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Abstract 

 

Identifying functional regions in the human genome is a major goal in human genetics. 

Great efforts have been made to functionally annotate the human genome either through 

computational predictions, such as genomic conservation, or high-throughput 

experiments, such as the ENCODE project. These efforts have resulted in a rich 

collection of functional annotation data of diverse types that need to be jointly analyzed 

for integrated interpretation and annotation. Here we present GenoCanyon, a whole-

genome annotation method that performs unsupervised statistical learning using 22 

computational and experimental annotations thereby inferring the functional potential of 

each position in the human genome. With GenoCanyon, we are able to predict many of 

the known functional regions. The ability of predicting functional regions as well as its 

generalizable statistical framework makes GenoCanyon a unique and powerful tool for 

whole-genome annotation. The GenoCanyon web server is available at 

http://genocanyon.med.yale.edu 
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Introduction 

 

Annotating functional elements in the human genome is a major goal in human genetics. 

Despite years of efforts from both experimental and computational scientists, functional 

annotation remains challenging, especially in the non-protein-coding regions. It is 

estimated that approximately 98% of the human genome is non-protein-coding1. Because 

of the apparent importance of coding regions, many computational tools have been 

developed to annotate DNA variants in the coding regions2-4. Although the non-coding 

regions were considered “junk DNA” for many years, much has been learned on the 

potential roles of these regions in the last decade. First, extensive comparative genomic 

studies have shown that the majority of mammalian-conserved regions consist of non-

coding elements5. Second, results from genome-wide association studies show that close 

to 90% of the significant variants associated with human diseases reside outside of the 

coding regions6, only slightly less underrepresented among all the variants in the human 

genome, where about 95% of known variants are from the non-coding regions. Third, 

high-throughput experiments, e.g. the ENCODE project7, also suggest that a large 

fraction of the human genome are functionally relevant. All of this evidence suggests the 

importance and need for extending the annotation tools from the coding regions to the 

entire human genome. 

 

Despite the increasing need to functionally annotate the human genome, there is no 

universal definition of genomic function8,9, which differs among geneticists, evolutionary 

biologists, and molecular biologists. The experimental approaches and analysis 
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techniques of detecting functional genomic elements among these scientists also vary 

greatly. Extensive work in some genomic regions such as the β-globin gene complex has 

shown that no single approach is sufficient to identify all the regulatory activities in the 

non-coding regions8,10. In order to obtain a comprehensive picture of the genomic 

functional structure, all the valuable information acquired through different approaches 

needs to be combined using appropriate statistical learning techniques. 

 

Several annotation tools focusing on the non-coding regions have been established 

recently11-15. Similar to the long list of deleteriousness prediction tools developed for the 

coding regions, most of these new methods aim to distinguish tolerable variants from the 

deleterious ones. Though important, prediction of deleteriousness does not cover every 

aspect of functional annotation. The potential of these variant classifiers in understanding 

the genomic architecture on a large scale and in detecting regulatory elements such as cis-

regulatory modules remains to be thoroughly investigated. Moreover, scientists now 

routinely analyze different cell types7, and even single cells16. In order to keep up with 

these technological advances, it is critical to develop a functional annotation framework 

that can be generalized to different species, cell types, and single cells. Such a 

generalizable framework can be achieved through biologically-motivated and 

statistically-justified models. As for choosing between a supervised approach, where 

some gold standard datasets are needed to train the model, and an unsupervised approach, 

where no labeled data are used, we focus on developing an unsupervised learning method 

in this article. This is because current supervised-learning-based annotation tools suffer 

from highly biased training data, which is largely due to our limited knowledge of non-
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coding regions. This may become less of an issue after we have gained a deeper 

understanding of non-coding functional mechanisms. However, at such an early stage, we 

think unsupervised learning techniques would be advantageous. 

 

In this paper, we present GenoCanyon (inspired by the canyon-like plots it generates), a 

whole-genome annotation tool based on unsupervised statistical learning. From a 

collection of the comparative genomic conservation scores and biochemical signals 

obtained from the ENCODE project17, the posterior probability of a genomic position 

being functional is used as the prediction score. Compared to existing methods, 

GenoCanyon not only measures the deleteriousness of variants, but also the functional 

potential of each genomic location. Its flexible and generalizable statistical framework 

could also benefit future applications.  

 

 

Results 

 

Estimating the Proportion of Functional Regions in the Human Genome 

 

Genetic approaches that focus on studying the consequences of genetic perturbations are 

often referred to as a gold standard for defining function8. Such a genetic definition is 

also directly related to causal inference, which is at the core of developmental biology 

and disease research9. In this study, we also adopt this genetically meaningful definition 

of genomic function. On the other hand, we treat the conservation measures and the 
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biochemical signals as consequences of genomic function (Figure 1A). For a specific 

location in the human genome, define Z to be the latent indicator of function. We 

collected 22 different annotations, denoted as 𝑨 (Supplementary Table 1). We also 

assumed that the 22 annotations are conditionally independent given Z (Figure 1B). Then, 

the posterior probability 𝑃 𝑍 = 1 𝑨  serves as the prediction score of the functional 

potential at this location (See Methods, Figure 1C).  

 

We have pre-calculated the prediction scores for the entire human genome (hg19). 

Overall, when using 0.5 as the cutoff for defining functionality, 33.3% of the human 

genome was predicted to be functional. The proportion of functional elements is mostly 

stable across chromosomes (Supplementary Table 2; Supplementary Figure 1). We 

note that the functional proportion of the human genome has been estimated using many 

different approaches8,18-22 and results differed drastically. Comparative genomic analysis 

of multiple mammals revealed that constrained elements consist of approximately 4.5% 

of the human genome18,19. At the other extreme, the ENCODE project found that 80% of 

the human genome has detectable biochemical activities in at least one cell line7. 

However, it has been discussed recently that several corrected constraint estimations 

would each suggest two to three times increase to the original estimate of 4.5%20-22. Also, 

it still remains non-trivial to distinguish real biochemical signals from biological noises in 

the ENCODE data8. The large amount of observed biochemical activities have also been 

criticized to be more like an “effect” rather than “function”9. Our prediction falls in the 

middle of these highly diverging estimates of functional regions in the literature. It is 

worth noting that the GenoCanyon functional prediction represents a mixed probability 
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involving multiple tissues. A smaller proportion of the human genome would be expected 

to be functional for a particular tissue.   

 

Prediction for cis-regulatory Modules in the HBB Gene Complex 

 

The intensively studied β-globin (HBB) gene complex on chromosome 11 contains 

embryonically expressed HBE1, fetally expressed HBG1 and HBG2, and adult globin 

genes HBD and HBB, along with a pseudogene HBBP1. This locus is known to provide a 

paradigm for developmental gene expression and regulation23,24. A large number of cis-

regulatory modules (CRMs) that control both the developmental timing and the spatial 

pattern of gene expression have been discovered in the HBB gene complex10. More 

interestingly, the epigenetic and evolutionary signals at these CRMs differ substantially8. 

