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Abstract 
With massive amount of sequencing data generated for many epigenetic features in a variety of 
cell and tissue types, the chief challenges are to build effective and quantitative models 
explaining how the dynamics in multiple epigenomes lead to differential gene expression and 
diverse phenotypes. We developed a unified Bayesian framework for jointly annotating multiple 
epigenomes and detecting differential regulation among multiple tissues and cell types over 
regions of varying sizes. Our method, called IDEAS (integrative and discriminative epigenome 
annotation system), achieves superior power and accuracy over existing methods by modeling 
both position and cell type specific regulatory activities. Using 84 ENCODE epigenetic data sets 
in 6 cell types, we identified epigenetic variation of different sizes that are strongly associated 
with differential gene expression. The detected regions are significantly enriched in genetic 
variants associated with complex phenotypes. Our results yielded much stronger enrichment 
scores than achievable by existing approaches, and the enriched phenotypes are highly relevant to 
the corresponding cell types. IDEAS is a powerful statistical tool for integrative annotation of 
regulatory elements and detection of multivariate epigenetic variation in many tissues and cell 
types, which could be of important utility in elucidating the interplay between genetic variants, 
gene regulation and diseases. 
 
The states generated by IDEAS can be visualized or downloaded from the “Regulation” section 
of http://main.genome-browser.bx.psu.edu/   
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Introduction 
 
An essential problem in molecular biology is to understand gene regulation and its impact on 
phenotypic diversity. Applications of advanced biotechnologies1-3 in existing large consortia4-9 
and many individual laboratories are generating massive data sets for many genome-wide 
features. Data acquisition is no longer the major barrier to understanding human epigenome, 
mechanisms of gene regulation and its role in complex disease. The chief challenges are to build 
effective and quantitative models explaining how the dynamics of epigenomes relates to gene 
expression changes and phenotypic diversity. Interpretation and modeling must be resolved both 
along the genome and across different cell/tissue types. Key regulators functioning in specific 
cell/tissue types can be revealed by contrasting epigenetic signals across samples, along with their 
impacts on gene expression5. New hypotheses about the dynamics of the regulatory regimes 
during differentiation can consequently be derived and tested to illuminate previously intractable 
issues in the genetics of disease susceptibility10,11. 
 
Genetic variants for human complex diseases are significantly enriched in regions exhibiting 
epigenetic cell type-specificity11,12. While statistical endeavors have been conducted to identify 
cell type-specific epigenetic marks and pinpoint their locations12-15, there is a lack of generalized 
and rigorous methods to powerfully identify cell type-specific regions incorporating multiple 
epigenetic marks in many epigenomes jointly. A state-of-the-art approach for characterizing 
multivariate epigenetic marks is via hidden-Markov-model (HMM) enabled genome 
segmentation16,17, which translates the high-dimensional raw data into a set of comparable and 
interpretable states for segments of the genome exhibiting unique patterns of chromatin marks. 
The inferred epigenetic states have been proven useful, with experimentally confirmed 
functionality, as a convenient tool for studying gene regulation and their implications on 
phenotypes5. Two state-of-the-art algorithms are chromHMM16 and Segway17. ChromHMM is a 
multivariate hidden Markov model that interprets the presence or absence of chromatin marks 
over siding windows of fixed sizes. Segway uses a dynamic Bayesian network model that 
analyzes the continuous data of chromatin marks in 1-bp resolution for the entire genome. Both 
methods make de novo discoveries of major re-occuring patterns of chromatin marks.  
 
ChromHMM and Segway were developed for analyzing a single epigenome. Although multiple 
epigenomes can be concatenated and hence analyzed together, such an approach ignores the 
critical information of position specificity of epigenetic events, and it treats all samples equally 
without accounting for cell type-specificity. Consequently, states generated by these methods are 
neither optimal nor robust for detecting epigenetic variation across multiple epigenomes. 
Extensions from ChromHMM and Segway have been developed to alleviate some of these issues. 
TreeHMM18 adds to ChromHMM a hierarchical model to borrow information across a known cell 
type hierarchy. A known cell type hierarchy, however, is not always available or informative, and 
a fixed hierarchy applied globally to the whole genome is overly restrictive. HiHMM19 extends 
from Segway to handle multiple epigenomes via infinite-state hidden Markov models (iHMM20). 
While each epigenome has its own iHMM parameters, information is shared across multiple 
epigenomes via priors. HiHMM however ignores the position specificity of epigenetic events. 
 
We introduce IDEAS (Integrative and Differentiative Epigenome Annotation System), a new 
Bayesian framework for jointly analyzing multivariate epigenetic marks in multiple epigenomes. 
IDEAS is a powerful integration and segmentation tool that identifies de novo regulatory 
elements from high-throughput sequencing data in many samples. Simultaneously, IDEAS 
detects variation in the epigenetic patterns across both samples and genomic regions in varying 
lengths. Unlike existing approaches, we model cell type specificity locally across the genome. We 
also model position specificity via priors. We expect different cell types exhibiting similar signal 
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patterns at the same loci, yet we allow variation in their posterior distributions. Combining local 
cell type and position effects, we leverage both global and local information from many samples 
to annotate regulatory elements and detect epigenetic variation more accurately than existing 
methods. We use Bayesian infinite-mixture models to approximate the quantitative data 
distributions rather than performing data binarization16,21,22 or making parametric distribution 
assumptions17,23-25. While data binarization is sensitive to cutoff values and cannot detect 
quantitative variation, parametric assumptions on the data distribution are prone to model 
misspecification. Using mixture models, we are able to detect non-linear distributional variation 
beyond testing means in multivariate signals. We further utilize Bayesian non-parametric 
techniques to automatically determine the best model sizes (e.g., the number of states) without 
requiring technical inputs from the user. Our IDEAS is a unified framework that covers several 
existing tasks as special cases, such as genome segmentation, peak calling, differential gene 
expression testing. Importantly, IDEAS tackles these tasks in many samples simultaneously.  
 
Using 84 ENCODE data sets in 6 cell types26, we demonstrate the superior accuracy and 
robustness of IDEAS for annotating regulatory elements and detecting epigenetic variation across 
cell types. The differential regulatory regions identified by IDEAS are driven by clustered cell 
type specific regulatory elements. They are strongly predictive of differential gene expression 
among cell types. By intersecting with disease variants from genome-wide association studies, we 
observed significant enrichment of these variants in cell type-specific regulatory regions, for 
which the phenotypes are highly relevant to the cell types. Current studies use specific epigenetic 
states enriched in certain cell types to perform disease enrichment analysis5. In comparison, we 
demonstrate that our modeling of the cell type-specific differential regulatory regions can yield 
much stronger enrichment scores with more interpretable phenotypes. IDEAS not only is a 
powerful tool for studying different gene regulation, but also provides an improved means for 
narrowing down the sets of plausible disease genetic variants and revealing cell type-specific 
connections between genetic variants and phenotypes. 
 
Results 
 
Overview of the Method 
IDEAS is a Bayesian hierarchical mixture model that identifies multivariate patterns in high-
throughput sequencing data and detects their variation across positions and samples in an 
unsupervised manner. The method is inspired by the haplotype inference problem for re-
sequencing data. A haplotype inference procedure identifies combinatorial patterns of alleles 
shared among individuals over multiple loci. Similarly, our model identifies local clusters of cell 
types that share similar epigenetic landscapes over a region. In a haplotype inference problem, 
one needs to determine if a position is polymorphic or monomorphic. Similarly, our method 
assigns each position into a class summarizing its regulatory profile for all cell types, such as a 
plausible promoter, a potential enhancer, or a position with variable regulatory functions. A 
haplotype inference procedure calls specific alleles at each position in each individual, and its 
accuracy can be substantially improved by modeling haplotype structures in the region27,28. 
Similarly, our model assigns specific epigenetic states to each cell type at each position, with 
improved accuracy thanks to the incorporation of local cell type clustering and position 
classification. The output of IDEAS includes the inferred epigenetic states in each epigenome, 
local clustering of cell types, and genomic position classes, all obtained via automated Bayesian 
inference. An illustration of the IDEAS approach is shown in Figure 1. 
 
