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Abstract

Dispersal, and the underlying movement behaviour, are processes of pivotal importance for understand-

ing and predicting metapopulation and metacommunity dynamics. Generally, dispersal decisions are

non-random and rely on information, such as the presence of conspecifics. However, studies on metacom-

munities that include interspecific interactions generally disregard information use. Therefore, it remains

unclear whether and how dispersal in metacommunities is informed and whether rules derived from

single-species contexts can be scaled up to (meta-)communities. Using experimental protist metacommu-

nities, we show how dispersal and movement are informed and adjusted by the strength of inter-specific

interactions. We found that predicting informed movement and dispersal in metacommunities requires

knowledge on behavioural responses to intra- and inter-specific interaction strength. Consequently, meta-

community dynamics inferred directly from single-species metapopulations without taking inter-specific

interactions into account are likely flawed. Our work identifies the significance of information use for

understanding metacommunity dynamics, stability and the coexistence and distribution of species.
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Introduction

Local populations and communities are usually not isolated entities, but rather part of a larger spatially

structured system (Hanski, 1999; Leibold et al., 2004). Therefore, dispersal of individuals between these

local communities is by definition a process of central relevance for both local and global ecological and

evolutionary dynamics (Clobert et al., 2012). Dispersal in such metapopulations and metacommunities

has been intensely studied over the last decades and it is now clear that dispersal and movement can be

highly complex behaviours (Nathan et al., 2008; Clobert et al., 2012) with important consequences, even

for large-scale patterns such as metapopulation dynamics (Fronhofer et al., 2012), species range dynamics

(Kubisch et al., 2014), species coexistence (Salomon et al., 2010), or the distribution of biological diversity

(Seymour et al., 2015).

Both empirical and theoretical studies show that dispersal as well as the underlying movement be-

haviour are fundamentally non-random processes (Nathan et al., 2008; Clobert et al., 2009). Information

use is highly advantageous during all three stages of dispersal (emigration, transition, immigration) and

a variety of cues, such as local population density (Matthysen, 2005; De Meester & Bonte, 2010; Bitume

et al., 2013; Fronhofer et al., 2015), food availability and autocorrelation (Kuefler et al., 2012; Fronhofer

et al., 2013a), relatedness (Bitume et al., 2013), body condition (Bonte & de la Peña, 2009), chemical

cues (Fronhofer et al., 2013b) or abiotic conditions (Crone et al., 2001; Altermatt & Ebert, 2010; Reigada

et al., 2015) can be used to trigger dispersal and movement decisions. Therefore, dispersal and movement

are generally condition-dependent or informed and not fixed traits.

Informed dispersal and movement can have far-reaching consequences such as altered (macro-)ecological

and evolutionary dynamics. For instance, source-sink dynamics were shown to be impacted by density-

dependent dispersal (Amarasekare, 2004) and species ranges are predicted to be larger (Kubisch et al.,

2011) and invasions slower (Altwegg et al., 2013) when dispersal is positively density-dependent. By

contrast, negatively density-dependent dispersal may increase invasion speeds (Altwegg et al., 2013).

Finally, evolutionarily stable dispersal rates are usually higher for non-conditional dispersers implying

higher costs (Enfjäll & Leimar, 2009), to name just a few consequences.

Most studies on informed dispersal have focused on the effects of intra-specific density (Matthysen,

2005; De Meester & Bonte, 2010; Bitume et al., 2013; Fronhofer et al., 2015), largely ignoring effects

of species interactions and inter-specific densities. However, species rarely exist in isolation and, in a

metacommunity context, both dispersal and movement should also depend on inter-specific interactions.

However, metacommunity studies usually assume that dispersal is a random process that does not depend

on metacommunity composition (but see Amarasekare 2010 for a theoretical model and De Meester et al.

2015 for empirical evidence). Clearly, this is a relatively unlikely assumption, and for the specific cases
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of host-parasitoid (French & Travis, 2001) and predator-prey systems (Poethke et al., 2010; Hauzy et al.,

2007; Kuefler et al., 2012) it has been shown that movement and dispersal are condition-dependent

and modulated by the abundance of the antagonist. Surprisingly, the effect of omnipresent competitive

interactions on movement and dispersal have been ignored. Therefore, we are lacking an understanding

of the effects of competition among species of the same trophic level on dispersal and movement. Thus,

it remains unclear whether one can simply infer these effects from intra-specific density-dependence or

if inter-specific interactions modulate movement and dispersal dynamics. Such knowledge, however, is

crucial and a prerequisite for building a reliable, predictive science of ecological dynamics in space.

We tested experimentally whether and how one can generalize models of informed, density-dependent

dispersal and movement, which have been developed for single-species metapopulations, to be applicable

to a multi-species, metacommunity context. Intra-specific density-dependent dispersal has been shown

theoretically to be generally positive as a means to escape from competition, with the exact shape of

the function depending on model assumptions (Metz & Gyllenberg, 2001; Poethke & Hovestadt, 2002).

Negative density-dependence (see e.g. Matthysen, 2005; Baguette et al., 2011; Fellous et al., 2012) may

arise for example at low population densities due to Allee effects (Kim et al., 2009; Fronhofer et al., 2015),

which, in a single-species framework, is predicted to lead to a u-shaped density-dependent dispersal and

movement reaction norm (Fig. 1). In a multi-species context we predict that dispersal and movement

fundamentally follow the same u-shaped relationship but that conspecific and all heterospecific densities

weighted by their respective interaction strength have to be taken into account to explain and predict

dispersal and movement behaviour correctly (see Fig. 1 for details). To test our prediction in a multi-

species context we focused on metacommunities of competitors, i.e. species of the same trophic level,

reflecting some of the most-studied and most relevant interactions (e.g. Chesson, 2000; Hubbell, 2001).

Based on experimentally assessed differences in competition strength we identified the effects of compe-

tition on movement and dispersal across levels of community diversity form single-species to all two- and

three-species metacommunites of three protist model organisms (Altermatt et al., 2015). Specifically, we

answer the following questions: (1) Are movement and dispersal informed with regards to inter-specific

competition in metacommunities as one would predict in analogy to intra-specific density-dependent dis-

persal (Fig. 1)? (2) Can the patterns observed in simple two-species metacommunities be scaled up to

predict the behaviour of species in a more diverse, three-species metacommunity?

Our results show that movement and dispersal are informed with regards to inter-specific competition.