Therefore, the HBB gene complex provides a perfect example to test if GenoCanyon 

could effectively combine different sources of signals and successfully predict the 

functional segments. 

 

We analyzed the prediction results in the HBB gene complex. On the entire chromosome 

11, 32.2% of the DNAs were predicted to be functional. Strong enrichment of signals was 

observed at this locus. Using 0.5 as the cutoff, 62.2% of HBB gene complex and 97.0% 

of the CRMs were predicted as functional (Figure 2A). Remarkably, a cluster of five 

DNase I hypersensitive CRMs upstream of the HBB gene complex, known as the locus 

control region (LCR)25, showed strong functional signals as a whole (Figure 2B). The 

3’HS1 enhancer blocker (chr11: 5226013-5226493; hg19) downstream of the HBB gene 
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complex was also successfully predicted with high resolution. Interestingly, these CRMs 

showed highly variable patterns of annotations (Figure 2C). This proved that 

GenoCanyon could effectively combine different sources of information. Recent research 

revealed several new regulatory elements at this locus, including one in the intergenic 

region between HBBP1 and HBG124, and another one upstream of HBD23. These 

elements also reside in the highly scored regions. Moreover, it is worth noting that the 

understanding of CRMs is still incomplete even in a relatively well-studied region such 

as the HBB complex. Some of the apparent false positives might actually be regulatory 

elements not yet discovered. The functional regions provided by our method could 

potentially offer a guideline for further studies. 

 

Among the 23 CRMs being reviewed10, only the promoter of HBB did not get the perfect 

score (Table 1). Therefore, we analyzed the HBB gene and its promoter in more details 

(Figure 2D). Within the HBB gene, the 600bp segment near the 3’UTR was predicted to 

be functional. 77 pathogenic or likely pathogenic SNPs were downloaded from the NCBI 

Variation Viewer (http://www.ncbi.nlm.nih.gov/variation/view/). Interestingly, 14 of 

these pathogenic SNPs, including 4 in the 3’UTR and 6 in the second intron, lie in this 

600bp functional segment. In the upstream half of the second intron, prediction scores 

were substantially lower. No pathogenic variants could be found in that region. Overall, 

using 0.5 as the cutoff, 89.6% (69 out of 77) of the pathogenic SNPs located at functional 

locations. Within the HBB promoter, 75% (6 out of 8) of the pathogenic variants located 

at functional locations (Figure 2E). Moreover, bumps of high scores could be observed 

at the known protein binding sites in the HBB promoter26. When comparing the entire 
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HBB promoter, known protein binding sites, and the pathogenic variants within the 

promoter, there was a substantial increase in prediction score (Figure 2F). All of this 

evidence suggests that important functional segments could still be detected locally even 

in a generally lower-scored region. 

 

Prediction for ZRS, an enhancer of the SHH gene 

 

Zone of polarizing activity regulatory sequence (ZRS) is one of the most studied 

developmental enhancers. It is located in the fifth intron of the protein-coding gene 

LMBR1, approximately 1Mb upstream of SHH’s transcriptional start site27,28. Through 

linkage mapping of several large families with preaxial polydactyly (PPD) and 

triphalangeal thumb, an associated locus of approximately 500 kb was identified on 

chromosome 7q36. In later studies, the region was further narrowed down to the fifth 

intron of LMBR129-31. As a highly conserved 774 bp region in this intron, ZRS has been 

intensively studied. It has been shown to be crucial for limb development not only in 

humans, but also in mice, dogs, cats, and even chickens27. 

 

We investigated the prediction results in gene LMBR1. A highly scored plateau could be 

observed in its fifth intron (Figure 3A). The mean predicted score for this intron was 

0.595. This was higher than the mean score of the entire LMBR1 transcript (0.385), of all 

the introns in LMBR1 (0.384), and even of all the exons in LMBR1 (0.448). These 

results showed strong signs of function in the fifth intron. The ZRS region got an even 

higher mean predicted score 0.871, which confirmed its importance (Figure 3B). When 
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observing its surrounding region, ZRS could be easily identified as a dense region with 

high prediction scores (Figure 3C). Moreover, the ZRS region serves as one of the most 

well studied examples for pathogenic variants in an enhancer. A total of 13 single 

nucleotide variants in ZRS have been identified to cause human limb malformations27. 

All these 13 SNVs were predicted to be highly functional, with the mean prediction score 

0.987 (Figure 3D). 

 

In conclusion, our method successfully identified the fifth intron of LMBR1 as a 

functional region. It also further confirmed the importance of ZRS. It is notable that the 

large number of identified pathogenic variants in ZRS is possibly subject to the 

ascertainment bias. In fact, mutations in ZRS did not account for the limb malformation 

in all the studied families32. Our prediction in the surrounding regions has the potential to 

guide future studies. 

 

Prediction for Functional Elements in the Human X-inactivation Center 

 

X-chromosome inactivation, originally described 50 years ago33, is the mechanism for X-

chromosome dosage compensation in mammals. The long non-coding RNA Xist has 

been shown to be both necessary and sufficient to induce X-chromosome inactivation in 

mouse ES cells34. The surrounding genomic region, often referred to as the X-inactivation 

center (Xic for mouse and XIC for human), contains several crucial regulatory elements 

for mouse X-inactivation35. However, recent studies have suggested the existence of 

substantial variations in the mechanism of achieving X-inactivation among species36-39. 
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We applied GenoCanyon on human XIC to predict the functional potential of the 

orthologs of known regulatory elements in mouse models (Figure 4A; Table 2). 

 

Xist and its antisense ncRNA Tsix, as well as two upstream ncRNAs Ftx and Jpx have all 

been shown to haven cis-regulatory roles in mouse X-inactivation40-43. Our prediction 

confirmed the function of the master ncRNA XIST in human. Both the XIST gene and its 

transcribed regions got nearly perfect prediction scores. Moreover, a XIST-specific peak 

of high score could be observed on Figure 4A, showing satisfying resolution of prediction. 

Studies suggesting a truncated form of TSIX in human have led to some debate in its 

function. Compared to its mouse ortholog, the human TSIX gene has lost the CpG island 

as well as the enhancer elements Dxpas34 and Xite44. In our prediction, TSIX got mean 

score 0.383, which is low for such an active genomic region. When considering only the 

region that does not overlap with XIST, the number even dropped to 0.197. A recently 

discovered lncRNA, Linx, has been hypothesized to take part in Tsix expression in 

mice45. In the mouse genome, the Linx gene lies between two protein-coding genes 

Nap1l2 and Cdx4. However, its human ortholog has not yet been discovered. The 

intergenic region between human NAP1L2 and CDX4 has a low mean prediction score 

0.016, which argues against not only the existence of LINX in human, but also TSIX 

function. Jpx and Ftx both showed the potential to activate X-inactivation in mice42,43. 