Annotation of Epigenetic States 
We applied IDEAS to 84 ENCODE data sets in six human cell types (GM12878, H1-hESC, 
HeLa-S3, HepG2, HUVEC, K562), including 13 epigenetic features (the histone modifications 
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H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K27ac, H3K27me3, H3K36me3, and H4K20me1, 
occupancy by POL2RA or CTCF, and chromatin accessibility monitored by Duke DNase, UW 
DNase, and FAIRE) and 1 control in each cell type. We took the maximum read counts in 200 bp 
nonoverlapping sliding windows, giving 13,763,197 windows genome-wide in each data set. 
Hoffman et al.26 have analyzed the same data using ChromHMM16 and Segway17. ChromHMM 
jointly segmented the six epigenomes via concatenation and generated 25 epigenetic states. 
Segway segmented each epigenome separately and generated 55 epigenetic states in total. We 
used the segmentation results of ChromHMM and Segway from Hoffman et al.26 for comparison, 
and we used similar mnemotics in Hoffman et al.26 to label the states by IDEAS. 
 
Common and Novel States 
IDEAS identified 24 epigenetic states (Figure 2a) in the six cell types. Overall, they agreed well 
with the states identified by ChromHMM (Supplementary Figure S1) and Segway. Several states 
were commonly identified, including transcription start sites, enhancers, CTCF occupancy, poised 
promoters, repressors, low and quiescent regions. IDEAS also identified some novel states. For 
examples, TssCtcf is a CTCF occupancy state highly enriched near transcription start sites, which 
has stronger active marks and open chromatin than the Tss state. HistPol2 has much stronger Pol2 
signals than the Pol2 state of ChromHMM. HistPol2 was significantly enriched near genes 
involved in nucleosome organization (Binomial FDR 10-56), the HIST gene families (Binomial 
FDR 10-53) and many other core molecular processes (e.g., protein binding, gene translation). 
Remarkably, HistPol2 occurs 10 times more frequently in the embryonic stem cell type (H1-
hESC) (67% of HistPol2, Supplementary Figure S2) than in the other cell types (6%, 7%, 6%, 
5%, 9% of HistPol2 in GM12878, HeLa-S3, HepG2, HUVEC, K562, respectively). BivProm is a 
state with both active histone mark H3K4me3 and repressive histone mark H3K27me3. BivProm 
also has strong signals of the enhancer mark H3K427ac and is enriched near transcription start 
sites.  
 
IDEAS states exhibited unique spatial distributions (relative to the transcription start and end sites 
of genes in GENCODE29 v7) that corresponded well to their biological roles (Figure 2b). Tss-
related states (Tss, TssCtcf, TssW, TssF, PromP) were enriched near transcription start sites and 
depleted near transcription end sites; repressors (Repr and ReprD), strong enhancers (Enh), 
bivalent promoters (BivProm) and Gene 5’ regions (Gen5, Gen5Pol2) were enriched in the 
flanking regions of transcription start sites; Elongation (Elon) and Pol2 states (Gen3Pol2, 
LowPol2, HistPol2) were depleted at transcription start sites but enriched near transcription end 
sites; low signal states (Zero, Quies, ReprW, LowReprW, ReprWF), weak marks (EnhW and 
EnhF), and Ctcf, CtcfO were neither obviously enriched nor depleted around genes. In addition, 
the lengths of IDEAS states varied considerably from 200bp to 100kb (Figure 2c). While most 
states were <1000bp on average, LowReprW, Elon and Quies had notably longer lengths. 
 
CpG Methylation and Effects on Gene Expression 
Overlapping IDEAS states with DNA methylation in all cell types revealed a clear bipartition of 
IDEAS states lying in either low or high methylation regions (Figure 2d). States carrying active 
epigenetic marks and centered around the transcription start sites (e.g., TssCtcf, Tss, TssW) have 
the lowest methylation levels, while states enriched at the transcription end sites (e.g., HistPol2, 
Gen3Pol2, Elon) have the highest methylation levels. These results are consistent with the 
substantial depletion of DNA methylation in active promoters and elevation in transcribed gene 
bodies30. Interestingly, among the states enriched in the flanking regions of TSS, e.g., Repr, 
ReprD, Enh, Gen5, the repressor states (Repr, ReprD) and Gen5 are relatively highly methylated, 
but the strong enhancers (Enh) are not.  
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We further evaluated the state effects on gene expression. In each cell type, we fitted the RNA-
Seq data of genes (GENCODEv7) by a linear regression model against the proportion of states 
within 2kb upstream of their transcription start sites. As expected, several of the states revealed 
by IDEAS had positive effects on gene expression, including the Tss-, Pol2- related states and 
Enh, Elon, Gen5 and Gen3 (Figure 2e). In contrast, repressors (Repr, ReprD, ReprW), insulators 
(Ctcf), Quies and LowReprW had negative effects on gene expression. Surprisingly, the three 
types of CTCF states (TssCtcf, CtcfO, Ctcf) identified by IDEAS showed opposite impacts on 
gene expression: TssCtcf has notably stronger positive effects than Tss on gene expression, 
suggesting that CTCF in the TssCtcf state facilitates transcription; Ctcf has strong negative effects 
on gene expression, suggesting an insulator role; and CtcfO has almost no effect on gene 
expression, which may indicate a non-regulating function of CTCF. The ReprW state resolved by 
IDEAS had a very strong negative effect on expression.  
 
ChromHMM yielded similar state effects on gene expression, but the effects had smaller 
magnitudes and were less homogeneous across cell types. The state effects by Segway were much 
more heterogeneous across cell types due to the differences in state assignments in different cell 
types, and general trends across cell types were more difficult to detect. Overall, IDEAS 
produced the most homogenous state effect estimates across cell types, reflecting the benefit of 
including multivariate data from all cell types throughout the modeling. 
 
Prediction of Enhancers 
We evaluated the predicted enhancers using four independent validation datasets: 1) ENCODE 
EP300 peaks in GM12878, H1-hESC and HepG2 (note that EP300 was not included in the input 
data); 2) VISTA enhancer library31 containing 1699 experimentally tested loci with 882 verified 
enhancers; 3) 169 experimentally tested enhancers by FANTOM532 in HeLa-S3 and HepG2; and 
4) FANTOM5 CAGEtags that are predictive of active enhancers in GM12878, HeLa-S3, HepG2 
and K562. 
  
IDEAS captured 62% of EP300 peaks in its enhancer states (Enh, EnhF, EnhW) and 13% in 
TssCtcf, totaling 75% of EP300 peaks (Figure 3a). In comparison, ChromHMM captured only 
41% of EP300 peaks in its enhancer states (Enh, EnhW, EnhF), and a significant proportion 
(33%) of EP300 peaks in its Tss state, totaling 74% of EP300 peaks. Segway captured 46% of 
EP300 peaks in its enhancer states (Enh, Enh1, Enh2, EnhF1, EnhPr), 17% in its Tss state, and 
10% in PromF and PromP2, totaling 73% of EP300 peaks. Although all methods captured three 
quarters of EP300 peaks in a few states, IDEAS obtained the largest overlap with EP300 peaks in 
its enhancer states, and the fold enrichments of EP300 peaks were similar among the methods 
(Figure 3a). Further comparing the EP300 signals within the predicted strong enhancers (Enh) 
suggests that IDEAS strong enhancers tend to carry greater EP300 signals than the strong 
enhancers predicted by ChromHMM (Enh), Segway (Enh/1/2) and EnhancerFinder (Figure 3b). 
 
We calculated the precision-recall rates (Figure 3c) comparing the strong enhancers predicted by 
IDEAS, ChromHMM, Segway and EnhancerFinder33 with the experimentally verified enhancers 
(VISTA and FANTOM5) and the CAGEtag data. IDEAS consistently achieved greater recall 
rates than ChromHMM and Segway in all validation data sets at different precision levels. 
IDEAS also performed better than EnhancerFinder on the FANTOM5 data sets. Since 
EnhancerFinder is a supervised learning method trained on VISTA enhancers, the stronger 
performance of IDEAS in finding FANTOM5 enhancers suggests that our unsupervised learning 
method may have a unique advantage in uncovering novel enhancers, particularly for those not 
represented in the training set. 
 