Specifically, inter-specific interaction strength and u-shaped density-dependent dispersal and movement

reaction norms (Fig. 1) in combination with knowledge about the behavioural response of competing

species can be used to explain dispersal and movement behaviour across metacommunities. The ability

to predict dispersal is a prerequisite for successfully scaling from simple, single-species to diverse and
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potentially complex multi-species systems and for understanding and predicting multispecies metacom-

munity dynamics and thus spatial dynamics in general.

Materials and Methods

Study organisms

We used a set of three freshwater protist species that are commonly used in experimental metacommunity

studies: Tetrahymena pyriformis (Tet), Colpidium sp. (Col) and Paramecium aurelia (Pau). These ciliate

species cover a wide range of growth rates (Pau ∼ Col < Tet; Altermatt et al. 2015), equilibrium densities

(Pau < Col < Tet; Altermatt et al. 2015; see also Fig. S1 and Tab. S1) and body sizes (Tet < Col < Pau;

Giometto et al. 2013; see also Supporting Information Fig. S3). Importantly, the three species differ in

competitive abilities (Carrara et al. 2015; see also Tab. 1, Fig. S2 and Tab. S3). Tetrahymena pyriformis

is known to suffer from an Allee effect (Chaine et al., 2010; Fronhofer et al., 2015), with implies reduced

growth at low population densities. The underlying chemical mechanisms are general enough to allow

the conclusion that both other species likely also have Allee effects which has been recently suggested for

Colpidium and Paramecium caudatum (e.g. Odum & Allee, 1954; Duncan et al., 2011). The presence of

Allee effects in all three species studied is also supported by our data (see Tab. S2).

Protist (meta)communities and single species (meta)populations were kept in protist medium (Pro-

tozoan pellets; Carolina Biological Supply, Burlington, USA; 0.46 g/L) at a constant temperature of 22◦

C (for detailed protocols see Altermatt et al., 2015). Resources were supplied as 5% equilibrium density

bacterial culture (approx. 1 week old; Serratia fonticola, Bacillus subtilis and Brevibacillus brevis) per

litre of medium.

Microcosm experimental design

We used two-patch microcosms for all experiments. In order to investigate the dependence of dispersal

and movement on the presence of competing species we manipulated community composition in one

patch (the start patch) and measured dispersal and movement to the second, initially empty patch (the

target patch). These experimental, spatially structured systems consisted of two 20mL vials (Sarstedt,

Nümbrecht, Germany; distance between vials: 4 cm) which were connected by silicone tubes (inside

diameter: 4mm; VWR, Radnor, USA). Using clamps we controlled whether the connecting tubes were

open or closed, i.e. dispersal could occur or not.

Before the experiment batch cultures of Tetrahymena pyriformis, Colpidium sp. and Paramecium

aurelia were grown to carrying capacity (see Fig. S1). Subsequently, the batch cultures were centrifuged
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(centrifuge: Sigma 3-16PK; Sigma, Osterode, Germany; 4500 rpm; 5min), the supernatant liquid was

discarded and the pellet, which contained the protists, was resuspended in freshly bacterized medium

(see Altermatt et al., 2015). This washing procedure largely eliminated chemical cues that were present

in the batch cultures. Such chemical cues were previously found to potentially trigger intra-specific

density-dependent movement (Fronhofer et al., 2015). We are therefore confident that the dispersal and

movement behaviour observed here was not biased by cues remaining from the batch cultures. This implies

that the differences in movement and dispersal between single-species metapopulations and multi-species

metacommunities observed here can be attributed to an informed response with regards to inter-specific

interactions since we controlled for intra-specific density.

Depending on the treatment (single-species metapopulations, two- or three-species metacommunities)

start patches received populations or communities of one (Tet, Col or Pau), two (Tet–Col, Tet–Pau and

Col–Pau) or three protist species (Tet–Col–Pau) from the washed batch cultures. In order to make

consistent comparisons across all treatments individual species were always added at one fourth of their

respective carrying capacity and filled up with freshly bacterized medium to a total volume of 15mL.

Target patches always received 15mL freshly bacterized medium without protists.

Communities acclimatized to the new conditions in the start patch for one hour, during which pro-

tists could acquire information on abundance and presence of conspecifics and allospecifics. Then, the

connecting tubes were opened and dispersal between the start and the target patch was allowed for 14 h.

This period of time was determined trough pilot experiments in order to allow the least dispersive species

(Pau) to be detected in the target patch (this was usually the case after approx. 10 to 12 h). After the

dispersal phase, clamps were closed and movement as well as dispersal data was collected. All species

combinations (treatments) were replicated 8 times in independent blocks.

Data collection

Movement

We collected individual-based movement (velocity, tortuosity, net distance travelled) and morphological

data (length of the protist along major and minor axes, area) after the dispersal phase from the commu-

nities in the start patch using video analysis (for detiled protocols see Pennekamp et al., 2014; Altermatt

et al., 2015). We followed the same procedure as described in Fronhofer et al. (2015): using a Nikon

SMZ1500 stereo-microscope (Nikon Corporation, Kanagawa, Japan) with a Hamamatsu Orca Flash 4

video camera (Hamamatsu Photonics K.K., Hamamatsu city, Japan) we recorded videos for 20 s (500

frames) at a 20-fold magnification.

Subsequently, we used the free image analysis software ImageJ (version 1.46a U.S. National Institutes
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of Health, Bethesda, MD, USA, http://imagej.nih.gov/ij/) and the MOSAIC particle tracker plug-in

(Sbalzarini & Koumoutsakos, 2005) for the video analysis. By sequentially subtracting frames from

the video, the software determines moving particles of a given size range (particle area determined by

previous experimentation: 5 to 600 pixels). Thereafter, the particle tracker plug-in re-links the locations

taking into account a predefined link distance (here: 20 pixels) over subsequent frames (for details of the

algorithm refer to Sbalzarini & Koumoutsakos, 2005). As described in Fronhofer et al. (2015) we used

these movement paths to extract velocities, tortuosity (the circular standard deviation of the turning

angle distribution) and net distance travelled (Euclidean distance from start to end of a movement path)

as descriptive parameters that characterize a movement path.

Species within metacommunities were identified after the video analysis based on the collected mor-

phological parameters (size and aspect ratio; see Fig. S3). We used a classification tree model (Statistical

Software Package R version 3.1.2; package “tree” version 1.0-35, function “tree”) with aspect ratio and

length along the major body axis as explanatory variables.