But the functions of their human orthologs have not been studied37. The mean prediction 

scores of the transcribed regions in JPX and FTX are 0.256 and 0.304, respectively. This 

suggested only moderate functional potential of these two human lncRNAs. However, 

both scores received a substantial boost when the entire gene was considered. On Figure 
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4A, several functional peaks could also be clearly observed in the untranscribed regions 

in JPX and FTX. These results might guide the detection of novel regulatory elements in 

human XIC. 

 

Besides the mentioned lncRNA genes, the human XIC also contains 6 protein-coding 

genes, NAP1L2, CDX4, CHIC1, ZCCHC13, SLC16A2, and RLIM. It is notable that 

most of their exons clearly reside in the functional peaks in Figure 4A, showing the 

ability of GenoCanyon to capture the functional landscape of this genomic region. We 

calculated the mean prediction scores for all the RefSeq transcripts of these genes. In 

CDX4, CHIC1, and SLC16A2, all the transcript scores were substantially larger than the 

scores of untranscribed regions. Among the 6 protein-coding genes, Rlim (also referred to 

as Rnf12) produces the U3 ubiquitin ligase that acts in a dose-dependent manner on the 

initiation of X-inactivation46. The human RLIM gene has a high mean predicted score 

0.973. Two of its RefSeq transcripts both got 0.930 as the mean score, which is also very 

high. In Figure 4A, the RLIM gene perfectly lies in an isolated functional plateau, which 

suggests its strong functional potential in human. It has been observed that the 

homologous pairing of two regions (Tsix/Xite and Xpr/Slc16a2) might have impacts on 

Xist upregulation47,48. In human XIC, the TSIX/XITE region has been truncated, but the 

region surrounding the SLC16A2 gene showed its functional potential in our prediction. 

The exons of SLC16A2 lie in two large separate functional peaks, suggesting the 

importance of the transcribed region as well as a large bulk of untranscribed region in 

SLC16A2. Whether these regions serve as the human XPR remains to be investigated. 

More interestingly, 8 pathogenic SNPs in SLC16A2 have been submitted to ClinVar49. 
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These variants were believed to be involved in Allan-Herndon-Dudley syndrome, 

showing that SLC16A2 has its crucial function in other processes as well. The other 

genes in Xic have not been related to X-inactivation yet. Our prediction suggested that 

the exons of NAP1L2, CDX4, and CHIC1 all showed different levels of functional 

potential, which is not surprising because of their protein-coding nature. The human XIC 

also contains several microRNA genes and one pseudogene MAP2K4P1. MAP2K4P1 

did not get a high score, which was in agreement with its pseudogene status. The 

microRNA transcript might partially explain the large functional plateau near the 5’end 

of FTX.  

 

XACT, a recently discovered lncRNA coating the active X chromosome in human 

pluripotent cells, has been shown to take part in X-inactivation initiation uniquely in 

human37,38. It lies in a 1.7 Mb large intergenic region between protein-coding genes 

AMOT and HTR2C. A shorter transcript T113.3 upstream of XACT was also identified. 

But its function has not been studied. We investigated this region using GenoCanyon. 

The AMOT gene and the HTR2C exons both showed substantial functional potential. A 

clear plateau of high scores could also be observed in the intergenic domain (Figure 4B). 

The mean prediction score for the entire intergenic region, XACT, and T113.3 were 

0.148, 0.383, and 1.000, respectively. Although the mean predicted score for XACT was 

only moderate, it still confirmed the functional signal in such a lowered-scored intergenic 

domain. Also, our prediction suggested the importance of T113.3 and its surrounding 

region.  
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Investigating the Ability of Classifying Variants 

 

GenoCanyon was not designed as a variant classifier. However, enrichment in prediction 

score is still expected for the known pathogenic variants. We downloaded all the 

annotated variants from ClinVar in June 201449. The subset of single nucleotide variants 

annotated as “Pathogenic”, “Likely Pathogenic”, or “Pathogenic/Likely Pathogenic” was 

treated as the positive set. Similarly, the subset of SNVs annotated as “Benign”, “Likely 

Benign”, or “Benign/Likely Benign” was treated as the negative set. The positive set 

contained 19,242 variants, and the negative set contained 8,874 variants. The mean 

prediction score in the positive set and the negative set were 0.912 and 0.735, 

respectively. When using 0.5 as the natural cut-off, the sensitivity was as high as 0.915, 

with a low specificity of 0.263. The AUC was 0.727.  

 

It is worth noting that GenoCanyon measures the functional potential of genomic 

locations, not the tolerability of specific variants. The transcribed regions in a crucial 

protein-coding gene should be expected to have a high functional score. However, it 

would still be natural to observe many tolerable synonymous SNPs in that gene. All these 

tolerable SNPs become “false-positives” in the analysis above, leading to a low 

specificity. Moreover, many of the known “benign” variants are by-products of 

association studies. Their properties were investigated because they lie in candidate 

regions in the disease pathway, which explains why the mean prediction score of benign 

variants was also high. On the other hand, if a variant were shown to be pathogenic in 

experiments, the underlying region would surely have some functions related to the 
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disease. In this sense, the high sensitivity of GenoCanyon suggests that it may be a good 

indicator of its prediction ability. Finally, the performance of supervised-learning-based 

methods is highly sensitive to the choice of training data. For example, when using 

common variants with matched regions as the negative training set, the performance of 

GWAVA on its own training data dropped substantially (AUC=0.71)14. 

 

 

Discussion 

 

The HBB gene cluster, ZRS, and the X-inactivation center all have been paradigms for 

studying the complex genomic regulatory network. The prediction results in these regions 

showed that GenoCanyon is capable of detecting functional regions in the human genome, 

which is a unique feature most existing whole-genome annotation tools don’t have. With 

the wide adoption of next-generation sequencing, GenoCanyon may help researchers 

focus on candidate regions that are likely to be functional and reduce the spurious signals 

among the overwhelming genomic information.  