Annotation of CTCF Binding 
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We evaluated the CTCF states using CpG methylation levels. The TssCtcf, CtcfO and Ctcf states 
by IDEAS showed distinct CpG methylation levels (Supplementary Figure S3). In comparison, 
the Ctcf and CtcfO states by ChromHMM and Segway had a mixed spectrum of methylation, with 
some CtcfO states showing much higher methylation levels than those in Ctcf states. We further 
compared the CTCF states with 51 validated CTCF binding sites in transgenic mice and 25971 
putative CTCF sites from non-ENCODE experiments in CTCFBSDB2.034. A CTCFBSDB2.0 site 
was counted as detected if the site was annotated as a CTCF state in any of the 6 cell types. 
IDEAS captured 48.1% of the validated CTCF sites and 92.3% of the putative CTCF sites 
(Supplementary Figure S3). In comparison, ChromHMM captured 21.2% validated and 73.9% 
putative sites, and Segway captured 25.5% validated and 78.0% putative sites. The fold 
enrichments of CTCF sites captured by the CTCF states of all methods were similar, indicating 
the best performance of IDEAS. 
 
Detection of Epigenetic Variation  
We call a 200bp window epigenomically “variable” if the unit is assigned with different states in 
different cell types, otherwise the position is “constitutive”. IDEAS marked 13.9% of the genome 
as variable sites. In contrast, 84.4% and 99.1% of the genome were marked as variable sites by 
ChromHMM and Segway, respectively. The substantially larger proportions of “variable sites” 
generated by ChromHMM and Segway may result from their inability to incorporate position 
specificity of epigenetic marks. Among the three methods, IDEAS generated the most 
homogeneous state assignments at each position in the six cell types (Figure 4a), and its 
cumulative state proportions were the most homogeneous across the six cell types 
(Supplementary Figure S2). Using the constitutive sites as a reference, analysis of variance 
suggested that the variable sites by IDEAS indeed carried substantial variability in the epigenetic 
features, whereas many of the “variable sites” by ChromHMM and Segway may actually be 
constitutive. 
 
IDEAS was able to detect cell type specific states, such as enhancers (Enh, EnhF, EnhW) that had 
many fewer co-occurrence than the other states did (Figure 4a). There were many pairs of states 
that co-occur at the same positions significantly more frequently than by chance. CtcfO and Ctcf, 
for instance, substantially co-occurred at the same positions, as noted by IDEAS and 
ChromHMM. We also observed positive co-occurrence of Tss states (Tss, TssF, TssW, TssCtcf) 
and repressive states (Repr, ReprD, PromP). We noted a positive co-occurrence between strong 
enhancers (Enh) and repressed regions (LowReprW), which was revealed only in IDEAS (Figure 
4a). For all cell types, the cell type specific variable sites were significantly enriched in enhancers 
(Enh, EnhF, EnhW). For some cell types, we also observed enrichment of Gen5Pol2, HistPol2 
and BivProm (Figure 4b). The cell type specific variable sites were significantly enriched near 
TSS (Supplementary Figure S5a), and the spatial distributions for different pairs of co-occurring 
states were distinct even after adjusting for the marginal spatial preference of each state in a pair 
(Supplementary Figure S5b).  
 
We further detected long intervals showing consistently differential signals among cell types, 
which we call “variable regions”. Correspondingly, intervals showing similar signals in all cell 
types are called “constitutive regions”. IDEAS detected 70,622 variable regions of length >1kb, 
accounting for 26.5% of the genome. Among them, 69.3% were cell type specific (16.0%, 9.1%, 
7.7%, 14.5%, 14.0% and 7.9% for GM12878, H1hESC, HeLaS3, HepG2, HUVEC and K562, 
respectively, covering 4.7%, 2.7%, 2.2%, 4.3%, 4.2% and 2.4% of the genome, respectively). 
Interestingly, a significant portion (75.8%) of the 200bp variable sites was located within the 
variable regions, suggesting that individual variable sites were locally clustered.  
 
State Distribution Around Variable Regions 
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We observed a significant enrichment of enhancers (Enh, EnhW, EnhF) in the cell type specific 
variable regions, and they were depleted in constitutive regions (Figure 4c). Other states such as 
HistPol2, Gen5Pol2 and BivProm were also enriched in the cell type specific variable regions, 
but only in some cell types. At those positions carrying enhancers, Gen5, HistPol2 or BivProm in 
specific cell types, the corresponding states in the remaining cell types were mainly Elon, 
LowReprW, Quies (Supplementary Figure S6), with a few exceptions. For instance, several 
H1hESC-specific regions were defined by HistPol2 and poised promoter (PromP), and the same 
positions were annotated as Quies and Repr in the other cell types, respectcely. Several HeLaS3-
specific regions were repressed (Repr) but were poised promoters (PromP) in the other cell types. 
According to GREAT35, those regions were significantly enriched in targets of H3K27me3 and 
Polycomb proteins EED, Suz12, PRC2 that maintain transcriptionally repressive state of genes. 
 
TSS states (Tss, TssF, TssCtcf) were significantly enriched in the close vicinity (<5kb) outside the 
boundaries of variable regions and within constitutive regions (Figure 4c). This suggests that 
variable regions tend to occur near genes and may influence differential gene expression. To test 
this hypothesis, we regressed gene expression data on the cell type partitions specified by each 
variable region. Using –log10 p-value of the regression model as weights, we computed a 
weighted frequency of TSS near or within all types of variable regions (but we skipped those 
types of variable regions with total length <5Mb). We observed a significant enrichment of TSS 
whose gene expression was associated with the variable regions (Supplementary Figure S7a). 
There were three TSS hotspots: within the variable regions and in their vicinities (1~5kb) on both 
sides. The adjusted r2 for gene expression (Supplementary Figure S7b) explained by the variable 
regions was at the maximum for transcription start sites located within the variable regions, i.e., 
when a promoter and its gene body both carried differential epigenetic marks.  
 
Enrichment of Disease Variants 
We overlapped the cell type specific variable sites and regions with the GWAS Catalog36 SNPs, 
including all lead SNPs and dbSNPs in strong LD with the lead SNPs (r2≥0.95). We calculated 
enrichment of disease variants relative to random shuffling of regions, and we identified 85 
significantly enriched phenotypes. As shown in Figure 5a, our cell type specific variable sites and 
regions were significantly enriched in disease variants, and the enrichments were highly cell type 
specific. The enrichment patterns for the variable sites and the variable regions were similar. In 
fact, 98.6% of the cell type specific variable sites that contained at least one disease variant in 
Figure 5a were located within a cell type specific variable region. Only 1.4% of the disease 
enriched variable sites were singletons (relative to 24.2% by chance), suggesting that disease 
variants tend to occur in regions that demonstrate cell type specific activities over multiple 
positions. 
 
A majority of the phenotypes enriched in our variable sites/regions occurred in three cell types 
(GM12878, HepG2, K562), and they are highly relevant to the corresponding cell types. For 
instance, GM12878 is a lymphoblastoid cell line with a relatively normal karyotype. GM12878-
specific sites are enriched in variants associated with several autoimmune diseases, including 
multiple sclerosis, rheumatoid arthritis, celiac disease and inflammatory bowl disease. HepG2 is 
derived from a liver carcinoma and is a model system to study metabolism disorders. HepG2-
specific regions are significantly enriched in variants from metabolism related traits, such as iron 
levels, retinol levels, cholesterol levels and alcohol consumption. HepG2-specific regions are also 
enriched in variants for gamma-glutamyl transpeptidase and fibrinogen. While the former is most 
notably found in liver, the latter is mainly synthesized in liver. K562 is derived from a chronic 
myeloid leukemia (CML) patient, and K562-specific regions are significantly enriched in variants 
associated with CML and hemoglobin related traits. K562 has both erythoid and megakaryocytic 
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properties, and appropriately, the K562-specific regions were enriched in variants associated with 
blood clotting, coagulation and erythroid phenotypes.  
 
