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Principal components analysis (PCA) is a widely used tool for inferring population structure and 
correcting confounding in genetic data1–8.  We introduce a new algorithm, FastPCA, that leverages 
recent advances in random matrix theory9–11 to accurately approximate top PCs while reducing time and 
memory cost from quadratic to linear in the number of individuals, a computational improvement of 
many orders of magnitude.  We apply FastPCA to a cohort of 54,734 European Americans, identifying 5 
distinct subpopulations spanning the top 4 PCs.  Using a new test for natural selection based on 
population differentiation along these PCs, we replicate previously known selected loci and identify 
three new signals of selection, including selection in Europeans at the ADH1B gene.  The coding variant 
rs1229984 has previously been associated to alcoholism12–14 and shown to be under selection in East 
Asians13,15–17; we show that it is a rare example of independent evolution on two continents18,19. 

The FastPCA method generalizes the method of power iteration20, a technique to estimate the largest 
eigenvalue and corresponding eigenvector of a matrix.  A random vector is repeatedly multiplied by a 
target matrix and normalized.  Thus, it is projected onto all the eigenvectors of the matrix and then 
scaled by their corresponding eigenvalues.  The projection along the eigenvector with the largest 
eigenvalue grows fasters than the rest, and the product converges to this eigenvector.  The method of 
power iteration can be combined with the Gram-Schmidt orthogonalization process to produce an 
orthonormal basis of the top eigenvectors, by repeating this process and orthogonalizing subsequent 
vectors against previous estimated eigenvectors20.  In genetic data sets, it is of interest to estimate the 
top eigenvectors of a genetic relationship matrix (GRM) between individuals1,2.  However, this matrix 
requires time 𝑂(𝑀𝑁2) to compute (where 𝑀 is the #SNPs and 𝑁 is the #individuals) and time 𝑂(𝑁3) to 
decompose, a time cost that may be prohibitive in large data sets.  Instead, FastPCA uses a block-
Lanczos process to construct an accurate estimate for the top PCs; accuracy is improved by estimating 
additional PCs and using them to create a low-rank approximation of the genotype matrix9–11. Singular 
value decomposition is then applied to the low-rank genotype matrix approximation to approximate the 
top eigenvectors of the GRM (see Online Methods), reducing time cost and memory usage to 𝑂(𝑀𝑁) – 
much more tractable than other methods (see below).  In addition, we generalize a previous selection 
statistic developed for discrete subpopulations21 to detect unusual allele frequency differences along 
inferred PCs. This is based on the fact that the squared correlation of each SNP to a PC, rescaled to 
account for genetic drift, follows a chi-square (1 d.o.f.) distribution under the null hypothesis of no 
selection. We have released open-source software implementing the methods (see Web Resources). 

We used simulated data to compare the running time and memory usage of FastPCA to three previous 
methods: smartpca1,2, PLINK2-pca22, and flashpca23  (see Web Resources).  We simulated genotype data 
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from six populations with a star-shaped phylogeny using 100k SNPs (typical for real data after LD-
pruning) and up to 100k individuals (see Online Methods).  For each run, running time was capped at 
100 hours and memory usage was capped at 40GB.  The running time and memory usage of FastPCA 
scaled linearly with simulated dataset size (Figure 1), compared with quadratically or cubically for other 
methods. The computation became intractable at 50k-70k individuals for smartpca, PLINK2-pca and 
flashpca. The largest dataset, with 100k SNPs and 100k individuals, required only 56 minutes and 3.2GB 
of memory with FastPCA (Supplementary Table 1). Thus, FastPCA enables rapid principal components 
analysis without specialized computing facilities. 

We next assessed the accuracy of FastPCA, using PLINK2-pca22 as a benchmark.  We used the same 
simulation framework as before, with 10k individuals (1,667k individuals per population) and 50k SNPs.  
We varied the divergence between populations, as quantified by 𝐹𝑆𝑇

24. We assessed accuracy using the 
Mean of Explained Variances (MEV) of the 5 population structure PCs (see Online Methods).  We 
determined that the results of FastPCA and PLINK-pca were virtually identical (Figure 2). This indicates 
that FastPCA performs comparably to standard PCA algorithms while running much faster. 