Dispersal

Data on dispersal was collected by manually counting and identifying a representative sub-sample of

protists from both start and target patches that had been conserved with Lugol after the experiment

(for a detailed protocol see Altermatt et al., 2015). As the species varied widely in densities (Fig. S1

and Tab. S1) sub-sample volumes and rates were adjusted accordingly (0.01 – 1ml; 2 – 15 sub-samples).

Dispersal rates were calculated as the ratio of dispersers (individuals per volume in the target patch) to

the sum of all individuals (sum of individuals per volume in start and target patch) at the end of the

experiment, i.e. after 14 h.

The time window we used for dispersal was relatively long, especially in relation to the reproductive

rate of the fastest reproducing species (Tet; Fig. S1 and Tab. S1). Therefore, the measured dispersal rates

could potentially be biased as a consequence of differential growth in start and target patch. In order

to exclude this source of bias in our data we used a two-patch metapopulation model (Eqns. S4 – S7)

which we fit using a least squares approach to the collected population density data from both patches.

This model allowed us to estimate the corrected dispersal rates that take into account density-dependent

growth in both patches and the potential impact of Allee effects (see above). While the corrected and

measured dispersal rates differed from each other, these values correlated highly (LM: N = 23, t = 40.58,

p < 0.001, R2 = 0.987; Fig. S5; for more detailed information and results, see Supporting Information).

We therefore performed all analyses on the original, raw data.
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Population growth and inter-specific competition

The necessary data to estimate growth rates (r0), carrying capacities (K) as well as all pairwise inter-

specific competition coefficients (αi,j ; relative effect of species j on species i) were collected in separate

experiments using the same microcosms and experimental setup, yet without allowing for dispersal. We

subsequently fit logistic growth curves, respectively Lotka-Volterra models of inter-specific competition

to the collected time-series data using a least-squares approach and extracted the relevant parameter

estimates. See Supporting Information for details. Growth parameters are reported in the Tab. S1 and

competition coefficients can be found in Tab. 1 and in more detail in Tab. S3.

Statistical analysis

Data were analysed at the population level (means over all individuals) using linear mixed models (LMMs)

with “replicate” as a random effect. This random effect structure was used as individual replicates

including all species combinations were run in temporally independent blocks. In case of overdispersion

an observation-level random effect was added. Specifically, dispersal rates were analysed as ratios of

counts using generalized linear mixed models (GLMM) with a binomial error structure. In case other

data did not allow a Gaussian error structure an appropriate GLMM was used. All statistical analyses

were performed with the software package R version 3.1.2. (functions “lmer” and “glmer” from the

“lmerTest” package; version 2.0-6). For pairwise comparisons we used Tukey post-hoc tests (function

“glht” from the “multcomp” package; version 1.3-7).

The relative difference in movement and dispersal between single-species metapopulations and multi-

species metacommunities was analysed using one-sample t-tests (µ = 0). If needed, data were transformed

to satisfy the normality assumption. See Tab. S5 for further information.

Results

Relationship between movement and dispersal

We found large differences in dispersal rates between species: Colpidium sp. showed an order of magnitude

higher dispersal rates compared to both Tetrahymena pyriformis and Paramecium aurelia (Fig. 2 A; see

Tab. S4 for the detailed and full overview of all statistical analyses). Analogous differences were found in

movement behaviour (Fig. 2 B–D; Tab. S4): just as for dispersal, Colpidium sp. exhibited the highest net

distance travelled. Generally, differences in net distance travelled were reflected in differences in velocity

and tortuosity. Overall, higher velocities and less tortuous paths (narrower turning angle distribution)

resulted in larger net distances travelled and vice versa (Fig. 2 B–D; Tab. S4).
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The qualitative correspondence of dispersal and movement reported for single-species metapopulations

was found more generally, across all three species and in all metapopulations and -communities analysed in

our experiments (Fig. S6). The strong non-linearity of the relationship between movement and dispersal

is in good accordance with the results of Fig. 2: small differences in movement (Fig. 2 B–D) potentially

led to large differences in dispersal (Fig. 2 A).

Informed dispersal and movement in metacommunities

Dispersal and the underlying movement strategies were strongly impacted by the presence of competing

species (Fig. 3). For all statistical analyses please refer to Tab. S5. The strength of inter-specific compe-

tition (Tab. 1) was estimated in additional experiments by fitting Lotka-Volterra models of inter-specific

competition to the observed community dynamics (see Supporting Information and Fig. S2). In two-

species metacommunities Tetrahymena pyriformis always exhibited higher dispersal rates compared to

the single-species reference (Fig. 3 A and E). The presence of Colpidium sp., a relatively strong competi-

tor (αTet,Col = 2.85; Tab. 1), led to a 34 % increase in the dispersal rate (Fig. 3 A). The even stronger

competitor Paramecium aurelia (αTet,Pau = 18; Tab. 1) increased Tetrahymena’s dispersal rate by 780

% (Fig. 3 E). In both cases, increased dispersal rates were reflected in altered movement patterns: the

presence of competitors led to higher net distances travelled (20 %, respectively 30 %; Fig. 3 B and F)

due to higher movement velocities (Fig. 3 C and G). We therefore found a generally positive relation-

ship between the strength of competitive interactions and dispersal in Tetrahymena. The same positive

relationship held for net distance travelled as well as movement velocity and the strength of competitive

interactions (Fig. S7).

Colpidium sp. did not alter its dispersal rate in the presence of the weak competitor Tetrahymena

pyriformis (αCol,Tet = 0.32; Tab. 1; Fig. 3 A). On the contrary, it reduced its net distance travelled (14

%; Fig. 3 B) by increasing movement tortuosity (Fig. 3 D). The stronger competitor, Paramecium aurelia

(αCol,Pau = 2.53; Tab. 1), even decreased the dispersal rate of Colpidium sp. (41 %; Fig. 3 I) which

was associated with a decrease in net distance travelled (13 %; Fig. 3 J) and a non-significant increase in

tortuosity (Fig. 3 L).

The strongest competitor in all pairwise comparisons, Paramecium aurelia (αPau,Tet = 0.06, αPau,Col =

0.01; Tab. 1), did not react to the presence of Tetrahymena pyriformis, although a non-significant trend

to smaller net distances travelled as a consequence of more tortuous paths could be observed (Fig. 3 F

and H). By contrast, Colpidium sp., which is larger than Tetrahymena pyriformis, induced an important

increase in dispersal rate (320 %; Fig. 3 I) which was accompanied by a non-significant increase in net

distance travelled (Fig. 3 J).