 

Throughout this article, we have discussed the differences between GenoCanyon and 

variant classifiers in that GenoCanyon measures the functional potential of genomic 

locations instead of the pathogenicity of a specific variant and a high score does not 

necessarily imply deleteriousness. However, in some scenarios that variants distribute 

across the entire genome, GenoCanyon may still serve well as a conservative tool for 

noise reduction. For example, sequencing technology is rapidly becoming a focus of 
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efforts in genomic epidemiology. However, the overwhelming number of rare variants in 

the human genome brings the issue of extreme multiple testing. It has been discussed 

recently that the sample size required for a well-powered RVAS (rare variants association 

study) using sequencing is similar to that of a traditional GWAS (genome-wide 

association study)50. Without a huge cohort, true signals could be easily overshadowed by 

extreme yet spurious observations. In this case, GenoCanyon could be used to filter the 

SNPs and reduce 2/3 of the tests as more than 2/3 of the human genome is less likely to 

be functional. Moreover, the high sensitivity of GenoCanyon ensures that the true signal 

is still kept in the dataset. The ability of predicting functional potential at each nucleotide 

is another useful feature of GenoCanyon. In association studies, genetic variants are used 

as markers capturing signals for nearby regions. Therefore, for each SNP, the mean 

prediction score for its surrounding region may serve well as a prior in post-GWAS 

prioritization. Existing variant classifiers cannot achieve this task because they only 

predict the deleteriousness of genotyped variants. It is worth noting that most of the 

annotation data have a resolution ranging from tens to hundreds of nucleotides due to the 

limitation of current experimental techniques. However, data input of these annotations is 

at nucleotide level, which makes it possible to measure the functional potential for each 

base pair.   

 

Based on unsupervised learning, GenoCanyon does not suffer from the highly biased 

knowledge of the non-coding DNA. More importantly, the model can be generalized in 

many directions. Firstly, the ENCODE annotations used in GenoCanyon were clustered 

across several or even nearly a hundred different cell lines. Therefore, the current 
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functional regions predicted by GenoCanyon are in fact the union of functional elements 

in different cell types. Using the annotations for one single cell type, a cell type-specific 

functional prediction tool could be built under the same framework. In studies where 

several candidate cell types are of interest, prediction based on the cell type-specific 

models would have higher specificity. Secondly, the model can be extended to other 

species. The functional elements in model organisms are generally better studied. Such 

tools for different species could potentially benefit the multi-species comparison and help 

detecting functional orthologs in human. Thirdly, in order to simplify the model, we 

transformed the biochemical annotations into binary variables (See Methods). Therefore, 

the information of signal strength has not been used. When these information as well as 

more annotations are incorporated using more complex modeling techniques, the 

specificity may be improved. Finally, the current model assumes the leading role of 

genetic function, and treats conservation measures and the biochemical signals as 

consequences. Among different annotations, conditional independence was also assumed 

(Figure 1). However, it would be interesting to investigate the correlations among 

variables in either the functional or the non-functional group. In that case, statistical 

graphical models could be implemented to make the model more flexible. These are all 

very interesting directions to generalize GenoCanyon. However, complex models lead to 

higher variance, intensive computation, and less interpretability. Dealing with these 

trade-offs has never been trivial. The good prediction results have shown that 

GenoCanyon has reached a nice balance. The current powerful features as well as its 

generalizable potential make GenoCanyon a unique and useful tool for whole-genome 

annotation.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 15, 2015. ; https://doi.org/10.1101/018093doi: bioRxiv preprint 

https://doi.org/10.1101/018093
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Methods 

 

Statistical Model  

 

For each location in the human genome, define Z to be the latent indicator of function, 

where Z=1 indicates that location is functional and 0 otherwise. We selected 22 different 

annotations corresponding to either conservation score or biochemical activity, including 

2 genomic conservation measures, 2 indicators of open chromatin, 8 histone 

modifications, and 10 TFBS peaks (Supplementary Table 1). These annotations are 

selected because their functional impacts are relatively well studied and easier to model. 

DNA methylation is not included in the model because the gene silencing mechanism 

requires modeling the functional impact of methylation to other nucleotides that are 

possibly far away, which is a challenging task. Genomic data for all the 22 annotations 

were downloaded from the UCSC Genome Browser except GERP (Supplementary 

Table 3). We denote the vector of all the annotations as 𝑨. 

 

 𝑨 = 𝐴!,𝐴!,… ,𝐴!! . (1) 

 

When a genomic location is functional (Z=1), we assume that the annotations have a joint 

probability density 𝑓 𝑨 𝑍 = 1 ; similarly, when a genomic location is non-functional 

(Z=0), we assume that the annotations have another joint density 𝑓 𝑨 𝑍 = 0 . Since Z is 
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unknown, the distribution of the observed data would be a mixture of 𝑓 𝑨 𝑍 = 1  and 

𝑓 𝑨 𝑍 = 0 . Instead of modeling direct causal relationships among these 22 annotations, 

we assume that they are connected only through Z. In other words, the 22 annotations are 

all modeled to be consequences of Z. Under these assumptions, the 22 different 

annotations are conditionally independent when Z is given51. Therefore, the conditional 

joint density of 𝑨 given Z can be factorized as 

 𝑓 𝑨 𝑍 = 𝑐 = 𝑓!(𝐴!|𝑍 = 𝑐)
!!

!!!
   , 𝑐 = 0, 1 (2) 

Finally, for a genomic location, assume 𝜋 to be the prior probability of being functional, 

i.e. 

 𝜋 = 𝑃(𝑍 = 1) (3) 

Then, given the annotations, the posterior probability of Z=1 can be used as a reasonable 

functional measure when the parameter estimates are plugged in. 

 
𝑃 𝑍 = 1 𝑨 =

𝜋𝑓 𝑨 𝑍 = 1
𝜋𝑓 𝑨 𝑍 = 1 + 1− 𝜋 𝑓 𝑨 𝑍 = 0   

=
𝜋 𝑓!(𝐴!|𝑍 = 1)!!

!!!

𝜋 𝑓!(𝐴!|𝑍 = 1)!!
!!! + 1− 𝜋 𝑓!(𝐴!|𝑍 = 0)!!

!!!
 

(4) 

We chose GERP52 and PhyloP53 as the conservation measures because both of them are 

approximately normally distributed and therefore easier to model. PhyloP46way was 

chosen instead of PhyloP100way because a large phylogenetic distance would bring too 

little conserved signal as well as many incomplete data. All the other annotations were 

cell type-specific, so we coded them into binary variables to cluster the signal across cell 

lines. If signal was detected in at least one cell line, we coded the corresponding 𝐴! = 1. 

Otherwise, 𝐴! = 0. For DNase I, FAIRE, and TFBS, there were downloadable cluster 
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files on the UCSC Genome Browser. A total of 125, 25, and 91 cell lines were clustered, 

respectively. We made our own histone peak cluster files across 16 cell lines from the 

Broad histone track on ENCODE (Supplementary Table 4). The 8 histone modifications 

were chosen because they are relatively well-studied54. We chose the top 10 

Transcription Factors with the highest binding site coverage after being transformed into 

binary variables. 

 

Finally, normal distribution and Bernoulli distribution were used to model the continuous 

and binary annotations, respectively.  