We ran FastPCA on the GERA cohort (see Web Resources), a large European American dataset 
containing 54,734 individuals and 162,335 SNPs after QC filtering and LD-pruning (see Online Methods).  
This computation took 57 minutes and 2.6GB of RAM.  PC1 and PC2 separated individuals along the 
canonical Northwest European (NW), Southeast European (SE) and Ashkenazi Jewish (AJ) axes25, as 
indicated by labeling the individuals by predicted fractional ancestry from SNPweights26 (Figure 3).  PC3 
and PC4 detected additional population structure within the NW population. 

To further investigate this subtle structure, we projected POPRES individuals from throughout Europe27 
onto these PCs2 (see Online Methods). This analysis recapitulated the position of SE populations via the 
placement of the Italian individuals, and determined that PC3 and PC4 separate the NW individuals into 
Irish (IR), Eastern European (EE) and Northern European (NE) populations (Figure 4).  This visual 
subpopulation clustering was confirmed via k-means clustering on the top 4 PCs, which consistently 
grouped the AJ, SE, NE, IR and EE populations separately (Supplementary Figure 1). 

Population differentiation between closely related populations can be valuable in detecting signals of 
natural selection21,25,28,29.  We generalized a previous method for detecting selection across discrete 
subpopulations21 to detect unusual allele frequency differences along inferred PCs by analyzing the 
squared correlations of the genotypes at each SNP to a PC.  These squared correlations, rescaled to 
account for population differences due to genetic drift, follow a chi-square (1 d.o.f.) distribution under 
the null hypothesis of no selection (see Online Methods), as confirmed by simulations (Supplementary 
Figure 2, Supplementary Table 2). Using the PCs computed on the 162,335 LD-pruned SNPs, we 
calculated these selection statistics for 608,981 non-LD-pruned SNPs (see Online Methods).  The 
resulting Manhattan plots for PCs 1-4 are displayed in Figure 5 (QQ plots are displayed in Supplementary 
Table 3).   Analyses of PCs 5-10 indicated that these PCs do not represent true population structure 
(Supplementary Figure 4), but are either dominated by a small number of long-range LD loci30–32 or are 
correlated with the missing genotyping rate in individuals.  

Genome-wide significant signals (listed in Table 1) included several known selection regions33–37 and 
novel signals at ADH1B, IGFBP3 and IGH (see below).  Suggestive signals were observed at additional 
known selection regions36,38 (Supplementary Table 3).  After removing the regions in Table 1, rerunning 
FastPCA and recalculating selection statistics, all of these regions remained significant except for a 
chromosomal inversion on chromosome 830,31 (Supplementary Figure 5, Supplementary Table 4).  Thus, 
the remaining regions are not due to PC artifacts caused by SNPs inside these regions.  Detecting subtle 
signals of selection benefitted from the large sample size, as subsampling the GERA data set at smaller 
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sample sizes and recomputing PCs and selection statistics generally led to less significant signals 
(Supplementary Table 5). 

We identified a genome-wide significant signal of selection at rs1229984, a coding SNP (Arg47His) in the 
ADH1B alcohol dehydrogenase gene (Table 1).  The derived allele has been shown to have a protective 
effect on alcoholism39 and to produce an REHH signal40 in East Asians16, but was not previously known to 
be under selection in Europeans.  (Previous studies noted the higher frequency of the derived T allele in 
western Asia compared to Europe, but indicated that selection or random drift were both plausible 
explanations41,42.)  We examined the allele frequency of the derived T allele in the five subpopulations: 
AJ, SE, NE, IR and EE (Supplementary Table 6).  We observed derived allele frequencies (DAF) of 0.21 in 
AJ, 0.10 in SE, and 0.05 or lower in other subpopulations, consistent with the higher frequency of the 
derived allele in western Asia.  A comparison of NE to the remaining subpopulations using the discrete 
subpopulation selection statistic21 also produced a genome-wide significant signal after correcting for all 
hypotheses tested (Supplementary Table 7); this is not an independent experiment, but indicates that 
this finding is not due to assay artifacts affecting PCs. 

