj

)
for E(Y |A = a,W ). Fit the above model for a = 1 using weighted logistic regression with weights

1

g(W, α̂)
and using only participants with A = 1 to obtain estimated coefficients β̂(1) = (β̂

(1)
0 , . . . , β̂

(1)
j ).

Define the initial estimator for E[Y |A = 1] as µ̂1 =
1

n

∑n
i=1Q

(1)(Wi, β̂
(1)), where the sum is taken over

all participants. The estimator µ̂0 for E[Y |A = 0] is obtained analogously by setting a = 0, replacing

A = 1 with A = 0, and replacing
1

g(W, α̂)
by

1

1− g(W, α̂)
above.

3. Define the new covariate µa(W ) = Q(a)(W, β̂(a)) − µ̂a for each a ∈ {0, 1}, which uses µ̂a, β̂
(a) as esti-

mated in step 2. Fit the following augmented propensity score model for P (A = 1|W ): gaug(W,α, γ) =

logit−1(α0 +α1W1 + . . .+αjWj +γ0µ0(W )+γ1µ1(W )) using maximum likelihood estimation to obtain

estimated coefficients α̃ and γ̃ = (γ̃0, γ̃1).

4. Recompute step 2 using gaug(W, α̃, γ̃) in place of g(W, α̂) in the weights to obtain new estimates µ̃1, µ̃0.

Define the average treatment effect estimator ψ̂col = µ̃1 − µ̃0.

The estimator ψ̂rot of [18, Section 2] is as above except that it involves solving a non-convex optimization

problem leading to additional covariates in the model gaug in step 3, which leads to enhanced efficiency

guarantees. A link to the R code implementing both estimators is provided in Section 2.5.

Throughout, we assume there is no missing data and we observe the vector (Wi, Ai, Yi) for each participant

i. We also assume outcomes are observed soon after enrollment. By the randomization assumption, the

models g and gaug are correctly specified as long as each contains an intercept; however, the models Q(0), Q(1)

will typically be misspecified. An important feature of the above estimators is that they are consistent

regardless of whether the parametric models Q(0), Q(1) are correctly specified; that is, consistency holds even

when the true data generating distribution E(Y |A = a,W ) does not have the form Q(a)(W,β(a)) for any

β. Furthermore, each of these adjusted estimators is guaranteed to have asymptotic precision equal to or

greater than that of the unadjusted estimator.

It is also possible to use the output of step 2 to directly construct the estimator µ̂1 − µ̂0 of the average

treatment effect. This estimator is called the double-robust weighted least squares estimator (DR-WLS) and

is attributed to Marshall Joffe by Robins et al.[16]. The value of adding steps 3 and 4 is that the resulting

estimator has been proved to be asymptotically as or more precise than the unadjusted estimator [18, 8].

2.3 Prognostic Covariates

The baseline variables W used in the estimators defined above must be pre-specified. They can be any

functions of measurements made prior to randomization. We define four sets of covariates of interest which
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we will adjust for using the procedure described in Section 2.2:

• W−ER : {Age, Tumor Size, I(Tumor Grade = 2), I(Tumor Grade = 3)}

• WC : {Age, Tumor Size, I(Tumor Grade = 2), I(Tumor Grade = 3), ER Status}

• WG: {MammaPrint Risk Category}

• WCG: {Age, Tumor Size, I(Tumor Grade = 2), I(Tumor Grade = 3), ER Status} MammaPrint Risk

Category}

Here, I(TumorGrade = 2) is an indicator of whether or not the patient’s tumor is severity grade 2.

With these four sets of covariates, we are able to contrast gains in precision from different covariate

sources. We may compare adjusting for W−ER and WC to determine how much adding a clinical covariate

(ER status) to other clinical covariates improves precision. We can also determine the raw value of the

genomic predictor of interest (WG) as well as the comparative gain from the genomic predictor over clinical

covariates (WCG).

We have chosen to consider the clinical covariates stated here because they reflect quantities that clinicians

commonly use to evaluate cancer-related risks and courses of therapy. The number of covariates we are

adjusting for here exceeds what is recommended in [8]- they recommend 2-3 adjustment covariates. This

means that we risk non-negligible increases in estimator variance if our covariates do not provide information

about the outcome. We weigh this risk with the desire to compare the value of MammaPrint to the full set

of relevant clinical covariates available in our dataset, and present an examination of the potential losses in

the Results section.

2.4 Monte Carlo Trial Simulation

We conducted a simulation study with the goal of comparing the variance of the unadjusted and adjusted

estimators to determine how much precision we may gain from adjusting for clinical and genomic covariates.

We constructed data generating distributions that mimic features from our real data set.