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2015. ; https://doi.org/10.1101/017954doi: bioRxiv preprint 

https://doi.org/10.1101/017954
http://creativecommons.org/licenses/by-nc-nd/4.0/


Scaling up from two to three-species metacommunities

The patterns of condition-dependent dispersal and movement observed in the two-species metacommu-

nities (Fig. 3) were also found in the three-species metacommunity (Fig. 4). The presence of competing

species induced increased dispersal in Tetrahymena pyriformis in comparison to single-species metapop-

ulations (870 %; Fig. 4 A). This was associated with corresponding changes in net distance travelled

and movement velocity (Fig. 4 B and C). Colpidium sp. was found to have a reduced dispersal rate

in the three-species metacommunity (50 %; Fig. 4 A) as in the presence of Paramecium aurelia only

(Fig. 3 I). This pattern was accompanied by a reduction in net distance travelled (Fig. 4 B) and velocity

(Fig. 4 C) as well as an increase in movement tortuosity (Fig. 4 D). Similarly, Paramecium aurelia had

an increased dispersal rate in the three-species metacommunity (327 %; Fig. 4 A), as in the two-species

metacommunity with Colpidium sp. (Fig. 3 I). As in the two-species metacommunity this change was

not strongly reflected in changes in movement due to the large amount of variation.

Discussion

We combined experiments in single-species metapopulations, two- and three-species metacommunities to

understand the effect of interspecific competition on informed movement and dispersal. Our experiments

show that the presence of competing species leads to consistent and predictable changes in dispersal and

movement dynamics in experimental metacommunities (Fig. 5). This strongly indicates that dispersal and

movement are informed with respect to inter-specific competition, and that inter-specific interactions have

the potential to impact metacommunity dynamics and to change the number of coexisting species at local

and regional scales. Furthermore, besides only depending on the strength of competitive interactions we

could show that dispersal and movement also depend on the specific dispersal and movement behaviour of

the interaction partners. This dependence on community composition can only be understood if one takes

into account the long-term fitness-relevant consequences of interactions. Therefore, the specific multi-

species context may introduce emergent phenomena that can only be understood in the metacommunity

context and cannot be predicted from single-species behaviour only. As a consequence, our work suggests

that predictions based on dispersal and movement estimates gained from species in isolation are likely to

fail.
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Dispersal and movement are informed with respect to inter-specific competi-

tion

Consistent with our theoretical predictions (Fig. 1), a generally positive condition-dependence of dispersal

and movement was found for the least competitive species, Tetrahymena pyriformis (Fig. 3, 4 and Fig. S7).

These results imply that models of informed dispersal, more exactly density-dependent dispersal (Metz

& Gyllenberg, 2001; Poethke & Hovestadt, 2002) can be transferred from a single-species metapopulation

context to a multi-species metacommunity context as indicated in Fig. 1 if one takes into account inter-

specific interactions.

Interestingly, for one species, Colpidium sp., the effect of inter-specific competition was opposite

to the results for the other species: dispersal decreased in the presence of all competitors (Fig. 3 I, 4

and Fig. S7). We suggest that this is due to a u-shaped competition-dependent dispersal/movement

reaction norm depicted in Fig. 1 (Kim et al., 2009; Fronhofer et al., 2015). Likely, Colpidium sp. shows

the highest dispersal rate of all species in a single species context (Fig. 2 A) as a consequence of a

relatively high species-specific Allee threshold (which we found to be true; see Fig. S5 E). In that case,

an increase in competition may generally lead to a decrease in dispersal as evident from Fig. 1 given that

the competition-dependent dispersal reaction norm is shifted enough to the right. Clearly, increasing

competition even further should eventually lead to positive condition-dependence.

The most competitive species, Paramecium aurelia, which is also least affected by the presence of both

other species (αPau,j is always very small; Tab. 1) did not react to increased competition in a systematic

manner (Fig. S7). Such a pattern can be understood and possibly generalized if one takes the impact of the

focal species (here: P. aurelia) on the other species into account. 1) For highly asymmetric interactions

(in our case this would be between Paramecium aurelia and Tetrahymena pyriformis; αPau,Tet = 0.06

and αTet,Pau = 18), the resulting impacts on dispersal and movement behaviour will also be highly

asymmetric as the weaker competitor has nearly no fitness-relevant impact on the focal species, and

we indeed found an increase in the dispersal rate of Tetrahymena pyriformis by 780 %. Subsequently,

the weaker competitor will eventually leave the local community and the stronger competitor does not

experience any fitness advantages by altering its dispersal or movement behaviour. 2) If however, the

weaker competitor happens to suffer from a strong Allee effect (here: Colpidium sp.) its dispersal

rate may be decreased by the focal species, as described above. This has important consequences as

competition will increase locally and the weaker competitor, if strong enough, will start to have fitness-

relevant negative effects on the focal species. While being a better competitor, the focal species could

then experience fitness benefits by increasing its dispersal rate. This scenario potentially explains why

P. aurelia consistently showed an increase in dispersal and movement in the presence of Colpidium sp.,
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a weaker competitor, in both two- and three-species metacommunities (Fig. 3 I and 4). Consequently,

dispersal and movement are not only informed with respect to inter-specific competition but can also

depend on the specific dynamic behaviour of the interaction partner and the long-term consequences of

this behaviour.

Scaling from two- to three-species metacommunities

Our results for two- and three-species metacommunities show that informed dispersal and movement is

consistent across metacommunities of increasing diversity (Fig. 3 and 4). The major patterns observed in

the two-species systems, namely a general increase in dispersal and movement for Tetrahymena pyriformis,

a decrease in dispersal and movement for Colpidium sp. in the presence of Paramecium aurelia and a

simultaneous increase in dispersal for Paramecium aurelia (Fig. 3), can all be recaptured in the three-

species metacommunity (Fig. 4). The relative changes in effect size suggest a somewhat monotonic

effect. This is encouraging, as it suggests that predictions which scale up from simple to more complex

communities are, in principle, possible and not elusive due to strong non-linearities.