To further understand the selection at this locus, we examined the allele frequency of rs1229984 in 
1000 Genomes project43 populations (see Web Resources), along with the allele frequency of the 
regulatory SNP rs3811801 that may also have been a target of selection in Asian populations13. The 
haplotype carrying the derived allele at rs3811801 (and corresponding haplotype H7) was absent in 
populations outside of East Asia (Supplementary Table 8). This indicates that if natural selection acted 
on this SNP in Asian populations, selection acted independently at this locus in Europeans. One possible 
explanation for these findings is that rs1229984 is an older SNP under selection in Europeans, while 
rs3811801 is a newer SNP under strong selection in Asian populations leading to the common haplotype 
found in those populations. 

The IGFBP3 insulin-like growth factor-binding protein gene had two SNPs reaching genome-wide 
significance.  Genetic variation in IGFBP3 is associated with increased risk of breast cancer44 and is also 
associated with pulse pressure45, blood pressure and hypertension46. The IGH immunoglobulin heavy 
locus had one genome-wide-significant SNP and two suggestive SNPs with 𝑝-value < 10−6. Genetic 
variation in IGH is associated with multiple sclerosis47  The IGFBP3 and IGH SNPs each had substantially 
higher minor allele frequencies in Eastern Europeans (Supplementary Table 6), but were not genome-
wide significant under the discrete subpopulation selection statistic21 (Supplementary Tables 9-10), but 
the existence of multiple SNPs at each of these loci with p < 10−6 for the PC-based selection statistic 
suggests that these findings are not the result of assay artifacts. 

We have presented FastPCA, a computationally efficient (linear-time and linear-memory) algorithm for 
accurately estimating top PCs. Although mixed model association methods are increasingly appealing for 
conducting genetic association studies48,49, we anticipate that PCA will continue to prove useful in 
population genetic studies, in characterizing population stratification when present in association 
studies, in supplementing mixed model association methods by including PCs as fixed effects in studies 
with extreme stratification, and in correcting for stratification in analyses of components of 
heritability50,51. We have also presented a new method to detect selection along top PCs in datasets with 
subtle population structure. This method can detect selection at genome-wide significance, an 
important consideration in genome-wide selection scans.  In particular, we detected genome-wide 
significant evidence of selection in Europeans at the ADH1B locus, which was previously reported to be 
under selection in east Asian populations13,15–17 using REHH40 (which can only detect relatively recent 
signals and does not work on standing variation52) – and at the disease-associated IGFBP3 and IGH loci. 
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We note that our work has several limitations. First, top PCs do not always reflect population structure, 
but may instead reflect assay artifacts53 or regions of long-range LD31; however, PCs 1-4 in GERA data 
reflect true population structure and not assay artifacts. Second, common variation may not provide a 
complete description of population structure, which may be different for rare variants54; we note that 
based on analysis of real sequencing data with known structure, we recommend that LD-pruning and 
removal of singletons (but not all rare variants) be applied in data sets with pervasive LD and large 
numbers of rare variants (see Supplementary Note). Third, our selection statistic is only capable of 
detecting that selection occurred, but not when or where it; indeed, top PCs may not perfectly 
represent the geographic regions in which selection occurred. Despite these limitations, we anticipate 
that the methods introduced here will prove valuable in analyzing the very large data sets of the future. 

Web Resources 
EIGENSOFT version 6.0.1, including open-source implementation of FastPCA and smartpca: 
http://www.hsph.harvard.edu/alkes-price/software/ 

PLINK2: https://www.cog-genomics.org/plink2/ 

flashpca: https://github.com/gabraham/flashpca 

GERA cohort: http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v1.p1 

1000 Genomes: http://www.1000genomes.org/ 
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Online Methods 
Description of FastPCA method 
We are given an input 𝑀 × 𝑁 genotype matrix 𝑿, where 𝑀 is the number of SNPs and 𝑁 is the number 
of individuals (e.g. each row is a SNP, each column is a sample). Each entry in this matrix takes its values 
from {0,1,2} indicating the count of variant alleles for a sample at a SNP. From this matrix we can 

generate the normalized 𝑀 × 𝑁 genomic matrix 𝒀 = (𝒚1
𝑇 , 𝒚2

𝑇 , 𝒚𝑀
𝑇 )𝑇 where each row 𝒚𝑖 has 

approximately mean 0 and variance 1 for SNPs in Hardy-Weinberg equilibrium. 

