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Abstract 

Current biology is perplexed by the lack of a theoretical framework for 

understanding the organization principles of the molecular system within a cell.  

Here we first studied growth rate, one of the seemingly most complex cellular traits, 

using functional data of yeast single-gene deletion mutants.  We observed nearly one 

thousand expression informative genes (EIGs) whose expression levels are linearly 

correlated to the trait within an unprecedentedly large functional space.  A simple 

model considering six EIG-formed protein modules revealed a variety of novel 

mechanistic insights, and also explained ~50% of the variance of cell growth rates 

measured by Bar-seq technique for over 400 yeast mutants (Pearson’s R = 0.69), a 

performance comparable to the microarray-based (R = 0.77) or colony-size-based (R 

= 0.66) experimental approach.  We then applied the same strategy to 501 

morphological traits of the yeast and achieved successes in most fitness-coupled traits 

each with hundreds of trait-specific EIGs.  Surprisingly, there is no any EIG found 

for most fitness-uncoupled traits, indicating that they are controlled by super-complex 

epistases that allow no simple expression-trait correlation.  Thus, EIGs are recruited 

exclusively by natural selection, which builds a rather simple functional architecture 

for fitness-coupled traits, and the endless complexity of a cell lies primarily in its 

fitness-uncoupled features. 

 

Introduction 

Complex systems are widely observed in nature, and the embedded nonlinear 
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relationships between components render the efforts for understanding a complex 

system often daunting and sometimes even beyond human capacity (1).  A cell can 

be viewed as a complex system composed of a large number of genes each with 

dynamic expressions and together showing pervasive non-additive interactions (2-6).  

The central question of cell biology is to understand how genetic information flows in 

the complex molecular system to build up cellular phenotypes (7).  Because 

analytical approaches are often unrealistic due to the lack of relevant theoretical 

frameworks, research strategies in cell biology are primarily empirical.  Although 

substantial progresses have been achieved (8), it is unclear how much further such 

strategies can drive the field ahead because nonlinearity of the cell system 

compromises the practice of deduction (9).  We reason that this issue can be gauged 

by the performance of explaining complex cellular phenotypes using experiences 

learned from previous data, and a good performance would suggest a tractable 

molecular system comprising a limited number of functional statuses in the cell. 

Results 

 The rate of cell growth is coordinated by nearly all aspects of biological processes 

and might be the most complex cellular trait.  A variety of previous studies have 

attempted to model the cell growth of yeast Saccharomyces cerevisiae based on gene 

expression (10-17), but results are often lacking generality because of the limited 

functional space explored in each study; for instance, the expression of 

ribosome-associated genes can well predict the yeast growth rate across different 

environments (13-15), but is not correlated at all with the growth rate of natural yeast 
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populations, whose variation is explained, instead, by the expression of amino acid 

biosynthesis genes (17).  An ambitious reverse genetics project constructs a 

complete set of single-gene deletion mutants of S. cerevisiae (18), revealing that more 

than one third (~2,000) of the yeast genes, when deleted, affect the cell growth rate 

by >5% in the rich medium YPD.  With the recently available gene expression 

profiles of more than one thousand single-gene deletion mutants grown in YPD (19), 

we attempted to uncover the general functional architecture of cell growth rate of the 

yeast.  The >1,000 yeast mutants with available expression profiles were divided 

into two random sets, with 885 mutants in Set #1 and the rest 443 in Set #2.  We 

computed for every gene the correlation of its expression level to cell growth rate 

using the Set #1 mutants.  Because growth rate is presumably controlled by 

numerous genes that interact with each other in a complex fashion, individual genes 

whose expression level correlates linearly to cell growth rate should be rare.  

However, we found more than 900 significant genes under a stringent statistical cutoff 

of q = 0.001 (Methods).  The large number of such expression informative genes 

(EIGs) suggested a relatively simple functional architecture that directly regulates the 

trait.  To understand how the >900 genes are assembled to influence the growth rate 

we studied their protein-protein interactions.  We uncovered six densely-connected 

protein modules, all of which are responsible for critical biogenesis processes, 

including “maturation of SSU-rRNA” for module #1 (M1), “amino acid biosynthesis” 

for module #2 (M2), “translation” for module #3 (M3), “cellular respiration” for 

module #4 (M4), “ribosomal large subunit biogenesis” for module #5 (M5), and “cell 
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wall organization” for module #6 (M6) (table S1).  We computed for each module its 

expression distance (ED) between the wild-type yeast and a given mutant, and, to 

avoid potential over-fitting, examined using the Set #2 mutants how cell growth rate 

can be explained by the EDs (Methods).  Interestingly, we found that a linear 

function integrating the six EDs can explain ~50% of the growth rate variation of the 