Finally, all our experiments show that local movement behaviour can be used to explain differences

in dispersal (Fig. 2 and Fig. S6). Straighter and faster movement leads to more dispersal while slower

and more tortuous movement leads to less dispersal. Specifically, increased dispersal is mostly linked to

higher velocities, while decreased dispersal and foraging-like behaviour is primarily linked to an increase in

tortuosity (Fig. 3 and 4). This holds across all species investigated in this study, although the quantitative

relationship are species-specific (Fig. S6). The relationship between movement and dispersal is non-

linear, such that, at specific starting conditions, already small differences in movement can lead to large

differences in dispersal (Fig. S6).

As a possibly interesting extension, our work also provides a mean of inferring dispersal rates from

an interaction matrix (e.g. Tab. 1) and a reaction norm (e.g. Fig. 1). As dispersal, and the incentive

to disperse, are notoriously difficult to assess in natural communities, the often much better known

interaction terms (e.g. Carrara et al., 2015) may be a way to infer relative changes in dispersal rates

across different communities.

Metacommunity consequences of informed dispersal and movement

While information use is increasingly taken into account in single-species metapopulations it has largely

remained unexplored in a multi-species metacommunity context (but see Amarasekare 2010 for a theo-

retical model and De Meester et al. 2015 for empirical evidence). Our work demonstrates the importance

of considering informed, non-random processes in studies of metacommunities, especially given the large
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effect sizes we report here (e.g. increases in dispersal rates up to 800 % for some species; Fig. 3 and

4). The metacommunity-level consequences of such drastic changes in dispersal remain to be explored

in detail both theoretically and empirically. Given what we know about the consequences of density-

dependent dispersal in metapopulations (see e.g. Amarasekare, 2004; Enfjäll & Leimar, 2009; Kubisch

et al., 2011; Altwegg et al., 2013) the consequences are likely of large importance for population synchrony

and stability in natural metacommunities (Koelle & Vandermeer, 2004; Gouhier et al., 2010), coexistence

(Amarasekare, 2010), composition as well as the spatial distribution and temporal dynamics of food webs

(Melián et al., 2015).

It is interesting to note that we did not find the classically reported competition-colonization trade-off

(e.g. Cadotte, 2007), i.e. weaker competitors showing higher dispersal abilities and vice versa, in the single

species metapopulations. In Fig. 2 the species are ordered by competitive rank and the pattern is clearly

unimodal. By contrast, in the multi-species metacommunities informed dispersal led to the emergence

of what is usually termed “competition-colonization trade-off” as one can see in Fig. S8. Importantly,

this negative correlation between dispersal and competitive ability is not a genuine genetic or cost-

related trade-off between dispersiveness and competitive ability. This result has potentially far-reaching

implications as competition-colonization trade-offs have been linked to species coexistence and stability

of metacommunites (Calcagno et al., 2006; Livingston et al., 2012). Such behavioural plasticity will have

important consequences for metacommunity dynamics and geographic distributions which underlines the

need to take informed dispersal into account.

Conclusions

Our experimental work shows that both dispersal and movement are informed and adjusted with respect

to inter-specific competition. To a large extent, models of density-dependent dispersal and movement

developed for single-species metapopulations can be amended to be applicable to metacommunities, high-

lighting that both intra- and inter-specific interactions must be considered when understanding dispersal

of species in a multi-species context. As we show that dispersal and movement strongly depend on

the community context and the behavioural response of interacting species our work also implies that

predictions based on dispersal and movement rates estimated in a single-species context only are likely

erroneous and miss emergent, community-level phenomena.
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Figures

Figure 1: Predictions about the impact of inter-specific competition on informed dispersal and movement
in a metacommunity consisting of species experiencing an Allee effect. In a single species context, one can
expect species that suffer from an Allee effect to exhibit roughly u-shaped density-dependent dispersal
and movement functions (reaction norm; grey line). Conspecific density will then determine the dispersal
rate or movement strategy (e.g., dN1 , “species 1 alone”). If this model is generally valid and can be
transferred to the metacommunity context, the dispersal rate and movement strategy of the focal species
(species 1) should be determined by the sum of its own density (N1) and the density of competitors
weighted by the respective competition coefficient (N2α1,2) and result in an altered dispersal/ movement
strategy (e.g., dN1withN2 , “species 1 in competition with species 2”).
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Figure 2: Dispersal and movement in single species metapopulations. (A) Measured dispersal rates for
Tetrahymena pyriformis (Tet), Colpidium sp. (Col) and Paramecium aurelia (Pau) in single species,
two-patch metapopulations. (B) Net distance travelled, i.e. distance from start to end of one individual
movement trajectory in the same metapopulations. (C) Velocity. (D) Tortuosity measured as the standard
deviation of the circular turning-angle distribution. Differences in dispersal can be explained qualitatively
by differences in net distance travelled. These differences are also consistent with the measured velocities
and tortuosities, with faster and less tortuous movement paths leading to more displacement and dispersal.
We always report median and quartiles over 8 replicates. The letters indicate significant differences
between species (p < 0.05; GLMMs and Tukey post-hoc contrasts; see S4 for details).
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Figure 3: Difference in dispersal and movement behaviour between single species metapopulations and
two species metacommunities. Positive (negative) values indicate more (less) dispersal/ movement in
the metacommunity relative to the single species context. (A) – (D) Tetrahymena pyriformis (Tet) and
Colpidium sp. (Col); (E) – (H) Tetrahymena pyriformis (Tet) and Paramecium aurelia (Pau); (I) –
(L) Colpidium sp. (Col) and Paramecium aurelia (Pau). We always report median and quartiles of the
differences of the 8 replicates. The statistical analysis was performed using one-sample t-tests (µ = 0) on
the differences (see Tab. S5). *: p < 0.05, **: p < 0.01, ***: p < 0.001. Note that the y-axes extensions
differ among panels.
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Figure 4: Difference in dispersal and movement behaviour between single species metapopulations and
three species metacommunities (Tetrahymena pyriformis (Tet), Colpidium sp. (Col) and Paramecium
aurelia (Pau)). Positive (negative) values indicate more (less) dispersal/ movement in the metacommunity
relative to the single species context. We always report median and quartiles of the differences of the 8
replicates. The statistical analysis was performed using one-sample t-tests (µ = 0) on the differences (see
Tab. S5). *: p < 0.05, **: p < 0.01, ***: p < 0.001.
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Figure 5: Informed movement and dispersal in metacommunities of competing species. (A) Strength of
inter-specific competitive interactions in all pairwise comparisons. (B) Resulting impact on dispersal and
movement behaviour. Faster and straighter movement translates (non-linearly) into more dispersal. We
interpret slower and/or more tortuous movement as foraging behaviour. The width of all arrows scales
with effect strength. See also Tab. 1 and Tab. S3.
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Tables

Table 1: Interaction coefficients (αi,j) of a Lotka-Volterra model of inter-specific competition. αi,j rep-
resents the relative effect of species j on i. For example, if αi,j = 2 species j has twice the competitive
effect on species i as species i has on itself, αi,j = 1 implies that inter- and intra-specific competition are
equivalently strong and αi,j = 0 suggests that species j does not compete with species i. Species i can
be found in the columns and species j in the rows, so that αTet,Col = 2.85, for example. Reported values
are median values of 8 independently fitted replicates. See Fig. S2 for community dynamics and model
fits and Tab. S3 for information on variation.