𝑝̂𝑖 =
∑ 𝑥𝑖𝑗

𝑁
𝑗=1

2𝑁𝑖
=

𝒙𝑖𝟏

2𝟏𝑇𝟏
 

𝑦𝑖𝑗 =
𝑥𝑖𝑗 − 2𝑝̂𝑖

2𝑝̂𝑖(1 − 𝑝̂𝑖)
 

𝒚𝑖 = (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑁) =  
𝒙𝑖 − 2𝑝̂𝑖𝟏𝑇

2𝑝̂𝑖(1 − 𝑝̂𝑖)
 

 

(1) 

Here,  𝒙𝑖 is the row vector of genotypes for SNP 𝑖 and 𝒚𝑖 is the normalized row vector. 𝑥𝑖𝑗  and 𝑦𝑖𝑗  are 

the genotype/normalized genotype at SNP 𝑖 for sample 𝑗. 𝑁𝑖  is the number of valid genotypes at SNP 𝑖. 
All this is used to calculate 𝑝̂𝑖, the sample allele frequency for SNP 𝑖, which is used to normalize the 
genotypes. In practice, the genotype matrix is normalized through the use of a lookup table mapping 
from genotypes (stored as 0, 1 or 2 copies of the alternate allele, or missing data) to normalized 
genotypes (using the above formula, with missing data having a normalized value of 0). 

We are seeking the top 𝐾 PCs for the normalized genomic matrix 𝒀. Traditional PCA algorithms compute 
the PCs by performing the eigendecomposition of the genetic relationship matrix (𝐺𝑅𝑀 = 𝒀𝑇𝒀/𝑀), a 
costly procedure which returns all the principal components. FastPCA speeds this process up by only 
approximating the top 𝐾 PCs. 

FastPCA is seeded with a random 𝑁 × 𝐿 matrix 𝑮0 composed of values drawn from a standard Gaussian 
distribution. 𝐿 affects the accuracy of the result and 𝐿 should be greater than 𝐾. For 𝐾 = 10, 𝐿 = 20 is a 
good choice. Then, for 𝐼 iterations, 𝑯𝑖 = 𝒀 × 𝑮𝑖  and 𝑮𝑖+1

′ = 𝒀𝑇 × 𝑯𝑖. 𝑮𝑖+1 is found by taking the QR-
decomposition of 𝑮𝑖+1

′  where 𝑮𝑖+1
′ = 𝑮𝑖+1𝑹. This step normalizes 𝑮𝑖 to prevent rounding errors during 

the computation. 

After the iterative step completes, the singular value decomposition of matrix 𝑯 = (𝑯0|𝑯1| … |𝑯𝐼) is 

taken: 𝑯 = 𝑼𝐻𝚺H𝑽𝐻
𝑇 . 𝑼𝐻 is a low-rank approximation to the column-space of 𝒀, where 𝒀 ≈ 𝑼𝐻𝑼𝐻

𝑇 𝒀. 
The SVD of 𝑻 = 𝑼𝐻

𝑇 𝒀 = 𝑼𝑇𝚺𝑇𝑽𝑇
𝑇  can be computed efficiently and approximates the SVD of 𝒀 since 𝒀 =

𝑼𝚺𝑽𝑇 ≈ 𝑼𝐻𝑻 = 𝑼𝐻𝑼𝑇𝚺𝑇𝑽𝑇
𝑇 . For the PCA, we are only interested in the left 𝐾 columns of 𝑽𝑇 and the 

first 𝐾 entries along the diagonal of 𝚺𝑇. 

Simulation framework 
Simulated genotypes at a particular SNP were generated for multiple populations separated by a given 
fixation index (𝐹𝑆𝑇) by first generating an ancestral population allele frequency 𝑝 from a 
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.05,0.95) distribution, and then generating individual population frequencies from a 

truncated 𝐵𝑒𝑡𝑎 (𝑝 ×
1−𝐹𝑆𝑇

𝐹𝑆𝑇
, (1 − 𝑝) ×

1−𝐹𝑆𝑇

𝐹𝑆𝑇
) distribution, where allele frequencies outside of 

[0.01,0.99] are discarded21,55. This was to facilitate generation of more complicated population 
structures; a descendent population frequency could be plugged into the above equation to generate 
additional population frequencies separated by a different 𝐹𝑆𝑇. When the minor allele frequency 
approached 0, the method to generate the beta random variate would crash. Once a population allele 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 22, 2015. ; https://doi.org/10.1101/018143doi: bioRxiv preprint 

https://doi.org/10.1101/018143


 

 

frequency 𝑝𝑖  was established, 𝑁𝑖  individual genotypes would be generated from a 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2, 𝑝𝑖) 
distribution. 