To preserve the relationship between outcome and potentially prognostic covariates from the original data

set, we resample participants with replacement and create a new 296-patient sample for each simulated trial;

we record (W,Y ) for each resampled participant. This maintains the empirical joint distribution of (W,Y ),

preserving the correlation of these variables. In each simulated trial, the study arm assignment A of each

participant is a random draw from Bernoulli distribution with probability 1/2 of being 0 or 1, independent of

(W,Y ). The population average treatment effect defined in (1) corresponding to the above data generating

distribution is therefore ψ = 0.

Using resampling as described above, we construct I = 10, 000 simulated trial datasets (each of sample size

296). Using the ith simulated dataset, we compute the unadjusted treatment effect estimator ψ̂i
una and com-

pute the adjusted estimators ψ̂i
rot, ψ̂

i
col using each of the four predefined covariate sets W−ER,WC ,WG,WCG.

We then approximate the bias and variance of each of these estimators using their observed distribution
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over the 10,0000 replicated trials. Since ψ = 0, the bias B of an estimator is its average value over in-

finitely many hypothetical trials; we approximate this by the average over the 10,000 simulated trials we

conducted. We similarly approximate the variance. For the unadjusted estimator, Buna = 1
I

∑I
i=1 ψ̂

i
una,

σ2
una = 1

I−1

∑I
i=1(ψ̂i

una − Buna)2. The bias and variance approximations for the Rotnitzky and Colantuoni

estimators are calculated similarly. We are able to estimate the bias directly in the form Buna

We define the percent precision gains (called precision gains below) due to the use of each adjusted

estimator in comparison to the unadjusted estimator, as approximated by simulation, as Grot =
σ2
una − σ2

rot

σ2
una

x 100 and Gcol =
σ2
una − σ2

col

σ2
una

x 100. The percent precision gain equals, asymptotically (as sample size goes

to infinity), the percent reduction in sample size to achieve a desired power comparing the adjusted versus

unadjusted estimators. It equals 1− 1/RE, where RE is the asymptotic relative efficiency.

Simulations were conducted via the BatchJobs R package [4], which allows for an interface between R

and a cluster queuing system. We parallelized such that 100 simulated datasets were constructed concurrently

by each of 100 processors on a Sun Grid Engine (SGE) cluster, which sped up the computation of our

approximations accordingly.

We conducted an additional set of simulations to examine how sensitive the above simulation study is

to the particularities of the original dataset. In this second setting, we take ten random subsamples of size

m = 222 (75% of our sample size) of the original dataset. For each of these subsamples, we resample with

replacement a dataset of size 296 - our original sample size - and do this resampling 10,000 times. We

then calculate Grot, Gros for the different adjustment covariate scenarios exactly as described above for each

subsample. This gives us ten realizations of Grot, Gros. We present a histogram of these realizations for our

cases of interest (clinical, clinical + genomic) to show how much variation is caused by slightly changing the

original data set.

2.5 Reproducibility

All analyses presented here are completely reproducible. Code and data files are available at

https://github.com/leekgroup/genesigprecision

3 Results

Table 2 presents the main results of our simulation procedure. We are able to approximate the percent

gain in precision due to covariate adjustment when clinical and genomic predictions are incorporated either

separately or together. Additional adjustment for genomic predictions via the MammaPrint Risk Score for

cancer recurrence led to improved precision beyond what was achieved by adjusting for clinical covariates

alone.

The improvement due to inclusion of ER status above other clinical covariates was variable depending on

adjustment method - Grot was slightly negative, relatively, when ER status was included, while Gcol showed

a modest gain. The additional gain due to the genomic predictor exceeded this threshold. We found that
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Covariates Buna σ2
una Brot σ2

rot Bcol σ2
col Grot Gcol

W−ER -0.00079 0.00182 -0.00084 0.00172 -0.00094 0.00172 5.54% 5.14%

WC -0.00079 0.00182 -0.00101 0.00173 -0.00087 0.00171 4.86% 5.58%

WG -0.00079 0.00182 -0.00088 0.00172 -0.00088 0.00172 5.36% 5.36%

WCG -0.00079 0.00182 -0.00097 0.00167 -0.00093 0.00169 7.78% 6.96%

Table 2: Precision gain under different covariate adjustments This table presents the simulated

estimates for the treatment effect and variance of the treatment effect estimator when unadjusted (ψ̂una)

and under the two adjustment approaches ψ̂rot, ψ̂col. Each of 10,000 times, we resampled records from the

original dataset with replacement to generate a new dataset of size n = 296. In every iteration, we adjusted

the treatment effect estimator using a prespecified set of baseline covariates: W−ER is clinical covariates

only, excluding ER status; WC is all clinical covariates only; WG is only genomic covariates; WCG includes

all clinical and genomic covariates.

the MammaPrint Score provided an additional precision gain of about 2-3% above using all clinical factors.

Grot, Gcol are also our approximations of by how much we would be able to reduce the sample size of our

trial if we adjusted for the different sets of covariates when estimating the treatment effect.