Our results suggest that identifying epigenetic cell type specificity lead to increased odds for 
finding genetic variants associated with cell type relevant phenotypes. In support of this, we 
found fewer and much weaker enrichment of disease variants in the constitutive regions (Figure 
5a). While previous studies5,12 have used epigenetic states or specific epigenetic marks to narrow 
down regions for finding disease variants, our analysis shows that combining data from multiple 
cell types and identifying cell type specific differential regions may provide a more powerful 
means to find plausible disease variants. As shown in Figure 5b, within cell type specific variable 
sites and regions, disease variants were enriched in different types of epigenetic states for 
different phenotypes. Variants of K562-enriched phenotypes, for example, were mostly enriched 
in enhancers. Variants of HepG2-enriched phenotypes, on the other hand, tended to enrich in 
Gen5Pol2, HistPol2 and Gen3Pol2 regions. Although disease variants were overall more 
enriched in certain epigenetic states, the enrichments were generally in smaller magnitudes than 
using cell type specific variable regions (Figure 5c), and they did not suggest cell type relevance 
as our approach did. In addition, we performed the same enrichment analysis using ChromHMM 
and Segway segmentations. ChromHMM yielded fewer enriched phenotypes and many of them 
had no obvious connections to the corresponding cell types (Supplementary Figure S8). Segway 
resulted in just one enriched phenotype (aortic stiffness) without obvious relevance to GM12878. 
 
Discussion 
 
While epigenetic states generated by segmentation tools can provide interpretable synopses for 
mapping the complex epigenetic landscapes, IDEAS extends the task to annotate multiple 
epigenomes via a unified probabilistic framework. By explicitly modeling position and cell type 
dependent events and leveraging information from local epigenetic landscapes in all samples, the 
inferred chromatin states are directly comparable across samples, allowing detection of both 
constitutive and differential regulatory events. IDEAS is more accurate for annotating regulatory 
elements than current state-of-the art algorithms, and simultaneously, it detects epigenetic 
variation across samples in regions of varying sizes. Our results revealed epigenetic cell type 
specificities and their impacts on differential gene expression across cell types. By intersecting 
the variable regions with non-coding SNPs from GWAS data sets, we observed a strong 
enrichment of genetic variants associated with human phenotypes, and the enriched phenotypes 
were highly relevant to the corresponding cell types. In an improvement over existing disease 
enrichment analysis, our modeling of the epigenetic cell type specificity yielded the strongest 
enrichment scores without constraining ourselves to specific epigenetic states. In comparison, 
disease enrichment analysis focusing on individual epigenetic marks or states, with or without 
considering cell type specificity, yielded smaller enrichment scores. While phenotypes often have 
cell type preferences, our results suggest that the regulatory mechanisms underlying a phenotype 
could be diverse. Our approach of directly addressing the epigenetic cell type specificity, 
therefore, provides a new tool for pinpointing plausible disease variants and interpreting their 
functions towards phenotypes in a cell type-specific context. 
 
Additional applications of IDEAS include, but are not limited to, jointly calling peaks for 
constitutive and variable binding of transcription factors, testing differential gene expression in 
multiple conditions, and generalized association mapping of genetic, epigenetic and genomic data 
with phenotypes. For peak calling, IDEAS can quantify TF binding affinity using multiple states 
and detect co-binding of multiple transcription factors. For detecting differential gene expression, 
input data will be the expression level per gene normalized by the gene size, and differential 
expression can be reflected by different states. For generalized association mapping, diverse data 
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types in different dimensions may first be integrated into categorical states by IDEAS, and then 
existing categorical testing procedures can be used to detect associations with phenotypes. The 
probability functions used in the mixture model of IDEAS can also be replaced by other choices 
so that it can be generalized to solve even a broader scope of problems. 
 
This study attempts to integrate and characterize multiple epigenomes in both the dimensions of 
space (e.g., position along the genome) and time (e.g., stages of cellular differentiation). As high-
throughput sequencing data sets are continuously generated for many more genome-wide features 
in additional cell/tissue types and conditions, large-scale computational methods like ours will be 
needed to facilitate in the analysis and interpretation of the ever growing dimensions of biological 
data, with a goal of untangling the complex mechanisms of gene regulation and revealing their 
contributions to phenotypes. While new insights generated from the results of IDEAS may be 
dependent on the data quality, the available epigenetic features and the cell types included, the 
initial run of our method on current ENCODE data is already useful for identifying DNA 
sequences in functional classes, finding regions of the epigenetic landscape that specific or 
selective for cell types, identifying key features driving the variation, and associating specific cell 
types with phenotypes of interest.  
 
URLs 
ENCODE data sets analyzed in Hoffman et al. 2013 were downloaded from web portal: 
https://sites.google.com/site/anshulkundaje/projects/wiggler 
 
ChromHMM and Segway segmentation results, HAIB Methyl RRBS DNA methylation data, 
Caltech RNA-seq data (we only used the first two replicates), EP300 peaks and raw signals, were 
downloaded from UCSC genome browser under ENCODE analysis hub: 
http://genome.ucsc.edu/ENCODE/analysis.html 
 
VISTA enhancers were downloaded from VISTA enhancer browser: 
http://enhancer.lbl.gov/ 
 
FANTOM5 enhancers and CAGEtags were downloaded from FANTOM5 website: 
http://fantom.gsc.riken.jp/5/ 
 
EnhancerFinding predictions were downloaded from website: 
http://www.capralab.org/enhancerfinder-paper-published-in-plos-comp-bio/ 
 
Experimental CTCF sites and non-ENCODE putative CTCF sites were obtained from 
CTCFBSDB 2.0: 
http://insulatordb.uthsc.edu/home_new.php 
 
GWAS Catalog and GENCODE files were downloaded from UCSC genome browser: 
http://genome.ucsc.edu/ 
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Materials and Methods 
 
Data Preparation and IDEAS Specifics 
The 84 ENCODE data sets in the 6 cell types and the segmentation results by ChromHMM and 
Segway were both obtained from Hoffman et al.26. The downloaded data sets have already been 
preprocessed and normalized. We followed the same procedure taken by ChromHMM to take the 
maximum read count per 200bp window as the input to our method, but we took log2(x+1) 
transformation of the read count (x) to reduce the skewness of read count distribution.  
 
We used a hybrid of MCMC sampling and maximization steps to fit the IDEAS model. Starting 
from random values, we ran a mix of MCMC sampling and maximization iterations. The 
sampling steps were used for the purpose of jumping out of local modes of the likelihood surface. 
For the first 25 iterations, with probability p we ran maximization, and other wise we ran MCMC 
sampling, where p was increased from 0 to 0.5 linearly over the course of 25 iterations. For the 
next 25 iterations, we ran maximization and MCMC sampling with equal probability. After that, 
we ran additional 50 iterations of IDEAS by maximization only. The final output was taken as the 
results produced in the last iteration. In each iteration, we calculated the likelihood of the full 
model, which showed that the algorithm converged quickly after the 50th iteration and stabilized 
at the end of the 100th iteration. When running IDEAS, we further imposed a lower bound of 0.8 
on the standard deviation of each epigenetic mark in each state, which was effective for 
smoothing out the discreteness of read count data, especially at low read count values. 
Consequently, we obtained fewer but much more interpretable states than otherwise would have 
been generated by artifacts in the data. We removed 1 outlying state generated by IDEAS, as it 
contained extreme values with only 10 instances genome-wide. 
 
The IDEAS Model  
An Infinite Mixture Component Model 
Let X={xij}, for i=1,…,N and j=1,…,L, denote the observation data in N cell types at L ordered 
genomic positions. Each xij could be a ni by p matrix, where ni denotes the number of replicates 
for cell type i and p denotes the number of epigenetic features. The total number of samples 
therefore is 𝑀 = 𝑛!!