To assess running time, the simulated datasets had 𝐹𝑆𝑇 = 0.01, 𝑀 = 100𝑘 SNPs and 𝑁 ≈
{1𝑘, 1.5𝑘, 2𝑘, 3𝑘, 5𝑘, 7𝑘, 10𝑘, 15𝑘, 20𝑘, 30𝑘, 50𝑘, 70𝑘, 100𝑘} individuals (since there were 6 

populations, 𝑁𝑖 = 𝑟𝑜𝑢𝑛𝑑 (
𝑁

6
)).  Throughout this paper we report CPU time, but due to multithreading 

present in the GSL56 and OpenBLAS57 libraries run time was about 60% of CPU time.  Accuracy was 
assessed using 𝑀 = 50𝑘 SNPs and 𝑁 ≈ 10𝑘 individuals at 𝐹𝑆𝑇 = {0.001,0.002, … ,0.010}. 

Assessing accuracy 
Accuracy was assessed via the Mean or Explained Variances (MEV) of eigenvectors.  Two different sets 
of 𝐾 𝑁-dimensional principal components each produce column space. A metric for the performance of 
a PCA algorithm against some baseline is to see how much the column overlap. This is done by 
projecting the eigenvectors of one subspace onto the other and finding the mean lengths of the 
projected eigenvectors. If we have a reference set of PCs (𝒗1, 𝒗2, … , 𝒗𝐾) against which we wish evaluate 
the performance a set of computed PCs (𝒖1, 𝒖2, … , 𝒖𝐾), then the performance calculation becomes:  

𝑀𝑃𝐿 = 𝐾−1 ∑ √∑(𝒗𝑘 ⋅ 𝒖𝑗)
2

𝐾

𝑗=1

𝐾

𝑗=1

= 𝐾−1 ∑‖𝑼𝑇𝒗𝑘‖

𝐾

𝑗=1

 (2) 

 

 

Here, 𝑼 is a matrix whose column vectors are the PCs which we are testing. The test matrix can either be 
the result of another computation or the truth for a simulated sample. 𝐾 eigenvectors can describe the 
population structure in a dataset with 𝐾 + 1 populations. They can be constructed by first creating a 
vector 𝒗𝑘

∗ = (𝑣𝑘,1
∗ , 𝑣𝑘,2

∗ , … 𝑣𝑘,𝑁
∗ ) where 𝑣𝑘,𝑗

∗ = 1 if individual 𝑗 is in population 𝑘 and 0 otherwise. The set 

of eigenvectors {𝒗1, 𝒗2, … , 𝒗𝐾} are constructed by taking 𝐾 of these vectors, normalizing them to have 
mean 0, and scaling/orthogonalizing them via the Gram-Schmidt process. 

GERA data set 
The GERA dataset comprises 670,176 SNPs and 62,318 individuals of European descent from Northern 
California58. Individuals were filtered to remove those with missing sex information, individuals related 
according to the provided pedigree data or with observed genomic relatedness greater than 0.05 in the 
GRM22 and individuals with less than 90% European ancestry as predicted by SNPweights26 using a 
worldwide dataset containing European, African, Asian and Native American ancestry. After filtering, 
54,734 individuals remained. 

SNPs were initially filtered to remove non-autosomal SNPs, SNPs with minor allele frequency less than 
1%, and SNPs with >1% missing data, leaving 608,981 SNPs. The second stage of filtering removed SNPs 
that failed PLINK’s Hardy-Weinberg Equilibrium test22 with 𝑝 < 10−6, and performed LD-pruning using 
PLINK. Due to regions of long-range LD, LD persisted even after one filtering run. Multiple rounds of LD 
filtering were performed using an 𝑟2 cutoff of 0.2 until additional rounds of LD filtering did not remove 
additional SNPs, leaving 162,335 SNPs.  Selection statistics (see below) were computed on the set of 
608,981 SNPs, prior to H-W filtering and LD-pruning.  We note that many of the SNPs producing signals 
of selection generated significant H-W p-values (e.g. H-W 𝑝 = 1.37 × 10−79 for LCT SNP rs6754311), 
which is an expected consequence of unusual population differentiation. 