To examine the impact of having a slightly different dataset than the original dataset, we created 10

modified datasets, each consisting of a random subset of 75% of the original participants (where each partic-

ipant’s data vector was kept intact). Then, for each modified dataset, we ran the entire analysis described

above, involving resampling 10,000 simulated trials each with 296 participants, as described at the end of

section 2.4. Histograms of the gains due to clinical factors and the gains due to adding genomics appear in

Figure 1. We found that the approximation of the gain may vary ±3% around its mean, suggesting that

our approximations from the resampling of the original datasets are fairly stable.

As an additional form of validation, we re-ran the same 10,000 resampling procedure described at the

beginning of section 2.4 using three external datasets. The datasets and full results appear in the Supple-

ment. These results showed either slight losses or gains comparable to those that we saw in the MammaPrint

dataset when we included the MammaPrint risk prediction as a covariate.

Finally, we set a baseline for what we may expect in terms of precision gain when covariates provide

no predictive value by completely permuting the labels in our dataset. This permutation should remove

association between the outcome and covariates of interest, and we should see some loss due to adjusting

for uninformative covariates. The results are shown in Table 3. As expected, all combinations of covariates

produce losses near or below zero when labels are permuted and everything is independent. We observe a

maximum loss in precision of about 4.6%, and this is certainly non-negligible, especially given that our gains

in Table 2 are on the same order of magnitude. We stress that this is due to the inclusion of greater than the

recommended number of adjustment covariates, as described in section 2.3. The potential losses are smaller

if fewer uninformative covariates are used, or if the sample size is larger. We exceeded the recommended

number of covariates to make a fair comparison between common clinical covariates and the addition of

genomic predictions.
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Figure 1: Variability in Percentage Gain To approximate the variability in the percentage gain due to

covariate adjustment, we took ten subsamples of 75% of our dataset and re-ran 10,000 resamplings on each

of the ten. The left panel shows the histogram of the gain due to clinical covariates only (WC), and the right

panel shows the gain due to both clinical and genomic covariates together (WCG) for the ten subsamples.

We see that the gain may vary ±3% from the average approximation we saw over the entire I = 10, 000

resampled datasets from the original run described in Table 2.

Covariates Buna σ2
una Brot σ2

rot Bcol σ2
col Grot Gcol

W−ER -0.00088 0.00354 -0.00045 0.00368 -0.00073 0.00363 -4.02% -2.58%

WC -0.00088 0.00354 -0.00074 0.00370 -0.00056 0.00368 -4.56% -3.81%

WG -0.00088 0.00354 -0.00091 0.00356 -0.00091 0.00356 -0.4% -0.4%

WCG -0.00088 0.00354 -0.00056 0.00372 -0.00067 0.00369 -4.9% -4.2%

Table 3: Precision gain under different covariate adjustments - full permutation This table presents

the simulated estimates for the treatment effect and variance of the treatment effect estimator when unad-

justed (ψ̂una) and under the two adjustment approaches ψ̂rot, ψ̂col. Each of 10,000 times, all covariate values

in the patient data were permuted to simulate independence and a new treatment indicator was randomly

generated. This was done to demonstrate that covariates independent of the outcome will provide no preci-

sion gain yet will not materially hurt precision. In every iteration, we adjusted the treatment effect estimator

using a prespecified set of baseline covariates: W−ER is clinical covariates only, excluding ER status; WC is

all clinical covariates only; WG is only genomic covariates; WCG includes all clinical and genomic covariates.
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4 Conclusion

Adjusting for baseline covariates and estimating treatment effects with augmented outcome regression models

is one way to potentially improve treatment effect estimation precision. If baseline factors are collected for

patients enrolled in a study, then adjusting for them can reduce the sample size necessary to obtain a

desired precision in estimation of the average treatment effect. We showed via simulation that adjusting for

the clinical covariates Age, Tumor Size, Tumor Grade, and ER status led to a gain of 5-6% in estimator

precision. This percent gain can be directly translated into the amount (5%) by which sample size can be

reduced when the adjusted estimator is used as compared to the unadjusted estimator.

Adjusting for genomic covariates on their own provides a similar precision gain of 5-6%. The precision

gain when adjusting for genomic covariates in addition to standard clinical variables was 1-2%, resulting in

similar reductions in sample size. This gain is modest, but not surprising given the prognostic power of the

MammaPrint score in the validation set examined here (89% sensitive to high risk-of-recurrence patients,

42% specific to low risk-of-recurrence [13]). This gain is comparable to the gain one would get by including

ER status as a baseline adjustment variable in addition to the other clinical covariates. A cost/benefit

analysis taking into account the cost of running the MammaPrint test and the relative gain it may impart is

warranted. The approach described here allows one to quantify the value of using MammaPrint along with

clinical variables for improving estimator precision in a clinical trial.
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