 
𝑓! 𝐴! 𝑍 = 𝑐 =

1
2𝜋𝜎!"

exp −
𝐴! − 𝜇!" !

2𝜎!"!
, 𝑖 = 1, 2;     𝑐 = 0, 1 (5) 

 

 𝑓! 𝐴! 𝑍 = 𝑐 = 𝑝!"
!!(1− 𝑝!")!!!! , 𝑖 = 3,… , 22;   𝑐 = 0, 1 (6) 

 

Estimation 

 

In total, our model has 49 parameters. 

 𝚯 = (π,𝑸𝟏,𝑸𝟎,𝑷𝟏,𝑷𝟎) (7) 

where 

 𝑸𝒄 = 𝜇!! , 𝜇!! ,𝜎!! ,𝜎!!   ,      𝑐 = 0, 1 (8) 

 

 𝑷𝒄 = 𝑝!! ,𝑝!! ,…    ,𝑝!!,!   ,      𝑐 = 0, 1 (9) 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 15, 2015. ; https://doi.org/10.1101/018093doi: bioRxiv preprint 

https://doi.org/10.1101/018093
http://creativecommons.org/licenses/by-nc-nd/4.0/


The GWAS Catalog55 was downloaded from the NHGRI GWAS Catalog website 

(http://www.genome.gov/gwastudies/) in July 2014. It contained 13,070 unique SNPs 

that were significant in GWAS studies. For each SNP, we marked the interval between its 

500 bp upstream and 499 bp downstream. In this way, 13,070 intervals were collected. 

Each interval spanned 1k bp. After deleting the overlapping coordinates, the entire region 

spanned 12,801,840 bp. Each significant SNP in the GWAS Catalog hints the existence 

of functional elements nearby. These functional elements differ in their sizes and in the 

distance to the probed SNP. Since each interval was 1,000 bp in length and a large 

number of intervals were collected, the whole collection was a large enough and 

reasonably chosen set on which we could learn the distributions of annotations in both 

functional and non-functional groups. All the 22 annotations were then collected at each 

location in this set. The PhyloP scores and GERP scores were not available at 221,643 

and 28,741 locations, respectively. After removing these locations, the final dataset 

contained 12,580,197 genomic locations. None of the other annotations have the issue of 

incomplete data. Finally, the Expectation-Maximization (EM) algorithm was used to 

estimate the parameters. As expected, the estimates showed solid differences between the 

functional and non-functional groups (Supplementary Table 5). We also tried replacing 

the missing conservation measures with the neutral score 0. Then the entire 12,801,840 

locations were used to estimate the parameters. Little differences in parameter estimates 

were observed between the two approaches (Supplementary Table 6). Moreover, in 

order to test if the estimates are stable under different choices of datasets, we randomly 

sampled two subsets on chromosome 1, containing 2,000,000 and 6,000,000 bp, 

respectively. After adding these locations into the original 12,801,840 bp dataset, the 
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parameters were estimated using the EM algorithm again. No substantial differences were 

observed in the estimates (Supplementary Tables 7 and 8). Based on these results, the 

GWAS-loci-based dataset containing 12,801,840 bp seems to contain enough functional 

elements for accurate parameter estimation, and is general enough so that genome 

heterogeneity does not have a strong impact on estimation. Finally, in order to check the 

sensitivity of our model to the perturbation in annotation data, we re-fitted the model 

multiple times after removing several annotations (Supplementary Table 9). The 

parameter estimates remained consistently stable in all these cases, suggesting that the 

framework we propose is robust to the choice of annotations. The stable estimates of 

marginal parameters also show that the potential correlations among annotations do not 

have a strong impact on model fitting. 

 

Marginal Effect of Different Annotations 

 

For each binary annotation 𝐴!   (j = 3,… , 22), its effect on the final prediction can be 

measured using the odds ratio. 

 

 
OR! =

𝑃 𝑍 = 1 𝐴!,… ,𝐴! = 1,… ,𝐴!!
𝑃 𝑍 = 0 𝐴!,… ,𝐴! = 1,… ,𝐴!!

×
𝑃 𝑍 = 0 𝐴!,… ,𝐴! = 0,… ,𝐴!!
𝑃 𝑍 = 1 𝐴!,… ,𝐴! = 0,… ,𝐴!!

  

=
𝑓! 𝐴! = 1 𝑍 = 1
𝑓! 𝐴! = 1 𝑍 = 0

×
𝑓! 𝐴! = 0 𝑍 = 0
𝑓! 𝐴! = 0 𝑍 = 1

  

=
𝑝!!(1− 𝑝!!)
𝑝!!(1− 𝑝!!)

   , 𝑗 = 3,… , 22 

(10) 
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We calculated the odds ratios for all 20 binary annotations (Supplementary Table 5). 

The annotation with the least effect was the histone modification H3K27me3. According 

to our estimation, the probabilities to detect the H3K27me3 signal in functional and non-

functional classes are almost the same (0.80 and 0.72). In fact, H3K27me3 has been 

discovered to be associated with Polycomb-repressed regions56,57, which could partially 

explain the phenomenon. All the other binary annotations showed variable yet substantial 

signals of function. The marginal effect of a continuous annotation depends on its value. 

The interpretation is also less straightforward. More importantly, although these statistics 

could help us gain some intuition of how each annotation works marginally, the final 

prediction relies on all of them. The effectiveness of the method needs to be tested as a 

whole. 

 

In order to visualize the relative contribution of different sources of information (Figure 

2C), posterior probabilities given a particular group of annotations were calculated for 

each location. 

 P Functional     Conservation) = 𝑃 𝑍 = 1 𝐴!,𝐴!  (11) 

 P Functional     Open  Chromatin) = 𝑃 𝑍 = 1 𝐴!,𝐴!  (12) 

 P Functional     Histone) = 𝑃 𝑍 = 1 𝐴!,… ,𝐴!"  (13) 

 P Functional     TFBS) = 𝑃 𝑍 = 1 𝐴!",… ,𝐴!!  (14) 

Then, for each CRM, the mean posterior probabilities were plotted. 

 

Estimating the Functional Proportion 
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After plugging in the parameter estimates, the prediction score could be calculated using 

formula (4). If the PhyloP or the GERP score was not available, the neutral value 0 was 

used. Using the cutoff 0.5, 33.3% of the human genome was predicted to be functional. 

However, it is notable that the EM algorithm also gave an estimate for the functional 

proportion, 42.7% in our case (Supplementary Table 5). This estimation was based on 

the 12,580,197 locations we chose, which might not represent the entire genome. 42.7% 

could be treated as the prior knowledge, but the final prediction will be driven by the 

actual annotations at each location. Therefore, 33.3% would still be a better estimation. 

To see if the prior had a strong effect, we estimated the functional proportion of 

chromosome 22 using different values for 𝜋 while keeping other parameters unchanged. 