SNPweights26 was used to predict fractional Northwest European, Southeast European, and Ashkenazi 
Jewish ancestry for each individual. In Figure 3, percentage ancestry in each of these three populations 
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was mapped to an integer in [0,255], which was then used for the RGB color value for that sample, so a 
NW sample would appear red, SE would appear green and AJ would appear blue. 

PC Projection 
POPRES27 individuals were projected onto these PCs. The left singular vectors (𝑼) were generated by 
multiplying normalized genotypes for all SNPs in GERA  (𝒀𝐺𝐸𝑅𝐴) by the PCs (𝑽) and scaling by the 
singular values (𝚺), the number of SNPs used to calculate the PCs (𝑀) and the number of SNPs used for 
projection (𝑀𝐺𝐸𝑅𝐴): 𝑼 = 𝒀𝐺𝐸𝑅𝐴𝑽𝚺−1𝑀/𝑀𝐺𝐸𝑅𝐴. Projected PCs were then calculated by multiplying the 
corresponding set of SNPs in POPRES by these singular vectors and scaling again by the singular values: 

𝑽𝑃𝑂𝑃𝑅𝐸𝑆 = 𝒀𝑃𝑂𝑃𝑅𝐸𝑆
𝑇 𝑼𝚺−1. The projected individuals were overlaid on the PCA plot of GERA individuals 

and colored according to population membership and consistently with population assignment from 
SNPweights26. 

Selection statistic 
Previous work21 shows that for a SNP 𝑖 genotyped in two populations, the difference in allele frequency 
estimates approximately follows a normal distribution.  

𝐷𝑖 = 𝑝̂𝑖1 − 𝑝̂𝑖2~𝑁 [0, 𝑝̂𝑖(1 − 𝑝̂𝑖) (2𝐹𝑆𝑇 +
1

2𝑁1
+

1

2𝑁2
)] = 𝑁[0, 𝜎𝐷

2] (3) 

Here,  𝑝̂𝑖𝑞 is the allele frequency estimate of SNP 𝑖 for a sample of size 𝑁𝑞 from population 𝑞 and 𝐹𝑆𝑇 is 

the measure of differentiation between the two populations. Our goal is to extend this formula to 
individuals with fractional ancestries, and then to continuous-valued PCs. 

First, consider the case with two discrete subpopulations. Rather than treating the subpopulations 
separately, we define a vector 𝜶 where 𝛼𝑗 indicates the ancestry in population 1 (e.g. 𝛼𝑗 = 1 if sample 𝑗 

is in population 1 and 0 if sample 𝑗 is in population 2). 𝐷𝑖 can be rewritten as: 

𝑝̂1 =
𝒙𝑖𝜶

2𝟏𝑇𝜶
, 𝑝̂2 =

𝒙𝑖(𝟏 − 𝜶)

2𝟏𝑇(𝟏 − 𝜶)
, 𝐷𝑖 =

𝒙𝑖𝜶

2𝟏𝑇𝜶
−

𝒙𝑖(𝟏 − 𝜶)

2𝟏𝑇(𝟏 − 𝜶)
 

 
(4) 

If we run PCA on this sample, we would ideally get an eigenvector 𝒗 that has value 𝑣1 for individuals in 
population 1 and −𝑣2 for individuals in population 2, where (since 𝒗𝑇𝟏 = 0, 𝒗𝑇𝒗 = 1) 

𝑣𝑞 =
1

𝑁𝑞

√
𝑁1𝑁2

𝑁
 

 

(5) 

In this case, 𝐷𝑖 can be rewritten as: 

𝐷𝑖 =
1

2
√

𝑁1𝑁2

𝑁
𝒙𝑖𝒗 

 

(6)  

In the limiting case where 𝐹𝑆𝑇 approaches 0, the statistic becomes: 