443 Set #2 mutants (Pearson’s R = 0.69, p < 10-16; Fig. 1A).  Note that the cell 

growth rates considered here are measured using Bar-seq technique (20), which is 

believed more accurate than the microarray-based method (21) or colony-size-based 

method (4), both used previously for quantifying growth rates of the yeast mutants.  

As far as the 443 Set #2 mutants are concerned, the Pearson’s R is 0.77 between the 

microarray-based measures and the Bar-seq-based measures, and 0.63 between the 

colony-size-based measures and the Bar-seq-based measures (Fig. 1B, C).  Thus, the 

linear model was comparable to the two conventional experimental approaches in 

estimating cell growth rate of the yeast.   

Among the six EIG modules M1 and M2 are formed primarily by essential genes, 

whereas the rest four mostly by non-essential genes, half of which, when deleted, 

show nearly normal growth (Fig. 2A).  To find out whether there are major 

signal-contributing members, for a given module we removed each time a single gene 

and then checked its performance in explaining the cell growth variation.  No matter 

whether they are essential or not, individual genes appeared to have a similar level of 

weak contribution to the overall performance of a whole module (Fig. 2B).  We 

examined the module-level activities in mutants with a growth rate less than 80% of 
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the wild-type.  With only a few exceptions, the 87 slow-growth mutants form five 

clusters, each corresponding to the alterations of distinct modules (Fig. 2C).  This 

pattern suggested that the six biogenesis-related modules represent rather independent 

causal factors of the growth defects, which helped clarify the previous confusion 

regarding the effects of ribosome-related genes (M5) and amino acid biosynthesis 

genes (M2) on the yeast cell growth (17).  Note that we failed to observe such 

slow-growth mutant clusters based on the expressions of all individual genes of these 

modules (fig. S1).  We conducted partial correlation analysis to reveal the potential 

epistasis between the modules.  Strikingly, the Pearson’s R between EDM5 and the 

growth rate changed from -0.4 to 0.3 after controlling for the influences of the other 

modules (Fig. 2D), which can also be seen from the linear model used in Fig. 1A, in 

which the sign of EDM5 is positive.  Because M5 represents ribosomal biogenesis 

that consumes up to 80% of the total cell energy (22) and its expression divergence 

(ED) is primarily due to the reduced gene expressions compared to the wild-type, it is 

likely that suppression of M5 per se saves energy, which promotes cell growth given 

alterations of the other modules often have already reduced the growth rate beneath a 

critical level.  Consistently, deletion of SSF1, a member gene of M5, can be rescued 

by further deletion of RPL16A, a member gene of M3, or PRM5, a member gene of 

M6 (4) (Fig. 2E).  This finding challenged the common belief that down-regulation 

of ribosomal genes reduces cell growth rate (13-15).  These analyses collectively 

highlighted the strength of a general functional architecture in reconciling the diverse 

data and in revealing mechanistic insights.  
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 By analyzing the microscopic images of triple-stained yeast cells a previous study 

characterized 501 morphological traits for the ~5,000 yeast mutants each lacking a 

non-essential gene (23).  We identified for each of the traits its EIGs using the same 

Set #1 mutants.  Up to 2,541 non-redundant genes were identified as EIGs of at least 

one trait, and mean and median number of traits an EIG affects were 27 and 11, 

respectively.  The number of EIGs a trait has varied substantially, ranging from zero 

to ~1,000.  Surprisingly, there was little overlap between EIGs and the corresponding 

genetically informative genes (GIGs) that, when deleted, result in significant effects 

on the traits (24) (fig. S2).  Compared with EIGs, GIGs tend to regulate a much 

larger number of downstream genes but tend not to respond to other genes (Fig. 3A).  