Tet Col Pau
Tet 1 0.32 0.06
Col 2.85 1 0.01
Pau 18 2.53 1
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Supporting Information

E.A. Fronhofer, J. Klecka, C.J. Melián and F. Altermatt:

Informed movement and dispersal in

experimental metacommunities

Estimating growth rates and carrying capacities

In order to quantify growth rates (r0) and carrying capacities (K) of the three protist species (Tetrahy-

mena pyriformis (Tet), Colpidium sp. (Col) and Paramecium aurelia (Pau)) we performed additional

experiments using the same microcosms as in the main experiment (20mL Starstedt vials, with 15mL

bacterized medium). As described in the main text, batch cultures of all species were grown to carrying

capacity before the experiments. Growth curves were started by dilution at 0.1K and followed over 10

days (Fig. S1). Data on population densities were collected as described in the main text using video

analysis (due to technical reasons videos were recorded with a Canon 5D Mark III camera; all analyses

were adjusted appropriately). These experiments were replicated 6 times.

To estimate growth parameters we fit logistic growth curves to the individual replicates:

dN

dt
= r0N

(
1− N

K

)
(S1)

where N is the population size at time t, r0 is the growth rate and K the carrying capacity.

To fit the model and estimate r0 and K we used a least-squares approach. The differential equation

was solved using the software package R version 3.1.2 (R Core Team, 2014) (function “ode” of the

“deSolve” package, version 1.10-9). The model was fit to the measured population density data using

the Levenberg-Marquardt algorithm (function “nls.lm” of the “minpack.lm” package, version 1.1-8). For

results see Fig. S1 and Tab. S1.

Estimating competition coefficients

Competition coefficients (αi,j) which capture the relative competitive effect of one species (j) on another

(i) were estimated analogously to growth rates and carrying capacities. In additional experiments using
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the same microcosm set-up we recorded time-series of population densities in all two-species communities

(Tet–Col, Tet–Pau and Col–Pau) using video analysis as described above and in the main text (Fig. S2).

Communities were started from batch cultures that had been grown to carrying capacity. Species were

added at 1
3K and experiments were replicated 6 times.

To estimate the pairwise competition coefficients we fit Lotka-Volterra models of inter-specific com-

petition to the individual replicates:

dNi

dt
= r0,iNi

Ki − αi,jNj −Ni

Ki
(S2)

dNj

dt
= r0,jNj

Kj − αj,iNi −Nj

Kj
(S3)

the values for growth rates (r0) and carrying capacities (K) were collected independently (see above).

αi,j represents the relative effect of species j on i. For example, if αi,j = 2 species j has twice the

competitive effect on species i as species i has on itself, αi,j = 1 implies that inter- and intra-specific

competition are equivalently strong and αi,j = 0 suggests that species j does not compete with species i.

The fitting procedure followed a least-squares approach as described above. Since population densities

varied widely (see Fig. S1 and Tab. S1) the fitting procedure used data normalized to carrying capacity. As

the recorded community dynamics did not indicate facilitation (the measured densities did not consistently

increase to values over carrying capacity) we set the fitting algorithm’s lower boundary for possible αi,j

values to zero, i.e. no interaction. After preliminary analyses and optical inspection of the fits the upper

boundary was set to 18 in order to allow for timely convergence. This boundary only impacts the values

estimated for αTet,Pau which otherwise increase to extremely higher values. See Fig. S2 for data and fits.

See Tab. S3 for fitted values.

Correction of dispersal rates

Due to large differences in dispersal ability (see Fig. 2) of our three study species the dispersal time

window we used for the experiment was relatively long (14 h). Importantly, dispersal and growth could

be confounded, as the generation time of the fastest reproducing species (Tet, see Fig. S1 and Tab. S1) is

well below the length of the experiment. In order to avoid this bias we used two-patch metapopulation

models to estimate the growth-corrected dispersal rates (dcorr) based on the observed population densities

at the end of the dispersal phase in start and target patches. In a first step we assume that populations

in both, start and target patch, grow logistically and that dispersal is symmetric and free of costs:
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dN1

dt
= r0N1

(
1− N1

K

)
− dcorrN1 + dcorrN2 (S4)

dN2

dt
= r0N2

(
1− N2

K

)
− dcorrN2 + dcorrN1 (S5)

where N1 is the population size in the start patch, N2 the population size in the target patch, r0 is

the growth rate and K the carrying capacity. Both N1 and N2 were measured at the beginning (t = 0h:

N1 ≈ 0.25K, N2 = 0) and at the end of the experiment (t = 14h). r0 andK were estimated independently

(see Fig. S1 and Tab. S1).

As we describe in the main text, there is ample evidence that suggests that our study species suffer

from Allee effects (Christensen et al., 2001; Chaine et al., 2010; Fronhofer et al., 2015; Duncan et al., 2011;

Odum & Allee, 1954). Allee effects, reduced growth at low densities (see Fig. S4), are highly relevant

for metapopulation and -community dynamics, especially if dispersal occurs into empty patches, as in

our experiments. Therefore, the presence of an Allee effect may additionally bias the directly measured

dispersal rates. In order to explore whether Allee effects are relevant in our system and to avoid additional

bias in the growth-corrected dispersal rates (dcorr,Allee) we included a two-patch metapopulation model

with an Allee effect into our analysis:

dN1

dt
= r0N1

(
1− N1

K

)(
1 + a

(
N1

K1
− 1

))
− dcorr,AlleeN1 + dcorr,AlleeN2 (S6)

dN2

dt
= r0N2

(
1− N2

K

)(
1 + a

(
N2

K2
− 1

))
− dcorr,AlleeN2 + dcorr,AlleeN1 (S7)

The Allee effect strength a increases from 0, i.e. no Allee effect, and is positive (see Fig. S4). Note that

a = 1 is equivalent to setting the Allee threshold to A = 0 in the model provided by Amarasekare (1998).