𝐷𝑖
2

𝜎2
=

1
4

𝑁1𝑁2
𝑁 𝒙𝑖𝒗

𝑝̂𝑖(1 − 𝑝̂𝑖) (
1

2𝑁1
+

1
2𝑁2

)
= [(

𝒙𝑖 − 2𝑝̂𝑖𝟏𝑇

2𝑝̂𝑖(1 − 𝑝̂𝑖)
) 𝒗]

2

= [𝒚𝑖𝒗]2 (7) 
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Thus, the square of the SNP weight follows a chi-square 1-d.o.f. distribution in the case where 𝐹𝑆𝑇 → 0. 
In the case where 𝐹𝑆𝑇 ≠ 0, then the scaling parameter has to be changed, but 𝐷𝑖 still follows a normal 
distribution. 

In the case with fractional ancestry (𝛼𝑗 ∈ [0,1]), 𝑝̂1, 𝑝̂2 and 𝐷𝑖 can still be estimated using equation (4). 

The individual 𝑝̂𝑞s will still asymptotically follow a normal distribution (because of the Lyapunov central 

limit theorem59), but will be correlated due to individuals with fractional ancestry contributing to both 
estimates. Thus, 𝐷𝑖 will still follow a normal distribution, but the variance of equation (3) will not hold. 

Now consider the case where we do not have fractional ancestries, but rather an eigenvector that 
separates individuals along some axis of variation. We can treat the eigenvector as a linear 
transformation of the ancestry vector: 

𝜶 = 𝛽0 + 𝛽1𝒗 (8) 
Substituting these values into (4), we find:  

𝐷𝑖 =
𝛽1

2𝑁𝛽0(1 − 𝛽0)
𝒙𝑖𝒗 ∝ 𝒚𝑖𝒗 (9) 

Thus, our new selection statistic 𝐷𝑖 is based on the dot product of the normalized genotypes and the 
eigenvector. Since the variance of 𝐷𝑖 is not known, it will need to be rescaled in order to follow a 
𝑁(0,12) distribution. 

(1) If we are operating on the same set of SNPs that we used for PCA, then the rescaling of 𝒚𝑖𝒗 is 
straightforward. Because PCA is the same as SVD, we see that: 

𝒀 = 𝑼𝚺𝑽𝑇 
𝑼 = 𝒀𝑽𝚺−1 

(10) 

Here, 𝑽 contains the right singular vectors which are equivalent to the PCs, 𝑼 contains the left singular 
vectors which are rescaled SNP weights and 𝚺 contains the singular values which are the square roots of 
the eigenvalues of the GRM. 𝑽 and 𝑼 are unitary, so the columns of 𝑼 are guaranteed to have a norm of 

1. Multiplying 𝑼 by √𝑀 will then produce a properly normalized vector of differences 𝑫 =
(𝐷1, 𝐷2, … , 𝐷𝑀)𝑇. In other words: 

√𝑀

Σ𝑘
𝒚𝑖𝒗𝑘~𝑁(0,1) (11) 

In the case where we are calculating PCs on a different set of SNPs than the one for which we are 
calculating weights, then the above property is not guaranteed to hold. In this case, (2) a properly 
normalized 𝑫 can be obtained by scaling 𝒀𝑽 so that it has norm 𝑀, i.e. scaling 𝒚𝑖𝒗 so it has variance 1. 
This is the approach used in all of our analyses. When rescaling the weights in GERA using equation (11), 
the variances for PCs 1-4 were 1.03-1.07, while the variances for PCs 5-10 ranged 0.93-8.12. 