It is thus likely that the significant effect on a trait requires perturbations to multiple 

EIGs of the functional modules that directly regulate the trait, which is achieved often 

by deleting a GIG with many downstream targets rather than a single EIG.  This 

notion, if correct, would help clarify a long-standing puzzle that genes with 

expression response to a given environment are often not the genes required for the 

environment (18).  Notably, although the diverse genetic perturbations can 

effectively remove coincidental associations between gene expression level and a trait, 

still some of the EIGs may regulate while the others may be reactive to their traits (25, 

26).  By examining the segregation pattern of trait, QTLs and gene expression in the 

F1 segregants of a hybrid of two S. cerevisiae strains with distinct genetic 

backgrounds (27) (Methods), we estimated that approximately 15-40% of the EIGs 

can causally affect the corresponding morphological traits (Fig. 3B).  We further 
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dissected 10 exemplar traits each with >300 EIGs, and found that protein modules 

formed by these EIGs have generally good performance in explaining each of the 

traits, with Pearson’s R ranging from 0.3 to 0.6 (fig. S3 and table S2).   

However, virtually no EIGs were found for a large number of traits that have as 

complex genetic architectures as others; for example, there were on average 129 ± 

22.9 (mean ± s.e.m.) GIGs for the 48 traits with <10 EIGs, and this number was 167 ± 

15.6 (mean ± s.e.m.) for the rest 168 traits with ≥ 10 EIGs (p > 0.05, Mann-Whitney 

U test; Fig. 4A).  We reasoned that their underlying functional architecture should be 

composed of complex gene-gene interactions that preclude the detection of EIGs, a 

process relying on the rather simple expression-trait relationship.  Interestingly, the 

relatedness of a morphological trait to cell growth rate appeared to be the determinant 

of the EIG number.  Specifically, although there were typically several hundred EIGs 

in traits tightly coupled with cell growth rate, we found no EIGs in traits with no 

significant correlation to the cell growth rate (Fig. 4B and fig. S4).  This finding 

cannot be explained by the noise of trait measuring (fig. S5) or by a smaller variation 

of the traits less coupled with cell growth rate (fig. S6).  In addition, we here 

required the EIGs found in the Set #1 mutants reproducible in the Set #2 to avoid false 

positives.  Because for the single-celled yeast cell growth rate represents the 

organism’s fitness, the above pattern indicated that natural selection has been critical 

in shaping the composition of EIGs.  Specifically, natural selection seemed to be 

necessary for the recruitment or maintenance of EIGs, and the absence of EIGs 

suggested a complex functional architecture underlying the fitness-uncoupled traits, as 
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a result of neutral genetic drift or hitchhiking effects.  On the other hand, given the 

generally good performance of the EIG-based functional architecture, it is likely that 

genes with a rather simple expression-trait relationship are preferentially recruited and 

maintained by natural selection, resulting in a much simpler functional architecture 

than anticipated for the fitness-coupled traits.   

Discussion 

 There are three caveats that warrant discussion.  First, cell growth rate measured 

in YPD may not well represent the natural fitness of yeast, although the relative 

growth rates of the deletion mutants measured in diverse media are largely conserved 

(21), which may confound the estimations of fitness coupling of the morphological 

traits.  This potential problem, however, is unlikely to generate the strikingly 

different EIG composition between the fitness-coupled and fitness-uncoupled traits; it 

would only erase the signature to make our analysis more conservative.  Second, no 

gene-environment interaction was considered.  We reasoned that, same as genetic 

factors, environmental factors affect traits also via modulating gene activities.  

The >1,300 single-gene deletion mutants represented diverse genetic perturbations 

(fig. S7), thus providing a reasonably good sampling of the entire functional space of 

the yeast cell, although only a single environment was examined here.  In line with 

this, knowledge learned from the Set #1 mutants worked well in the independent Set 

#2 mutants.  Third, because the genetic/phenotypic space represented by the F1 

segregants of the BY x RM hybrid is limited, only a small subset of the identified 

EIGs can be tested for their causal effects on the traits.  Although this gave a rough 
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estimation of the proportion of causal EIGs, we still had to use all EIGs to build the 

functional architecture of the traits.  Sampling more variations of the natural 

populations would help distinguish causal EIGs from reactive EIGs, complementing 

the present strategy that is based primarily on associations. 