!!! . We model X by an infinite mixture of multivariate Gaussian 
distributions, where each Gaussian component has mean µk and covariance Σk, for k=1,2,…∞. We 
assign conjugate priors to µk and Σk, µk~MVN(0, Σk) and Σk~IW(Φ), where “MVN” stands for 
MultiVariate Normal distribution, “IW” stands for Inverse Wishart distribution, and Φ = Ιp. Let 
K={kij} denote the mixture component memberships of observations in X, where kij=(kij1,…,kijni) 
includes memberships for ni replicates. Let mk denote the number of observations in the kth 
mixture component, and Xk denote the observations in the kth mixture component. It is standard38 
to integrate out µk and Σk to obtain the following conditional distribution 

Pr 𝑋 𝐾 = !
!!!!/!(!!!!)!/!

!!(
!!!!
! !!)

|!!!!!!(!!!!
!

!!!!
!!!!!!

!)!!|
!!!!
! !!!!(

!
!!!)

!
!!!   (1) 

where Γp(.) denotes a multivariate Gamma function. The term within the product in (1) is finite 
for finite samples, because the term equals 1 whenever mk=0. 
 
A Hierarchical Mixture Model 
An essential step is to model the distribution of mixture components K. Let pij=(pij1, pij2, …) denote 
an infinite dimensional vector of proportions of mixture components for cell type i at position j. 
We treat {pij} as random measures, i.e., pij is both cell type and position specific, but we impose 
constraints such that pij is not marginally independent across cell types and positions. We assume 
that cell types may belong to different groups at each position, where cell types in the same group 
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at the position have the same random measure pij, i.e., pij=pi’j if i and i’ are in the same group at 
position j. This collapses the parameter space of {pij} across samples. We further assume that 
different positions may belong to different classes, and each class has a specific prior distribution 
for the random measure pij, i.e., pij and pij’ follow the same prior distribution if j and j’ belong to 
the same class. This imposes a hierarchy on the joint distribution of {pij} across positions. 
 
Let S={sij} denote the group membership of cell type i at position j, and let O={oj} denote the 
class of position j. Given sij=s and oj=o, we rewrite pij as pij=𝑓!,!,!, where  𝑓!,!,! is again an infinite 
dimensional vector for the proportions of mixture components, but it depends on sample group s, 
position class o and position j. Using this new parameterization, we borrow information across 
both samples and positions: cell types in the same group (s) at each position will yield same 
distribution of epigenetic features, and positions in the same class (o) will yield similar but not 
identical distribution of epigenetic features. Here, S serves as local clustering of cell types, and O 
provides summary information of genome positions for all samples. 
  
We treat 𝑓!,!,! as conditionally independent random measures given (s, o, j), and we model 𝑓!,!,! by 
a Dirichlet Process39 with hyper parameter 𝐴𝛼!. The concentration parameter A (default = N) is a 
constant that balances between position-specificity (when A is small) and class-congruity (when A 
is large) for the distribution of mixture proportions. The proportion parameter 𝛼! is specific to 
each position class o, and is an infinite dimensional vector taking values between [0,1] and sums 
to 1. Let 𝛼 = {𝛼!}, we have the conditional probability function for K and 𝑓!,!,!  as 

Pr 𝐾, {𝑓!,!,!} 𝑆,𝑂,𝛼 = 𝑓!!",!!,!(𝑘!"#)
!!
!!!

!
!!!

!(|!"!!|) !!,!!,!(!)
!"!!(!)!!

!

!(!"!!(!))!
!

!
!!!    

where operator |.| denotes the sum of all elements in the vector. Let {cs,j(k)}denote the count of 
mixture component k in group s at position j. We integrate out 𝑓!,!,!  to obtain the following 
conditional probability function 

Pr 𝐾 𝑆,𝑂,𝛼 =
!(|!"!!|)

!(!"!!(!))!

!(!!,! ! !!"!!(!))!

!(|!!,!|!|!"!!|)
!

!
!!!    (2) 

Again, the product over component k in (2) is finite for finite samples, as the term within the 
product is 1 for those k with cs,j(k) = 0. 
 
Local Clustering of Cell Types 
We utilize iHMMs20 to model the local clustering variable S of samples across positions. The 
Markov property allows local dependence of clustering, and simultaneously, the infinite state 
model allows the number of clusters to be learned from the data. We model each cell type by one 
iHMM, Si=(si1,…,siL) for each cell type i, and S=(S1,…,SN)={sij}. We assume independence 
between Markov chains, and all chains are governed by two sets of parameters: an infinite vector 
of state probabilities, and a L-dim vector of position-specific transition parameters.  
 

Let 𝑣=(𝑣1, 𝑣2, …) denote an infinite vector of state probabilities that sum to 1. We use a stick-
breaking process40 to describe the prior distribution of 𝑣. Let (V1, V2,…) denote an infinite vector 
of independent Beta random variables, Vs~Beta(1,1) for s=1,2,…. We calculate 𝑣 by 𝑣s=Vs∏t<s(1-
Vt) for s=1,2,…. The posterior distribution of 𝑣 is then a stick-breaking process. To model 
transition between states across positions, we utilize a simple mechanism: at each position j, the 
iHMM decides whether or not to select a new state; if yes, a new state is randomly selected from 
distribution 𝑣, otherwise the state at position j remains as the state at position j-1. Let {rj} denote 
a L-dim vector of transition parameters at j=1,…,L, with r1=1. Let Δ={δij} indicate whether or not 
a transition of state occurred in cell type i at position j. We model δij~Bernoulli(rj) independently. 
The model for (Si, Δi) for each cell type i is therefore  
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Pr 𝑆! ,Δ!|𝑣 = 𝑣!!! 1 − 𝑟!
!!!!" 𝑟!𝑣!!"

!!"
𝐼!! !!! !!!"
!!!!"

!

!!!
 

where the indicator 𝐼!! !!! !!!"
!!!!" =0 if δij=0 and sij-1≠sij. We do not infer {rj} but assign a prior 

rj~Beta(γj,1-γj) and integrate {rj} out, where 0<γj<1 denotes a pre-determined constant (by default 
γj= 1 − 𝑒!!.!!!, where dj denotes the distance between positions j and (j-1) in Kb). Let ξj = Σi δij 
denote the total number of transition events at position j in all iHMMs, we obtain  

Pr 𝑆,Δ|𝑣 = 𝑣!!! 𝑣!!"
!!"𝐼!! !!! !!!"

!!!!"!
!!!

!
!!!

!(!!!!)!(!!!!!!!!)!(!)

!(!!!)!(!)!(!!!)
!
!!!   (3) 

 
Classification of Genomic Positions 
It is also natural to use iHMM to model the position class variable O={o1,…,oL}. Let q={qoo’} 
denote an infinite square matrix of state transition probabilities such that each row sums to 1. We 
use a stick-breaking process to model the prior distribution of each row of {qoo’}. For each row o 
in q, let {Uo’} denote an infinite set of independent Beta random variables, Uo’ ~Beta(1,1), then 
the priori distribution of qoo’ is determined by qoo’ =Uo’∏t<o’ (1-Ut). This prior does not favor a 
Markov chain to remain in the same states across positions, which could be unrealistic. As a 
remedy, we introduce w={wo} denoting the probability that, given current state o, the state at the 
next position will be selected anew, and with 1-wo probability the state at the next position will 
remain in o. We treat wo as random with wo ~Beta(0.5,0.5). As a result, our transition probability 
matrix is designed as q* = diag(1-wo) + woq. Finally, we let the initial probability p={po} to be 
modeled by another stick breaking process using Beta(1,1). The probability function of O given 
parameters (p, w, q) can therefore be written as 

Pr 𝑂|𝑝,𝑤, 𝑞 =   𝜋!! (1 − 𝑤!!!!)𝐼!!!!!!! + 𝑤!!!!𝑞!!!!!!
!
!!!  (4) 

 
Combining formulas (1)-(4), we obtain the probability model: 
 Pr 𝑋,𝐾, 𝑆,𝑂, Δ|𝛼, 𝑣, 𝑝,𝑤, 𝑞 = Pr 𝑋 𝐾 Pr 𝐾 𝑆,𝑂, 𝛼 Pr 𝑆, Δ|𝑣 Pr 𝑂|𝑝,𝑤, 𝑞  (5) 
The parameters 𝛼, 𝑣, 𝑝,𝑤, 𝑞  in (5) are continuous variables, which we further assign prior 
distributions as follows: 𝛼, 𝑣, 𝑝, q consist of infinite dimensional vectors of proportions, each of which is 
modeled by a stick-breaking process prior via Beta(1,1), and w consists of Beta random variables with prior 
Beta(0.5,0.5) for each position class o.  