When using 0.3 and 0.5 as the 𝜋 values, the estimated functional proportions were 0.376 

and 0.389, respectively. Compared to the original estimate 0.383, there was not a 

substantial change. 

 

Figures and Web Application 

 

All figures were plotted using R. The “ggbio” package was used to plot the chromosomes 

and transcripts58. The GenoCanyon web application was developed using the “shiny” 

package in R. The “bigmemory” package was implemented to access and manipulate 

massive datasets59. The GenoCanyon web application is available at 

http://genocanyon.med.yale.edu. The web server is implemented using Apache running 

on CentOS version 6. 
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Figures and Tables 

 

Figure 1.   Modeling of causal relationship among variables. a) We adopt the 

biologically meaningful definition of function, and treat conservation measures and 

biochemical signals as consequences. b) The latent functional indicator Z is modeled as 

the parental variable and all the 22 annotations are treated as consequences. Also, we 

assume there is no direct causal relationship between any two annotations. Therefore the 

annotations are conditionally independent given Z. c) Workflow of GenoCanyon 

functional prediction. 
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Figure 2.   Functional prediction for the HBB gene complex. a) Histogram of the 

prediction scores in chromosome 11, HBB gene complex, and the 23 CRMs. 32.2%, 62.2% 

and 97.0% are predicted as functional, respectively. b) Prediction results for the HBB 

complex. Dark blue bars show the prediction score at each location. All the 23 CRMs are 

marked in red. There appears to be fewer than 23 red bars because some of the CRMs are 

very close to each other. Red dots indicate the locations of known pathogenic SNPs 

downloaded from the NCBI Variation Viewer. c) The posterior probabilities given a 

single group of annotations could be used to measure the relative contribution of different 

sources of information (See Methods). Four CRMs are plotted to illustrate that prediction 

scores are driven by different annotations in different CRMs. d) Prediction results for the 

HBB gene and its promoter. The promoter, UTRs, introns and exons are marked with 

different colors. Red dots show the prediction scores of the pathogenic variants. e) 

Prediction results for the HBB promoter. Known protein binding sites in the HBB 

promoter are marked in blue. Red dots show the prediction scores of the pathogenic 

variants. f) Boxplot of the prediction scores of HBB promoter, known protein binding 

sites, and pathogenic variants.  
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Figure 3.   Prediction results for the SHH enhancer in LMBR1. a) Prediction scores in 

the LMBR1 gene. The fifth intron and ZRS are highlighted in light blue and red, 

respectively. b) Boxplot of the prediction scores in LMBR1, 16 introns, 17 exons, the 5th 

intron, and ZRS. The results highlighted the function in the 5th intron of LMBR1 and 

confirmed the importance of ZRS. c) Prediction results for the surrounding region of ZRS, 

which is highlighted in pink. An obvious highly scored plateau can be observed at ZRS. d) 

The prediction results within the ZRS. 13 pathogenic variants are discovered in ZRS. The 

predicted scores at their locations are marked with red dots. There appears to be only 11 

dots because three variants all reside at location 156584166 (hg19). 
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Figure 4.   Prediction results for regions involved in human X-inactivation. Each dark 

blue line shows the prediction score at a single base. a) Functional prediction for the 

human XIC. All the RefSeq transcripts in this region are plotted. The master lncRNA 

XIST is highlighted in red. Red dots show the locations of known pathogenic variants 

downloaded from the NCBI variation viewer. b) Functional prediction for the intergenic 

region between AMOT and HTR2C on chromosome Xq23. A red and a blue arrow 

represent the recently discovered transcripts XACT and T113.3, respectively. 
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Table 1.   Mean prediction scores of the known CRMs in the HBB gene complex. 
 

Name Start Stop Mean Score 
HS5 5312534 5312694 1.000 
HS4 5309419 5309707 1.000 

HS3.2 5306814 5307392 1.000 
HS3.1 5306356 5306418 1.000 
HS3 5305882 5306169 1.000 

HS2_neg 5302090 5302174 1.000 
HS2_pos 5301795 5302089 1.000 

HS1 5296894 5297517 1.000 
HBE1_NRA 5294082 5294308 1.000 
HBE1_PRA 5293982 5294081 1.000 
HBE1_NRB 5292886 5292928 1.000 
HBE1_PRB 5292690 5292886 0.999 
HBE1_up 5291344 5291610 1.000 

HBE1_prom 5291175 5291343 1.000 
HBG2_up 5276215 5276745 1.000 

HBG2_prom 5276011 5276214 1.000 
HBG1_up 5271291 5271813 0.999 

HBG1_prom 5271086 5271290 1.000 
HBG1_3’enh 5268365 5269114 1.000 
HBD_prom 5255713 5256160 1.000 
HBB_prom 5248301 5248556 0.253 
HBB_3’enh 5245876 5246140 1.000 

3’HS1 5226013 5226493 0.987 
*Coordinates are based on hg19. 
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Table 2.   Prediction results for the 6 protein-coding genes, 4 lncRNA genes, and 1 
pseudogene in the human XIC, as well as all their transcripts in RefSeq.  
 

Gene Name Gene Mean Score Transcript ID Transcript Mean Score 
NAP1L2 0.988 NM_021963.3 0.988 
CDX4 0.234 NM_005193.1 0.554 
CHIC1 0.229 NM_001039840.2 0.931 

  NM_001300884.1 0.955 
ZCCHC13 0.184 NM_203303.2 0.184 

SLC16A2/XPCT 0.575 NM_006517.4 0.951 
RLIM/RNF12 0.973 NM_016120.3 0.930 

  NM_183353.2 0.930 
XIST 0.999 NR_001564.2 0.998 
TSIX 0.383 NR_003255.2 0.383 
JPX 0.501 NR_024582.1 0.256 
FTX 0.438 NR_028379.1 0.304 

MAP2K4P1 0.161 NR_029423.1 0.095 
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Supplementary Materials 
 
 
Supplementary Table 1.   The 22 annotations used in the model 
 

Notation Annotation Category 
𝐴! GERP Conservation Measure 𝐴! PhyloP 
𝐴! DNase I Open Chromatin 𝐴! FAIRE 
𝐴! H3k4me1 

Histone Modification 

𝐴! H3k4me2 
𝐴! H3k4me3 
𝐴! H3k9ac 
𝐴! H3k27ac 
𝐴!" H3k27me3 
𝐴!! H3k36me3 
𝐴!" H4k20me1 
𝐴!" CEBPB 

TFBS 

𝐴!" CTCF 
𝐴!" EP300 
𝐴!" FOS 
𝐴!" GATA2 
𝐴!" JUND 
𝐴!" MAX 
𝐴!" MYC 
𝐴!" POLR2A 
𝐴!! RAD21 
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Supplementary Table 2.   Predicted functional proportion for each chromosome using 
0.5 as the cutoff 
 