The genome-wide reverse genetic approach allowed us to explore an 

unprecedentedly large functional space of the yeast cell to identify an unbiased 

functional architecture of the yeast traits.  Notably, the linear function considering  

the six biogenesis-related EIG modules were able to explain up to ~50% of the 

variance of cell growth rate, one of the most complex traits, and also provided a 

variety of novel mechanistic insights on the regulation of yeast cell growth.  This 

performance should be much improved if protein activity was considered in the 

context of a comprehensive interactome (28).  In addition, the fact that ~94% (82/87) 

of the slow-growth mutants can be assigned into five clear groups suggested that a 

more sophisticated model integrating the six modules may provide an even better 

understanding of the cell growth.  Thus, there are good reasons to prospect a 

high-quality EIG-based functional architecture for most fitness-coupled cellular 

features, suggesting a manageable task for fully understanding them.   

The most important finding of this study is probably the sheer absence of EIGs 

for most fitness-uncoupled traits, given the generally hundreds of EIGs observed for 

their fitness-coupled counterparts.  Because these traits often have an as complex 

genetic architecture as the fitness-coupled ones (Fig. 3A) (24), the only explanation is 

that they are controlled by super-complex gene-gene interactions that erased all 
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signatures of the expression-trait associations, rendering the task of revealing their 

functional bases at the gene level extremely difficult.  How such complexity 

originated is intriguing.  It may evolve specifically for regulating the traits via 

neutral genetic drift, or it may represent non-specific signals that are initiated by 

certain genetic perturbations and then propagating pervasively within the molecular 

system of a cell.  Importantly, the lack of effective selection predicts that pathways 

mediating such regulations or signal propagations must be ad hoc settings with high 

turnover rate.  This situation reminds us of the many known chaotic events observed 

in other complex systems that cannot be deterministically understood (1).  Thus, the 

presence or absence of natural selection defines two types of biological phenomena, 

namely, the fitness-coupled and the fitness-uncoupled.  Like linear and nonlinear 

differential equations in mathematics, where the former tends to have straightforward 

solutions but the latter is often unsolvable, the two kinds of biological phenomena 

should be studied and understood using different research philosophies and with 

different expectations.  Recognition of this may save cell biology from the present 

endless complexity. 

 

Methods 
Data 
 The yeast Saccharomyces cerevisiae single-gene deletion stock was generated by 
Giaever et al. (2002), with 4,718 mutant strains each lacking a nonessential gene 
being considered in this study.  As for cell growth rates of the above mutants 
measured in the rich medium YPD (yeast extract, peptone, and dextrose), the 
Bar-seq-based data were by Qian et al. (2012), the microarray-based by Steinmetz et 
al. (2002), and the colony-size-based by Costanzo et al. (2010).  The 501 
morphological traits of the mutants (SCMD) were characterized by Ohya et al. (2005), 
and the genetically informative genes (GIGs) that show significant phenotypic effects 
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after deletion were defined for 220 traits by Ho and Zhang (2014), with 216 
reproducible using the updated data in SCMD and thus included in this study.  The 
microarray-based expression profiles of 1,484 deletion mutants were recently 
generated by Kemmeren et al. (2014), and gene A was called the downstream target of 
gene B and B was the upstream regulator of A if A shows significant expression 
change (p < 0.0001 as provided in the original data) in the mutant of B deletion. 
 
Identification of expression informative genes (EIGs)  

There are 1,328 strains with both the expression profiles generated by Kemmeren 
et al. (2014) and the Bar-seq-based cell growth rates.  We randomly divided the 
1,328 yeast strains into two sets, with 885 strains for Set #1 and 443 for Set #2.  
There are 6,123 yeast genes on the chip used by Kemmeren et al. (2014).  The 
distribution of cell growth rates of the mutants is highly biased, with the majority 
close to the rate of the wild-type.  We thus computed for each of the 6,123 yeast 
genes the correlation of its expression levels with the corresponding growth rates 
using the univariate Cox’s regression model, with growth rate as the parameter “time”,  
strains of growth rate <0.9 weighted as “event = 1”, and all others as “event = 0”.  
Specifically, we first generated 500 artificial datasets, each containing 443 strains 
picked randomly from the 885 Set #1 strains with replacements.  We then performed 
the Cox’s regression analysis for each of the 500 datasets, respectively, based on the 
settings described above, and obtained 500 p-values for every yeast gene.  We 
defined the correlation robustness (r-value) of a given gene as the harmonic mean of 
its p-values after dropping both the highest and the lowest 5% of its 500 p-values, 
which was then multiplied by 6,123 for multiple testing correction.  A total of 911 
genes each with the corrected r-value<0.001 were defined as expression informative 
genes (EIGs) of the cell growth rate. 