 
Here is a summary of notations in the IDEAS model: 

Constants: 
N: number of individuals; 
p: number of features; 
L: number of genomic positions; 
M: total number of samples, which equals to the summation of all replicates; 
X: M×(pL) data matrix of p features from N individuals at L positions; 
A: concentration parameter for the prior of mixture proportions; 
γ: position-specific parameters for the change-of-state probability of individual partitions; 
Discrete Variables: 
K: M×L matrix of mixture component memberships; 
S: N×L matrix of individual partitions; 
Δ: N×L indicator matrix of transition events in individual partition S; 
O: L-dim vector of position classes; 
Continuous Variables: 
α: collection of infinite-dim vectors of concentration parameters for the mixture component proportions 
in each position state o; 
𝑣: infinite-dim vector of individual state proportions; 
p: infinite-dim vector of initial distribution of position states; 
w: infinite-dim vector of the probabilities of state transition from position states o; 
q: infinite-dim matrix of position state transition probabilities, if a transition event occurs; 
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Model Inference Procedure 
A Hybrid of Maximization and MCMC 
While standard MCMC algorithms are available to infer a Bayesian model, it may take indefinite 
time for the model to converge on genome-scale data sets. Since our main interest is to identify a 
plausible model that best describe the data, we need a faster inference procedure such as model 
maximization. In a complex model like ours, however, maximization may be easily trapped in 
local modes. We therefore implemented a hybrid between the two. In the first few iterations, we 
use MCMC to sample model parameters stochastically to explore plausible model structures. As 
the iteration moves along, we begin to maximize the model parameters with increasing frequency.  
Next, we describe our model fitting procedure in a sampling scheme, whereas maximization can 
be done by simply taking model maximizers. 
 
Update Mixture Membership (K) 
We update K from Pr 𝑋 𝐾 Pr 𝐾 𝑆,𝑂,𝛼  for one observation at a time using a Gibbs sampler. 
To update the kij for cell type i at position j, let 𝑐!!",!

! 𝑘  denote the number of observations in 
mixture component k in group sij at position j, 𝑚!

! denote the total number of observations in 
component k, 𝑋!!  denote the collection of observations in component k, and Σ!! = 𝐼! +
𝑋!!

!(𝐼!!
! − !

!!!!
! 1!!

!1!!
!!)𝑋!!  denote the unscaled covariance matrix (not standardized by 

sample size) for component k, all less the current observation to be updated for. Using (1) and (2), 
the probability for the current observation to be assigned to component k is given by 

 Pr 𝑘 =
!!!",!
! ! !!"!! !

!!!",!
! ! !"!!

𝜋!
!
!

!!
!!!

!!
!!!

!
! !!

!!!!
!!!
! !!

!!
!!!!

!

! !!

!!
!
!!!!

!

! !!

!!
!!!

!!!!
!!!
! !!

   (6) 

The first ratio term is from (2), the remaining terms are from (1), and 𝛿 denotes the change in the 
unscaled covariance matrix after adding the observation into component k. When 𝑚!

!>>0, we can 
simplify the last ratio term to 

   Σ!!
!!! 𝐼 + (Σ!!)!!𝛿

!
!!!!

!!!
! = Σ!!

!!!𝑒!!"(!"  (!!(!!
!)!!!))

!!!!
!!!
! ≃ Σ!!

!!!𝑒!!"((!!
!)!!!)

!!!!
!!!
!   (7) 

where the approximation is due to first order Tayler expansion. It can be shown that 𝛿 ≃ (𝑥 −
!
!!
! 1!!

!′𝑋!!)′(𝑥 −
!
!!
! 1!!

!′𝑋!!), which is the square of the current observation (x) subtracting the 

estimated means. More details of approximation (7) can be found in Supplementary Notes. 
 
We calculate the probability of assigning an observation to component k using (6). But to 
improve computing speed, we replace the last term in (6) by (7). Also, we practically replace Σ!!  
by Σ! , which needs to be computed only once per iteration. Note that for any new component 
{k: 𝑚!

!=0}, (6) is proportional to the hyper parameter 𝛼!! 𝑘 . Consequently, we can collapse the 
infinitely many new components and calculate an overall probability of assigning the observation 
to a new component, and a new component is chosen according to {𝛼!! 𝑘 }. 
 
Update Cell Type Partition (S, Δ): 
Given (K,O,𝛼,𝑣), we update (S,Δ) from Pr 𝐾 𝑆,𝑂,𝛼 Pr 𝑆,Δ|𝑣 . We update each iHMM Si (and Δi) 
conditioning on all other iHMMs. It is easily checked that the initial distribution of Si is the 
infinite-dim vector 𝑣, the transition matrix is an infinite-dim matrix diag(1-rj)+rj1𝑣’, where 
rj=(Σl≠i δij+γ)/N and the emission probability of mixture component k from state s at position j is 
𝑐!,!! 𝑘 + 𝐴𝛼!! 𝑘 / 𝑐!,!! + 𝐴𝛼!!  (this is for the simple case without replicates, i.e., ni=1, but the 

general case with replicates easily follows). To reduce the infinite number of states into a finite 
set, we notice that the emission probability is the same for all states s that do not appear in the 
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remaining N-1 iHMMs, because 𝑐!,!! 𝑘 =0 for k. Let s*=max(S-i) denote the maximum index of 
states in all other chains in S. We can temporarily reduce the state space of Si to s*+1 states, with 
the last state denoting a collapsed new state. Let 𝑣∗ = (𝑣!,… , 𝑣!∗ , 𝑣!"#)′, then 𝑣∗ is a finite-dim 
vector denoting the initial state distribution of the reduced (finite) Markov model, and its 
transition matrix is also finite in form of diag(1-rj)+rj1𝑣∗’. We use a standard forward-backward 
sampling algorithm to update Si and its transition indicator Δi. In the forward step, we recursively 
calculate the joint probability function Pr(ki1,…kij, sij|O,𝛼,𝑣∗) at position j, for j=1,2,…,L, by 
integrating out all possible paths in Si and its transition indicator Δi up to position j. In the 
backward step, we sample Si and Δi, in the reverse direction for j=L,L-1,…,1, conditioning on the 
already sampled path (sij+1,…,siL) and Pr(ki1,…kij, sij|O,𝛼,𝑣∗). Finally, for any positions assigned to 
the collapsed new state, we expand the state space back to the original infinite dimensions and 
assign each of those positions to a new state with index >s* according to 𝑣. More details on 
collapsing the infinite states can be found in Supplementary Notes. 
 
Update Position Class (O): 
Given (K,S,α,p,w,q), we update position class O from Pr 𝐾 𝑆,𝑂,𝛼 Pr 𝑂|𝑝,𝑤, 𝑞 . Again, we 
handle infinite dimensions by collapsing the empty states in O into one state so that the 
computation becomes finite. We use a standard forward-backward algorithm to update O in the 
collapsed Markov chain. We then expand the collapsed states back to the original infinite 
dimensions according to the priors specified by p, w and q. Collapsing is possible because the 
emission probability function of mixture components from an empty state o is specified by 
DirichletProc(Aαo), and αo for all unoccupied states o are identical. 
 
Update (p,w,q): 
Assuming stationary Markov chain, the initial distribution p can be updated by first calculating 
𝑐! = 𝐼!!!!

!
!!! , 𝑐!! = 𝑐!!