One assumption underlying the statistic is that the true minor allele frequency is not extremely small, 
otherwise the assumption of normality will not hold21. For this reason, the selection statistic was only 
computed for those SNPs containing minor allele frequency greater than 1%.
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Figures 
Figure 1. Running time and memory requirements of FastPCA and other methods. 
The CPU time and memory usage of FastPCA scale linearly with the number of individuals. On the other 
hand, smartpca and PLINK2-pca scale between quadratically and cubically, depending on whether 
computing the GRM (quadratic) or the eigendecomposition (cubic) is the rate-limiting step. The running 
time of flashpca scales quadratically (because it computes the GRM), but its memory usage scales 
linearly because it stores the normalized genotype matrix in memory.  With 50k individuals, smartpca 
exceeded the time constraint (100 hours) and flashpca exceeded the memory constraint (40GB).  With 
70k individuals, PLINK2-pca exceeded the memory constraint (40GB). Run times are based on one core 
of a 2.26-GHz Intel Zeon L5640 processor; we caution that run time comparisons may vary by a small 
constant factor as a function of the computing environment.  Numerical data are provided in 
Supplementary Table 1. 
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Figure 2. Accuracy of FastPCA and PLINK2-pca. 
FastPCA and PLINK2-pca were run on simulated populations of varying divergence. The simulated data 
comprised 50k SNPs and 10k total individuals from six subpopulations derived from a single ancestral 
population. PCs computed by PLINK2-pca and FastPCA were compared to the true population PCs and to 
each other using the Mean of Explained Variances (MEV) metric (see text). FastPCA explained the same 
amount of true population variance as PLINK2-pca in all experiments, and the methods output nearly 
identical PCs (MEV>0.999).
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Figure 3. PCA results on GERA data set. 
FastPCA and SNPweights26 were run on the GERA cohort and the principal components from FastPCA 
were plotted. Individuals were colored by mapping Northwest European (NW), Southeast European (SE) 
and Ashkenazi Jewish (AJ) ancestry estimated by SNPweights to the red/green/blue color axes (see 
Online Methods). PC1 and PC2 separate the GERA cohort into northwest (NW), southeast (SE) and 
Ashkenazi Jewish (AJ) subpopulations. PC3 separates the AJ and SE individuals, while PC3 and PC4 
further separates the NW European individuals. 
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Figure 4. Separation of Irish, Eastern European and Northern European individuals in GERA data. 
We report results of projecting POPRES27 individuals onto top PCs.  The plot of PC3 vs PC4 shows that 
the Northwest European (NW) individuals are further separated into Irish and Eastern European and 
Northern European populations. Projected populations were colored based on correspondence to the 
ancestry assignment from SNPweights26, except that Irish and Eastern European individuals were 
colored purple and orange, respectively, to indicate additional population structure. 
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Figure 5. Signals of selection in the top PCs of GERA data. 
We display Manhattan plots for selection statistics computed using each of the top 4 PCs. The grey line 
indicates the genome-wide significance threshold of 2.05 x 10-8 based on 2,435,924 hypotheses tested 
(𝛼 = 0.05, 608,981 SNPs x 4 PCs).  
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Tables 
Table 1. Genome-wide significant signals of selection in GERA data. 
We list regions with genome-wide significant (𝛼 = 0.05, Bonferroni correction with 608,981 SNPs x 4 
PCs = 2,435,924 hypotheses tested, 𝑝 < 2.05 x 10−8 ) evidence of selection in the top 4 PCs.  Loci that 
were not previously known to be under selection in Europeans are indicated in bold font. The 
chromosome 8 inversion signal is due to a PC artifact (see main text).  Regions with suggestive evidence 
of selection (10−6 < 𝑝 < 2.05 x 10−8) are listed in Supplementary Table 3. 

Locus Chromosome Region (Mb) PC Best Hit 𝒑-value 
LCT33 2 134.8 – 137.6 1 rs6754311 2.15 × 10−25 
   3 rs4988235 1.15 × 10−27 
ADH1B 4 100.5 1 rs1229984 𝟏. 𝟐𝟔 × 𝟏𝟎−𝟏𝟑 
IRF436,37 6 0.3 – 0.5 3 rs12203592 1.76 × 10−20 
   4 rs12203592 5.52 × 10−55 
HLA34 6 30.8 – 32.9 1 rs382259 5.38 × 10−13 
   3 rs9268628 8.66 × 10−18 
   4 rs4394275 9.36 × 10−12 
IGFBP3 7 45.3-45.9 2 rs150353309 𝟓. 𝟖𝟐 × 𝟏𝟎−𝟏𝟐 
Chr8 Inversion31 8 8.2 – 11.9 4 rs6984496 1.86 × 10−12 
IGH 14 106.0-106.1 2 rs34614900 𝟓. 𝟐𝟑 × 𝟏𝟎−𝟗 
OCA235,37 15 25.9 – 26.2 2 rs12916300 4.82 × 10−9 
   3 rs12916300 2.80 × 10−13 
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