Different from the one-tailed distribution of cell growth rate, nearly all of the 501 
morphological traits of the deletion mutants show a bell-shape distribution, with the 
median trait value very close to that of the wild-type (fig. S8).  Thus, we used the 
Pearson’s linear regression model that considers the trait-gene correlation across the 
whole distribution, instead of the Cox’s regression model that emphasizes the 
difference of two categories.  Specifically, we calculated the Pearson’s R for each of 
the 501 x 6123 trait-gene pairs in the 500 artificial datasets generated above.  The 
Pearson’s R values were transformed into p-values using T-test, and the correlation 
robustness (r-value) was then computed as previously described.  Genes with the 
corrected r-values less than 0.01 were considered as EIGs that are subject to the 
protein module analysis.  To further reduce false positives, we required that these 
EIGs also show significant trait-gene correlation in the independent Set #2 mutants to 
be included in the analysis for Fig. 4 and it derivatives. 

Morphological traits are not independent; for instance, the size and the diameter 
of a cell are correlated.  To reduce correlated traits, we employed an un-supervised 
affinity propagation strategy proposed by Frey and Dueck (2007) to cluster the 501 
traits based on the r-values of all genes, resulting 57 clusters each with an exemplar 
trait.   
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Separation and functional annotation of EIG modules 

The yeast protein-protein interactions (PPIs) were downloaded from BioGrid, a 
database built by Stark et al. (2006).  For a given trait we constructed a 
non-directional, unweighted PPI network composed exclusively of its EIGs.  Protein 
modules were separated using an order statistics local optimization method (OSLOM) 
proposed by Lancichinetti et al. (2011) with default settings.  To annotate the 
biological functions of these protein modules, we performed the gene ontology (GO) 
enrichment analysis for each module using BinGO by Maere et al. (2005) and 
Cytoscape by Shannon et al. (2003).  We obtained seven modules formed by the 
EIGs associated with cell growth rate, among which six were found to be enriched 
with functionally similar proteins under a false discovery rate of 0.001 (table S1).  
We identified 72 protein modules each with at least three genes for EIGs of the 10 
exemplar morphological traits, and successfully annotated 66 using the GO 
enrichment analysis (table S2).  Most of the annotated modules show >10-fold 
enrichment with the assigned function.  
 
Calculation of expression distance (ED) 
 For a given EIG module its expression distance (ED) between a mutant and the 
wild-type was defined as the Euclidian distance between the two expression profiles: 

 
Where MIi and WIi are the expression level of the ith gene in the mutant and wild-type 
strains, respectively, and n is the number of genes in the module. 
 
Determination of causal associations between the EIG expression and traits 

Information of the genotype, expression and morphology of 62 F1 segregants of a 
hybrid of two yeast strains (BY4716, a derivative of S288c, and YEF1946, a 
derivative of RM11-1a) was obtained from Nogami et al. (2007), with three 
segregants excluded from further analyses because of unmatched IDs.  Because there 
is no major difference between the two parental yeast strains in most of the 
morphological traits, there are only 118 EIGs whose expression-trait correlation was 
also detected in the 59 F1 segregants under q < 0.01 (two-tailed T test with Bonferroni 
correction for multiple testing).  The causality of the EIG-expression versus trait 
association was resolved using the Network Edge Orienting (NEO) method developed 
by Aten et al. (2008).  Following the manual provided by NEO, we calculated the 
LEO.NB.CPA score and the LEO.NB.OCA score with all genotype information 
(SNPs) inputted; for each association the two causality directions (i.e., 
EIG-expression -> trait and trait -> EIG-expression) were tested separately.  We 
defined a cause relationship if the LEO.NB.CPA score > 0.8 and the LEO.NB.OCA 
score > 0.3, which corresponds to a false discovery rate of 0.05.  We found 18 
EIG-expression -> trait and 27 trait -> EIG-expression causal relationships.  We 
were not able to assign a reliable causal relationship for the rest 118-18-27=73 
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associations. 
 
Calculation of the relatedness of the morphological traits to fitness 

The relative cell growth rate is a reasonable measure of the relative fitness for the 
single-celled yeast.  Because in this study all cellular traits are measured in YPD, we 
used the cell growth rate in YPD as the proxy of fitness.   