Chromosome Proportion Chromosome Proportion 
1 0.332 13 0.365 
2 0.331 14 0.344 
3 0.356 15 0.392 
4 0.293 16 0.338 
5 0.374 17 0.334 
6 0.316 18 0.362 
7 0.321 19 0.313 
8 0.328 20 0.340 
9 0.388 21 0.331 
10 0.337 22 0.383 
11 0.322 X 0.281 
12 0.307 Y 0.193 

Overall 0.333   
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Supplementary Table 3.   Online sources for the 22 annotations 
 

Annotation Website 
GERP http://mendel.stanford.edu/SidowLab/downloads/gerp/ 
PhyloP http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way/ 
DNase I http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/ 

FAIRE http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/ 
openchrom/jan2011/faire_fseq_peaks/ 

H3k4me1 

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHistone/ 

H3k4me2 
H3k4me3 
H3k9ac 
H3k27ac 

H3k27me3 
H3k36me3 
H4k20me1 

CEBPB 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/ 

CTCF 
EP300 
FOS 

GATA2 
JUND 
MAX 
MYC 

POLR2A 
RAD21 
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Supplementary Table 4.   16 Cell lines used to cluster the histone peak signal 
 
 Cell Line 

A549 
Dnd41 
Gm12878 
H1hesc 
Helas3 
Hepg2 
Hmec 
Hsmm 
Hsmmt 
Huvec 
K562 
Monocd14ro1746 
Nha 
Nhdfad 
Nhek 
Nhlf 
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Supplementary Table 5.   Estimates of all 49 parameters and the odds ratios for binary 
annotations 
 

Parameter Estimate (Z=1) Parameter Estimate (Z=0) Odds Ratio 
𝜋 0.4274 1− 𝜋 0.5726 - 
𝜇!! -0.1414 𝜇!" -0.0608 - 
𝜇!" 0.1249 𝜇!" 0.0742 - 
𝜎!! 2.5274 𝜎!" 1.6262 - 
𝜎!" 1.0765 𝜎!" 0.6623 - 
𝑝!" 0.3145 𝑝!" 0.0610 7.06 
𝑝!" 0.3061 𝑝!" 0.0941 4.25 
𝑝!" 0.9535 𝑝!" 0.3016 47.48 
𝑝!" 0.7633 𝑝!" 0.0943 30.97 
𝑝!" 0.6562 𝑝!" 0.0634 28.20 
𝑝!" 0.7994 𝑝!" 0.1418 24.12 
𝑝!" 0.8712 𝑝!" 0.2085 25.68 
𝑝!",! 0.7983 𝑝!",! 0.7248 1.50 
𝑝!!,! 0.8287 𝑝!!,! 0.3764 8.01 
𝑝!",! 0.9246 𝑝!",! 0.6360 7.02 
𝑝!",! 0.0360 𝑝!",! 0.0041 9.07 
𝑝!",! 0.0509 𝑝!",! 0.0060 8.88 
𝑝!",! 0.0480 𝑝!",! 0.0017 29.61 
𝑝!",! 0.0359 𝑝!",! 0.0018 20.65 
𝑝!",! 0.0276 𝑝!",! 0.0026 10.89 
𝑝!",! 0.0312 𝑝!",! 0.0015 21.44 
𝑝!",! 0.0371 𝑝!",! 0.0003 128.39 
𝑝!",! 0.0383 𝑝!",! 0.0007 56.85 
𝑝!",! 0.1002 𝑝!",! 0.0023 48.31 
𝑝!!,! 0.0278 𝑝!!,! 0.0020 14.27 
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Supplementary Table 6.   Estimates of all 49 parameters with the missing conservation 
values replaced by 0 
 
 
 
 
 
 
 
 
  

Parameter Estimate (Z=1) Parameter Estimate (Z=0) 
𝜋 0.4305 1− 𝜋 0.5695 
𝜇!! -0.1676 𝜇!" -0.0377 
𝜇!" 0.1142 𝜇!" 0.0791 
𝜎!! 2.5549 𝜎!" 1.5445 
𝜎!" 1.0886 𝜎!" 0.6269 
𝑝!" 0.3051 𝑝!" 0.0621 
𝑝!" 0.2976 𝑝!" 0.0949 
𝑝!" 0.9493 𝑝!" 0.3646 
𝑝!" 0.7789 𝑝!" 0.1233 
𝑝!" 0.6659 𝑝!" 0.0765 
𝑝!" 0.8024 𝑝!" 0.1688 
𝑝!" 0.8552 𝑝!" 0.2286 
𝑝!",! 0.8442 𝑝!",! 0.7696 
𝑝!!,! 0.8493 𝑝!!,! 0.4570 
𝑝!",! 0.9397 𝑝!",! 0.7115 
𝑝!",! 0.0355 𝑝!",! 0.0038 
𝑝!",! 0.0500 𝑝!",! 0.0057 
𝑝!",! 0.0468 𝑝!",! 0.0018 
𝑝!",! 0.0348 𝑝!",! 0.0019 
𝑝!",! 0.0272 𝑝!",! 0.0024 
𝑝!",! 0.0305 𝑝!",! 0.0015 
𝑝!",! 0.0362 𝑝!",! 0.0004 
𝑝!",! 0.0377 𝑝!",! 0.0005 
𝑝!",! 0.0974 𝑝!",! 0.0028 
𝑝!!,! 0.0273 𝑝!!,! 0.0019 
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Supplementary Table 7.   Estimates of all 49 parameters when an extra sample of 
randomly chosen 2,000,000 positions on chromosome 1 was added into the original 
dataset 
 
  

Parameter Estimate (Z=1) Parameter Estimate (Z=0) 
𝜋 0.4332 1− 𝜋 0.5668 
𝜇!! -0.1648 𝜇!" -0.0334 
𝜇!" 0.1162 𝜇!" 0.0805 
𝜎!! 2.5571 𝜎!" 1.5362 
𝜎!" 1.0876 𝜎!" 0.6247 
𝑝!" 0.3058 𝑝!" 0.0593 
𝑝!" 0.2937 𝑝!" 0.0935 
𝑝!" 0.9455 𝑝!" 0.3382 
𝑝!" 0.7673 𝑝!" 0.1094 
𝑝!" 0.6456 𝑝!" 0.0642 
𝑝!" 0.7880 𝑝!" 0.1476 
𝑝!" 0.8516 𝑝!" 0.2276 
𝑝!",! 0.8388 𝑝!",! 0.7393 
𝑝!!,! 0.8371 𝑝!!,! 0.4247 
𝑝!",! 0.9392 𝑝!",! 0.6928 
𝑝!",! 0.0353 𝑝!",! 0.0037 
𝑝!",! 0.0497 𝑝!",! 0.0057 
𝑝!",! 0.0464 𝑝!",! 0.0017 
𝑝!",! 0.0351 𝑝!",! 0.0019 
𝑝!",! 0.0276 𝑝!",! 0.0024 
𝑝!",! 0.0307 𝑝!",! 0.0014 
𝑝!",! 0.0359 𝑝!",! 0.0004 
𝑝!",! 0.0379 𝑝!",! 0.0005 
𝑝!",! 0.0957 𝑝!",! 0.0025 
𝑝!!,! 0.0270 𝑝!!,! 0.0018 
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Supplementary Table 8.   Estimates of all 49 parameters when an extra sample of 
randomly chosen 6,000,000 positions on chromosome 1 was added into the original 
dataset 
 