!!! , for l=1,2,…, then sampling ul~Beta( 𝑐! + 1, 𝑐!!!! + 1 ), and 
computing pl= ul∏t<l(1-ut). The transition event probability w is updated by counting the number 
hl of transition events occurred in each state l=1,2,…, and update wl~Beta(0.5+hl, 0.5+nl-hl). The 
transition matrix q is updated within each row separately using the same method for updating p, 
except that only those positions whose previous position is in the state of the corresponding row 
in q are considered. In any of these updates, we only update the first omax rows and columns, 
where omax denotes the maximum state index in the current vector O. For the remaining infinitely 
many elements in p,w,q, which correspond to the states that do not occur in the current position 
classes, we simply use their mean values as determined by the prior distributions. 
 
Update α: 
Condition on (K, S, Ο), we update αo for o=1,2,…, where |αo|=1. We update αo by counting the 
number of mixture component k within position state o, plus the prior parameter Aαo using the 
current value of αo, and denote the total by no(k); calculate 𝑛!! 𝑘 = 𝑛!(𝑙)!

!!!  and generate 
random values uk from Beta(no(k)+1,  𝑛!! 𝑘 + 1 +1); and then update αo(k) by αo(k)=uk∏l<k(1-ul), 
for o=1,2,…,max(O). For the remaining empty states, we use their mean values as specified by 
the prior distribution. 
 
Update 𝑣: 
Similarly, we use (S, Δ) to update 𝑣. We first calculate the number (ts) of transition events in all 
chains in S that move to state s, including the initial state si1, i=1,…,N. We compute 𝑡!! = 𝑡!!

!!!  
and generate random values us from Beta(ts+1,  𝑡!!!! +1); and then update 𝑣! by  𝑣!=us∏l<k(1-ul), 
for s=1,2,…,max(S). For the remaining empty states, we again use their mean values as specified 
by the prior distribution. 
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Figures and Legends 

 
Figure 1. Illustration of the IDEAS model. (a) Input data include multiple tracks of epigenetic features in 
many cell types, possibly with replicates. (b) IDEAS fits the data iteratively by: 1) clustering cell types 
based on local epigenetic landscapes, where cell types carrying similar landscapes are clustered together; 2) 
assigning genomic positions into classes, such as potential enhancers, promoters, or insulators, using 
information in all cell types; 3) conditioning on cell type clustering and position classification, assigning an 
epigenetic state to each position in each cell type, where cell types clustered together at each position are 
more likely to be assigned the same epigenetic states; and 4) update model parameters. (c) Output of 
IDEAS includes the inferred epigenetic states like existing segmentation tools do. In addition, IDEAS 
outputs local cell type clusters that indicate potential differential regulation among cell types. IDEAS also 
reports position classes summarizing their regulatory profiles in multiple cell types. 
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Figure 2. States generated by IDEAS. (a) Heatmap of the mean signals of the states inferred by IDEAS. 
State Mnemotics and a brief interpretation are shown on the right. A majority of the mnemotics is 
determined by overlapping the states of IDEAS with the states of ChromHMM and then checking the most 
overlapped states. (b) Log-fold enrichment of the states by IDEAS relative to transcription start sites (left 
dashed lines) and end sites (right dashed lines) clustered in 8 groups. (c) Boxplot of the lengths of 
IDEAS states. Red line indicates the mean lengths. (d) Boxplots of the percentage of CpG 
methylation in IDEAS states. (e) Heatmaps of the state effects on gene expression estimated by regressing 
the states within 2kb upstream of transcription start sites. RNA-seq data were normalized by the gene 
length followed by log2 transformation. The regression coefficients can be interpreted as the average 
increase in gene expression if a corresponding state is present within 2kb upstream of the TSS, conditioning 
on the other states. For genes whose transcript start sites were within 500bp to each other, as defined in 
GENECODEv7, only the left most gene was included. 
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Figure 3. Comparison of predicted enhancers. (a) Percentage and fold enrichment of EP300 peaks captured 
by the inferred states (fold enrichment is shown only for states capturing >4% of EP300 peaks). (b) Boxplot 
of EP300 signals in the commonly and uniquely identified strong enhancer states. Each box shows the 
Log10 EP300 signals at the positions that are predicted as strong enhancers by certain combination of 
programs (marked by circles), and the grey area marks the positions not predicted as strong enhancers by 
all programs. (c) Precision and recall plots for the predicted strong enhancers, using VISTA enhancers, 
FANTOM5 enhancers, and FANTOM5 Cage RNA peaks as references, respectively. The plots were 
calculated using only the sites within each reference set, where positive and negative sites were determined 
using varying cutoff values. VISTA enhancers include validated and failed to validate enhancers in 
transgenic mice. We used two thresholds: one using the validated sites as true enhancers, and the other 
using all sites as true enhancers. For FANTOM5 enhancers, we used the experimental validation p-values 
as cutoffs. FANTOM5 called CAGE peaks as the predicted enhancers. We used the number of times (1, 2 
or 3) a peak was called in 3 replicates as the cutoffs for true positives. EnhancerFinder was not compared in 
VISTA data because it was trained on VISTA enhancers. 
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Figure 4. State co-occurrence and variation. (a) Correlation coefficients for states co-occurring at the same 
positions. (b) Heatmap of fold enrichment of states at cell type-specific sites relative to states at any 
variable sites non-specific to the cell type. (c) Density of states near and within constitutive and cell type-
specific variable regions. For the cell type-specific variable regions, only states in the corresponding cell 
types are considered.  
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Figure 5. Disease enrichment in the detected variable regions. (a) Enrichment of disease variants in cell 
type-specific variable sites, variable regions and constitutive regions. GwasCatalog SNPs and dbSNPs in 
strong LD (r2≥0.95) with the lead SNPs were included. Only enrichments with Fold≥2, FDR≤0.05, and –
log10(FDR)+Fold>=10 in at least one column in the matrix are shown. Enrichment and FDR were 
calculated by random shuffling of the variable sites and regions chromosome-wise. (b) Enrichment of 
disease variants in states that are unique to the most relevant cell types given in (a). There are two columns 
per state, for which enrichment was calculated against randomization within the cell type-specific sites and 
regions, respectively. (c) Enrichment of disease variants in states regardless of cell type specificity, for 
which randomization was done genome-wide in the most relevant cell types given in (a). 
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Supplementary Notes for Bayesian Modeling of Epigenetic Variation in Multiple 
Human Cell Types 
 
Yu Zhang, Feng Yue, Ross C Hardison 
 
 
Gaussian Emission Probability: 
In our Bayesian model, we derive the emission density function from following joint distribution 
of Gaussian data Xd in component d with covariate Zd:  

Pr(𝑋!|𝑍!) =
1

𝜋!!!/!|𝐼! + 𝐻𝑍!′𝑍!|!/!
Γ!(

𝑝 + 𝑛!
2 + 1)

|𝐼! + 𝑋!!(𝐼!! − 𝑍! 𝐻!! + 𝑍!′𝑍! !!𝑍!′)𝑋!|
!!!!
! !!Γ!(

𝑝
2 + 1)

 

where Xd is a nd×p matrix, Zd is a nd×q matrix, nd denotes sample size, and H denotes a q×q 
hyper-parameter matrix.  
 
Suppose a new data x (and covariate z) is added to component d. Let Xd

*=(x,Xd’)’ and Zd
*=(z,Zd’)’. 

The conditional density is 
Pr(𝑥|𝑧,𝑋! ,𝑍!)

=
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Next, let Λ = 𝑋!!(𝐼!! − 𝑍! 𝐻!! + 𝑍!′𝑍! !!𝑍!′)𝑋! and Λ∗ = 𝑋!∗

! 𝐼!! − 𝑍!
∗ 𝐻!! + 𝑍!∗

!𝑍!∗
!!
𝑍!∗

! 𝑋!∗ , then 

ℇ = Λ∗ − Λ = xx! − 𝑋!!𝑍! + 𝑥𝑧! 𝐻!! + 𝑍!∗
!𝑍!∗

!!
𝑍!!𝑋! + 𝑧𝑥! + 𝑋!!𝑍! 𝐻!! + 𝑍!! 𝑍! !! 𝑍!!𝑋!