Given the bell-shape distribution of a morphological trait where the wild-type 
trait value is almost always located in the middle, both increase and decrease of a trait 
value relative to the wild-type could affect fitness in the same direction.  Thus, we 
divided for a given trait the 4,718 mutants into two equal halves according to the trait 
values, and calculated the Pearson’s R between trait value and fitness for each half of 
the mutants separately, resulting in two Rs for every trait.  The R with the larger 
absolute value was used to represent the relatedness of the trait to fitness.  We also 
computed the Pearson’s R without separation of the mutants into two halves, and 
found that it is often highly similar to the relatedness obtained above (fig. S9).  

There are 420 Set #2 mutants with the morphology information.  Considering 
the bell-shape distribution of a morphological trait, we divided the 420 mutants into 
two halves, one with larger trait values and the other with smaller trait values, and 
identified the half that is more coupled with fitness.  This half was used for testing 
the trait-specific EIG modules as shown in fig. S3. 
 
Assessment of the quality of the morphological traits 

To characterize the yeast morphological traits Ohya et al. examined on average 
400 individual cells for each mutant.  The trait value of a given mutant is the mean 
trait value of the examined cells.  Despite the generally large number of examined 
cells, for some traits there were often a few tens of informative cells, which may 
affect the reliability of the measurements.  To address this issue, we randomly 
divided the examined cells of each mutant into two equal halves and computed the 
traits for each half separately.  For each trait we then computed the Pearson’s R 
between values derived from the first half and values from the second half.  The 
consistency between the two halves varies substantially among the traits, but is not 
dependent on the trait relatedness to fitness (fig. S5). 
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Figure legends 
Fig. 1 Comparison of the yeast cell growth rates estimated by the linear model 
or by the three experimental approaches.  (A) The linear model is written as G = 
-1.740EDM1 - 0.435EDM2 - 0.725EDM3 - 0.071EDM4 + 0.794EDM5 - 0.058EDM6 + 1.019, 
where G stands for growth rate.  (B)  Seventy-two mutants without the 
colony-sized-based estimation are excluded.  (C) Four mutants without the 
microarray-based estimation are excluded.  Each dot represents a deletion mutant, 
with the Pearson’s R shown. 
 
Fig. 2 Characterization of the six growth-related EIG modules.  (A) 
Composition of each of the six modules.  (B) Effects after removing a single 
member gene on the correlation between module activity and cell growth rate for each 
of the six modules.  The y-axis shows the Pearson’s R after removing a member gene 
relative to that of the whole module.  (C) The five types of growth defects defined 
by the six modules.  Each row represents a slow-growth mutant, and the expression 
distance (ED) of a module is normalized by subtracting its mean ED in the 87 mutants.  
(D) The Pearson’s R between module activity and cell growth rate for each of the six 
modules, in comparison to that of the partial correlation that controls for the other five 
modules.  (E) The rescuing epistasis between SSF1 of M5 and PRL16A of M3 or 
PRM5 of M6.  F represents the relative growth rate (or fitness) of a mutant, with ε1 = 
FΔSSF1/ΔPRL16A - FΔSSF1 x FΔPRL16A and ε2 = FΔSSF1/ΔPRM5 - FΔSSF1 x FΔPRM5.   

 
Fig. 3 Functional characterization of GIGs and EIGs.  (A) The numbers of 
downstream targets (x-axis) and upstream regulators (y-axis) per EIG or GIG.  Each 
dot represents the average of all EIGs or GIGs of a trait.  (B) Assessment of the 
causality for the 118 EIG-trait associations, with 18 EIG -> trait and 27 trait -> EIG 
causal relationships determined under a false discovery rate of 0.05. 
 
Fig. 4 The presence of EIGs is determined by fitness coupling rather than 
genetic complexity.  (A) The number of GIGs is comparable between traits with <10 
EIGs (n = 48) and traits with more EIGs (n = 168).  Box-plots are presented, and the 
y-axis shows the square root of the number of GIGs.  (B) The number of EIGs as a 
function of trait relatedness to fitness.  Each dot represents a trait, and the y-axis 
shows the square root of the number of EIGs.  The trait relatedness to fitness is 
defined by the Pearson’s R between the trait values and cell growth rates of the 
deletion mutants, with R > 0.1 or R < -0.1 regarded as statistically significant after 
controlling for multiple testing (q < 0.01).   
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