To fit the models and estimate dcorr, respectively dcorr,Allee and a, we used a least-squares approach as

described above.

A formal comparison of the models using the AIC criterion (Tab. S2) revealed that the model including

the Allee effect (Eqns. S6 and S7) explained the data better than the model without (Eqns. S4 and S5).

This implies that all three species suffer from relatively strong Allee effects, as one can see in Fig. S5. In

addition, we show that, the measured dispersal rates correlate highly with the growth-corrected estimates

(Tab. S2; LM: N = 23, t = 40.58, p < 0.001, R2 = 0.987; Fig. S5). Therefore, we performed all analyses

using the originally collected and uncorrected dispersal data. See Tab. S2 for estimates of dcorr, dcorr,Allee

and a and a formal comparison with a two-patch model ignoring the Allee effect.
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Supplementary figures
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Supplementary Figure S1: Growth curves of (A) Tetrahymena pyriformis, (B) Colpidium sp. and (C)
Paramecium aurelia used to estimate growth rates (r0) and carrying capacities (K). Open circles and
dotted lines represent data of the 6 independent replicates and continuous lines model predictions (logistic
growth model; Eq. S1) using the median of the per replicate estimated growth parameters. See also
Tab. S1.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2015. ; https://doi.org/10.1101/017954doi: bioRxiv preprint 

https://doi.org/10.1101/017954
http://creativecommons.org/licenses/by-nc-nd/4.0/


0
10

00
20

00
30

00
40

00
50

00

Tet
Col
Pau

A

0
10

00
20

00
30

00
40

00
50

00 B

0 200 400 600 800

0
10

00
20

00
30

00
40

00
50

00 C

Time (h)

P
op

ul
at

io
n 

de
ns

ity
 (

in
di

vi
du

al
s 

/ m
L)

Supplementary Figure S2: Community dynamics in all two-species communities used for the estimation
of pairwise competition coefficients (αi,j). (A) Tetrahymena pyriformis (Tet) and Colpidium sp. (Col),
(B) Tetrahymena pyriformis (Tet) and Paramecium aurelia (Pau) and (C) Colpidium sp. (Col) and
Paramecium aurelia (Pau). Open circles and dotted lines represent data of the 6 independently replicated
communities and continuous lines model predictions (Lotka-Volterra model of inter-specific competition;
Eqns. S2 and S3) using the median of the per replicate estimated pairwise interaction coefficients and
the growth rates estimated in Fig. S1. See also Tab. S3.
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Supplementary Figure S3: Classification of species in communities using a classification tree (Statistical
Software Package R version 3.1.2; package “tree” version 1.0-35, function “tree”) with aspect ratio (AR)
and length along the major body axis (size) as explanatory variables. Misclassification error rate: 0.0197.
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Supplementary Figure S4: Logistic growth including an Allee effect (see Eqns. S6 and S7). Increasing a
increases the Allee effect strength. Here depicted from a = 0 to a = 1.5 in steps of 0.1.
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Supplementary Figure S5: (A) Corrected dispersal rates using a logistic growth model without (A–B)
respectively with an Allee effect (C–E). See Tab. S2 for more details. See Fig. 2 for the analogous plot
of the measured data. (A) For corrected data estimated from the model without an Allee effect (see
Eqns. S4 and S5) the dispersal rate of Colpidium sp. is significantly higher than the rates of the other
two species. GLMM: N = 23, t(Pau) = 3.47, p(Pau) = 0.0005, t(Tet) = 3.43, p(Tet) = 0.0005 (random
effect: replicate; error family: gamma). Post-hoc Tukey contrasts: Tet–Col: z = 3.43, p = 0.0014,
Col–Pau: z = 3.47, p = 0.0015, Tet–Pau: z = −1.2, p = 0.44. (B) Correlation of corrected and measured
dispersal rates (LM: N = 23, t = 8.62, p < 0.001, R2 = 0.769). The solid line is the model fit. (C)
For corrected data estimated from the model with an Allee effect (see Eqns. S6 and S7) the dispersal
rate of Colpidium sp. is significantly higher than the rates of the other two species. GLMM: N = 23,
t(Pau) = 2.73, p(Pau) = 0.006, t(Tet) = 4.46, p(Tet) < 0.001 (random effect: replicate; error family:
gamma). Post-hoc Tukey contrasts: Tet–Col: z = 4.46, p < 0.001, Col–Pau: z = 2.73, p = 0.016,
Tet–Pau: z = 1.14, p = 0.46. (D) Correlation of corrected and measured dispersal rates (LM: N = 23,
t = 40.58, p < 0.001, R2 = 0.987). The solid line is the model fit. (E) Estimated Allee effect strengths
(a). GLMM: N = 23, t(Pau) = −3.19, p(Pau) = 0.0014, t(Tet) = 2.82, p(Tet) = 0.0049 (random effect:
replicate; error family: gamma). Post-hoc Tukey contrasts: Tet–Col: z = 2.82, p = 0.013, Col–Pau:
z = −3.19, p = 0.0036, Tet–Pau: z = 4.89, p < 0.001. We always report median and quartiles over the 8
replicates.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2015. ; https://doi.org/10.1101/017954doi: bioRxiv preprint 

https://doi.org/10.1101/017954
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0 0.5 1.0 1.5 2.0

0.
00

0.
10

0.
20

0.
30

net displacement (mm)

m
ea

su
re

d 
di

sp
er

sa
l r

at
e 

(/
14

h) A Tet
Col
Pau

0.4 0.6 0.8 1.0

velocity (mm/s)