≃ (x − 𝑋!!𝑍! 𝐻!! + 𝑍!! 𝑍! !!z)(x − 𝑋!!𝑍! 𝐻!! + 𝑍!! 𝑍! !!z)′ 
(This approximation assumes large nd) 
 

Therefore |!|
!!!!
! !!

|!!ℇ|
!!!!!!

! !!
= !

|!|
!
!|!!!!!!ℇ|

!!!!!!
! !!

≃ !

|!|
!
!
𝑒!

!
!!"(!

!!ℇ)(!!!!!!) 

 

As a result, Pr(𝑥|𝑧,𝑋! ,𝑍!) ≃
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Forward Summation and Backward Sampling for Updating (S, Δ) 
For each individual i, we fit a Markov chain and we use a forward summation backward sampling 
algorithm to update its variables (Si, Δi) conditioning on the parameters of the remaining 
individuals. For notation simplicity, hereafter we drop the individual index i. For j=1,…,L in 
ascending order, the forward-summation step sequentially computes the marginalized probability 
of the Markov chain starting from position 1 and ending at position j, with specific state sj at 
position j. Reversely, the backward sampling algorithm sequentially samples a path of states 
staring from position L and ending at position j, for j=L,…,1 in descending order. 

Let s* denote the maximum state index taken by all individuals in the current iteration. In the 
forward-summation step, we collapse all states whose indices >s* into a super state, and we 
denote the super state by index s*+1. Let ssj denote the state at position j after collapsing, then ssj 
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takes s*+1 possible values. Further let vvs = vs for s≤s* and vvs*+1=1-Σs≤s* vs denote the probability 
of the super states s*+1. The forward step computes the marginal probability at position 1 as 

Pr 𝑥!, 𝑠𝑠! = 𝑣𝑣!!! 𝑓!!!,!!,!(𝑑!)!!
Pr(𝑥!|𝑑!) 

Here, 𝑓!!,!,! 𝑑 = 𝑛!!,!(𝑑) + 𝛼!(𝑑) / |𝑛!!,!| + |𝛼!| , where 𝑛!!,!(𝑑) denote the number of Gaussian 
component d in the remaining individuals in state ss at position j. Pr(x|d) denotes a Gaussian 
density function for component d, with 1st moment 𝑥!

!!
!!! /(𝑛! + 1)  and 2nd moment 

( 𝑥!𝑥!′
!!
!!! + I!)/(𝑛! + 1). 

 
Sequentially, we compute the joint probability of data at positions 1,…,j and simultaneously the 
Markov chain visit state ssj at position j as 
Pr 𝑥! !!!

! , 𝑠𝑠! = Pr 𝑥! !!!
!!! , 𝑠𝑠!!! Pr  (𝑠𝑠! , 𝛿!|𝑠𝑠!!!)!!!!!!! 𝑓𝑠𝑠𝑗,𝑜𝑗,𝑗(𝑑𝑗)𝑑𝑗 Pr(𝑥𝑗|𝑑𝑗) 

           (S1) 
Formula (S1) first sums over all possible transitions from previous state at position j-1 to 

current state at position j, and then calculates the probability of emitting data dj from the state ssj. 
 
In the backward sampling step, we first sample the super states ssL from the marginal 

probability at position L. If ssL=s*+1, it means that the Markov chain visits a new state. In this 
case, we further update sL by s*+y, where y denotes a random positive integer generated from 
Geometric(1/(1+A)), where A is the hyper-parameter we used in the Beta prior. This Geometric 
distribution is a result of our stick-breaking prior, as no data has yet visited this state. On the other 
hand, if ssL≤s*, then sL=ssL. Given the states at position j, we sample the states at position j-1 
sequentially in reverse order. We first sample the transition event indicators δj using the 
probabilities in formula (S1) (where the last summation term can be ignored), conditioning on the 
state at position j. We then sample the state at position j-1 according to δj. Particularly, if no 
change of state at position j, then ssj-1=ssj and sj-1=sj. Otherwise, we sample ssj-1 and sj-1 in similar 
ways as described for position L. Finally, given the newly generated states, we update the 
Gaussian component memberships {dj}. 
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Supplementary Figure Legends 
 
 
Figure S1. Heatmap of the mean signals of the states inferred by IDEAS (red labels) compared 
with the mean signals of the states inferred by ChromHMM (black labels in brackets). 
 
 
Figure S2. Log enrichment and depletion of states in the six cell types relative to equal 
distributions. 
 
 
Figure S3. Comparison of predicted CTCF occupancy. (a) Boxplot of percentage of CpG 
methylation in the commonly and uniquely identified CTCF states. Each box shows the 
methylation levels at a set of positions that are predicted as CTCF by certain combination of 
programs (marked by circles), and the grey area marks the positions not predicted as CTCF by all 
programs. (b) Pie plots showing the power (angle) and the fold enrichment (radius) of each 
method using CTCFBSDB2.0 CTCF sites as references. The pies start from 3’ clock position and 
span in clockwise direction. Radius of a pie denotes the magnitude of fold enrichment of 
reference CTCF sites. Each pie corresponds to a CTCF state, and the angle of a new pie, after an 
existing pie, represents the extra proportion of reference CTCF sites captured by the 
corresponding CTCF state. 
 
 
Figure S4. 25th-75th percentiles of the total and residual sum of squares (S.S.) of epigenetic signals 
at positions relative to TSS and TES. Red area shows the total S.S. at the detected variable sites; 
blue area shows the within-state S.S. at the variable sites; grey area shows the total S.S. at the 
constitutive sites. Note that the residual S.S. by ChromHMM and Segway is notably lower than 
the S.S. at their constitutive sites, suggesting that many of their “variable sites” may be 
attributable to noise. Medians are shown in solid lines. Percentage of variable sites relative to the 
total number of sites at each position is shown in dashed lines. 
 
 
Figure S5. (a) Spatial distribution of cell type-specific variable sites relative to TSS and TES. 
Combined distribution of all variable sites is shown in black, and distribution of random sites is 
shown in grey area as a reference. (b) Spatial distribution of state pairs co-occurring at cell type-
specific variable sites. Top panel is a color-coding matrix for the spatial distribution of each pair 
of states (black color means uniform distribution). Each row in the matrix corresponds to the state 
observed in the specific cell type, and each column corresponds to the state observed in the 
remaining cell type. Numbers shown in the matrix cells denote the log10 total count of each state 
pairs observed. Bottom panel shows the spatial log fold enrichment of the state pairs color-coded 
in the matrix above it. The enrichment was calculated relative to the product (independence) of 
the marginal spatial distributions of the states in a pair. 
 
 
Figure S6. Distribution of states in cell type specific variable regions. Each row in the heatmap 
corresponds to a variable region. Warm colors (black to red to yellow for 0 to 0.5 to 1) indicate 
states observed in the corresponding cell types. Cold colors (black to blue to green for 0 to 0.5 to 
1) indicate states observed in the other cell types. Only states in cell type specific variable sites 
are counted. Top row from left to right: Gm12878, H1hesc, HelaS3. Bottom row from left to 
right: HepG2, HUVEC, K562. 
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Figure S7. (a) Boxplots of TSS density (per Mb) near and within constitutive and variable 
regions. Red boxes show the TSS density weighted by –log10 p-value of association between 
gene expression and the variable region, black boxes show the unweighted TSS density, black 
line shows the TSS density around constitutive regions and dashed horizontal line shows the 
genome-wide average TSS density. (b) Boxplots of adjusted r2 for gene expression explained by 
the cell type partitions in the variable region. 
 
 
Figure S8. Enrichment of disease variants in ChromHMM cell type specific sites.  
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Supplementary Figures 
 

 

Figure S1 
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.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2015. ; https://doi.org/10.1101/018028doi: bioRxiv preprint 

https://doi.org/10.1101/018028
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   30	
  

 

 
 
Figure S3 
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