  

Parameter Estimate (Z=1) Parameter Estimate (Z=0) 
𝜋 0.4393 1− 𝜋 0.5607 
𝜇!! -0.1747 𝜇!" -0.0126 
𝜇!" 0.1135 𝜇!" 0.0824 
𝜎!! 2.5745 𝜎!" 1.4384 
𝜎!" 1.0908 𝜎!" 0.5882 
𝑝!" 0.3015 𝑝!" 0.0523 
𝑝!" 0.2838 𝑝!" 0.0886 
𝑝!" 0.9317 𝑝!" 0.2969 
𝑝!" 0.7388 𝑝!" 0.0884 
𝑝!" 0.6056 𝑝!" 0.0477 
𝑝!" 0.7566 𝑝!" 0.1150 
𝑝!" 0.8387 𝑝!" 0.2214 
𝑝!",! 0.8298 𝑝!",! 0.6918 
𝑝!!,! 0.8120 𝑝!!,! 0.3750 
𝑝!",! 0.9362 𝑝!",! 0.6575 
𝑝!",! 0.0342 𝑝!",! 0.0034 
𝑝!",! 0.0482 𝑝!",! 0.0051 
𝑝!",! 0.0448 𝑝!",! 0.0015 
𝑝!",! 0.0347 𝑝!",! 0.0018 
𝑝!",! 0.0277 𝑝!",! 0.0021 
𝑝!",! 0.0303 𝑝!",! 0.0012 
𝑝!",! 0.0346 𝑝!",! 0.0003 
𝑝!",! 0.0373 𝑝!",! 0.0004 
𝑝!",! 0.0911 𝑝!",! 0.0019 
𝑝!!,! 0.0259 𝑝!!,! 0.0016 
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Supplementary Table 9.   Estimates of parameters when GERP, DNase I, H3k4me2 and 
H4k20me1, and CEBPB and MAX are dropped from the model, respectively 
 

Param. 
Estimate  

(Z=1) 
Without  
GERP 

Estimate 
(Z=1) 
Without  
DNaseI 

Estimate 
(Z=1) 
Without  

H3k4me2 
H4k20me1 

Estimate 
(Z=1) 
Without  
CEBPB 
MAX 

Param. 
Estimate  

(Z=0) 
Without  
GERP 

Estimate  
(Z=0) 
Without 
DNaseI 

Estimate  
(Z=0) 
Without  

H3k4me2 
H4k20me1 

Estimate  
(Z=0) 
Without  
CEBPB 
MAX 

𝜋 0.4201 0.4361 0.4417 0.4375 1 − 𝜋 0.5799 0.5639 0.5583 0.5625 
𝜇!! - -0.1671 -0.2468 -0.1696 𝜇!" - -0.0368 0.0277 -0.0344 
𝜇!" 0.1362 0.1131 0.0902 0.1126 𝜇!" 0.0637 0.0796 0.0974 0.0799 
𝜎!! - 2.5469 2.6781 2.5510 𝜎!" - 1.5412 1.3288 1.5324 
𝜎!" 1.0328 1.0855 1.1355 1.0861 𝜎!" 0.7009 0.6249 0.5433 0.6225 
𝑝!" 0.3069 - 0.3039 0.3015 𝑝!" 0.0651 - 0.0582 0.0618 
𝑝!" 0.3001 0.2933 0.2961 0.2948 𝑝!" 0.0967 0.0962 0.0921 0.0946 
𝑝!" 0.9653 0.9484 0.9175 0.9467 𝑝!" 0.3633 0.3594 0.3779 0.3593 
𝑝!" 0.7970 0.7736 - 0.7724 𝑝!" 0.1219 0.1208 - 0.1202 
𝑝!" 0.6817 0.6623 0.6425 0.6594 𝑝!" 0.0755 0.0733 0.0831 0.0742 
𝑝!" 0.8181 0.7998 0.7802 0.7978 𝑝!" 0.1687 0.1645 0.1736 0.1645 
𝑝!" 0.8725 0.8562 0.8357 0.8517 𝑝!" 0.2272 0.2215 0.2314 0.2235 
𝑝!",! 0.8438 0.8431 0.8423 0.8441 𝑝!",! 0.7712 0.7697 0.7696 0.7688 
𝑝!!,! 0.8574 0.8513 0.8390 0.8476 𝑝!!,! 0.4581 0.4515 0.4573 0.4534 
𝑝!",! 0.9417 0.9398 - 0.9394 𝑝!",! 0.7141 0.7091 - 0.7089 
𝑝!",! 0.0361 0.0347 0.0352 - 𝑝!",! 0.0039 0.0041 0.0034 - 
𝑝!",! 0.0505 0.0483 0.0501 0.0492 𝑝!",! 0.0061 0.0066 0.0047 0.0058 
𝑝!",! 0.0477 0.0458 0.0460 0.0460 𝑝!",! 0.0020 0.0021 0.0015 0.0018 
𝑝!",! 0.0355 0.0338 0.0346 0.0342 𝑝!",! 0.0020 0.0024 0.0014 0.0020 
𝑝!",! 0.0274 0.0266 0.0272 0.0268 𝑝!",! 0.0027 0.0026 0.0019 0.0023 
𝑝!",! 0.0311 0.0300 0.0302 0.0300 𝑝!",! 0.0015 0.0016 0.0011 0.0015 
𝑝!",! 0.0370 0.0357 0.0355 - 𝑝!",! 0.0004 0.0005 0.0003 - 
𝑝!",! 0.0385 0.0370 0.0369 0.0370 𝑝!",! 0.0006 0.0006 0.0004 0.0006 
𝑝!",! 0.0994 0.0958 0.0958 0.0960 𝑝!",! 0.0030 0.0031 0.0022 0.0028 
𝑝!!,! 0.0276 0.0263 0.0275 0.0269 𝑝!!,! 0.0021 0.0024 0.0012 0.0019 
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Supplementary Figure 1.   Histograms of prediction score in 24 chromosomes.  
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