B

0.4 0.6 0.8 1.0

tortuosity

C

Supplementary Figure S6: Correlation between dispersal and movement across all species in all metapop-
ulations and -communities. The strong non-linearity explains why small differences in displacement led
to large differences in dispersal in the data. (A) Dispersal as a function of the net distance travelled
(GLMM: N = 90, z = 1.99, p = 0.046; random effects: replicate and species; observation-level random
effect due to overdispersion; error family: binomial). (B) Dispersal as a function of velocity (GLMM:
N = 90, z = 2.83, p = 0.005; random effects: replicate and species; observation-level random effect due
to overdispersion; error family: binomial). (C) Dispersal as a function of tortuosity (GLMM: N = 90,
z = −2.09, p = 0.037; random effects: replicate and species; observation-level random effect due to
overdispersion; error family: binomial).
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Supplementary Figure S7: Dispersal and movement parameters as a function of the relative strength
of competition in all metacommunties. The relative strength of competition follows the logic of Fig. 1
and is calculated as the sum of all individuals in the starting patch across species at the beginning of
the experiment weighted by the specific competition coefficients relative to the single species density
(see Tab. S3). Therefore the relative strength of competition in every single species metapopulation
is by definition 1. In a Tet–Col metacommunity the relative strength of competition experienced by
Col is calculated as: (0.25KCol + 0.25KTetαCol,Tet)/(0.25KCol), since all experiments were started with
densities at 0.25K. Regression lines are significant fixed effects of GLMM respectively LMM fits (see
Tab. S6 for the statistical analysis). Values from all replicates are shown.
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Supplementary Figure S8: Dispersal as a function of competitive ability across all three study species.
Competitive ability is calculated as the row sums of Tab. S3. (A) Dispersal rates in the single species
metapopulations. For a detailed analysis see Fig. 2. (B) Dispersal rates in the three-species metacom-
munity (GLMM: N = 23, z = −4.67, p < 0.001; random effects: replicate; observation-level random
effect due to overdispersion; error family: binomial). Clearly, a “competition-colonization trade-off” (e.g.
Calcagno et al., 2006; Cadotte et al., 2006; Cadotte, 2007; Livingston et al., 2012) can only be observed
here and is the result of condition-dependent dispersal/ movement behaviour. Consequently, our results
suggest that a genuine, intra-specific trade-off due to costly dispersal and competitive behaviour does
not exists, rather a negative correlation emerges only in the multi-species system due to behavioural
plasticity.
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Supplementary tables

Supplementary Table S1: Density-dependent growth in single species populations. Parameters were
estimated by fitting a logistic growth model (Eqn. S1) to each of 8 replicates individually using a least
squares approach (Levenberg-Marquardt algorithm). The reported values are medians and the first and
third quartile in brackets. r0 is given in h−1 and K in individuals per mL. See also Fig. S1.

T. pyriformis (Tet) Colpidium sp. (Col) P. aurelia (Pau)
r0 0.12 (0.1, 0.15) 0.05 (0.04, 0.05) 0.04 (0.03, 0.06)
K 5047 (4570, 5144) 1800 (1653, 1858) 304 (277, 321)
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Supplementary Table S2: Corrected dispersal rates estimated from two-patch metapopulation models
with and without an Allee effect (see Eqns. S4 – S7). A formal comparison of the two models using AIC
indicates that the model including the Allee effect is more appropriate for our study species. All dispersal
rates are in %. The missing values in the third replicate of Pau are due to missing counts of starting
conditions. See also Fig. S5.

species replicate dobs dcorr dcorr,Allee a AIC(dcorr) AIC(dcorr,Allee)
Tet 1 1.6674 0 0 0 29.10 31.10
Tet 2 1.5502 0.6097 0.1031 0.4018 35.50 -91.98
Tet 3 0.8447 0.7778 0.0584 0.4823 36.26 -88.76
Tet 4 0.4841 0.8837 0.0329 0.4023 35.40 -99.76
Tet 5 0.6140 0.5669 0.0458 0.6936 37.33 -98.61
Tet 6 0.1787 1.2970 0.0128 0.5470 36.48 -129.11
Tet 7 0.9247 1.2546 0.0659 0.5181 36.31 -101.39
Tet 8 0.3868 1.8504 0.0307 0.9194 38.65 -94.57
Col 1 3.2634 1.4597 0.2425 0.6292 26.27 -105.84
Col 2 3.5309 1.5049 0.2644 0.6868 27.31 -104.46
Col 3 17.2088 3.4238 1.5402 1.0162 28.43 -100.92
Col 4 24.2321 5.0168 2.4603 1.4870 30.24 -98.14
Col 5 16.0784 2.4630 1.3959 0.6458 27.69 -94.36
Col 6 11.6110 2.5117 0.9691 0.9229 29.00 -109.89
Col 7 7.3529 3.3736 0.5894 1.4152 29.05 -112.89
Col 8 6.2500 2.2082 0.4875 0.9187 28.07 -102.59
Pau 1 0.0764 0.8359 0.0057 0.9498 22.26 -99.76
Pau 2 0 0 0 0 14.06 16.06
Pau 3 0.4024 – – – – –
Pau 4 0.1387 0 0 0 24.8259 26.8259
Pau 5 1.7241 1.2296 0.1950 3.0876 26.31 -106.03
Pau 6 0.2445 0.1877 0.0165 0.3051 17.57 -123.32
Pau 7 0.9492 1.0698 0.1591 5.1494 26.94 -109.70
Pau 8 0.1664 0.3400 0.0161 2.0416 22.59 -108.08
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Supplementary Table S3: Interaction coefficients (αi,j) of a Lotka-Volterra model of inter-specific com-
petition (see Eqns. S2 and S3). Species i can be found in the columns and species j in the rows, so that
αTet,Col = 2.85, for example. Reported values are median values and in brackets quartiles of 8 indepen-
dently fitted replicates. For the metacommunity dynamics and model fits see Fig. S2. *: Variation is
zero here as the values represent maximal parameter values imposed on the fitting algorithm. See text
for further explanations.

Tet Col Pau
Tet 1 0.32 (0.26, 0.67) 0.06 (0.053, 0.21)
Col 2.85 (2.68, 14.2) 1 0.01 (0.001, 0.02)
Pau 18 (18, 18)∗ 2.53 (2.20, 2.74) 1
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Supplementary Table S5: Statistical analysis of the difference in dispersal and movement between sin-
gle species metapopulations and multi-species metacommunities (see Figs. 3 and 4). The analysis was
done using one-sample t-tests (µ = 0) on the differences. When appropriate, data were transformed as
indicated.

metacommunity species parameter t d.f. p transformation
Tet, Col Tet dispersal rate 7.26 7 0.0002 3

√

Tet, Col Col dispersal rate -0.33 7 0.752 –
Tet, Col Tet net distance travelled 2.45 6 0.05 –
Tet, Col Col net distance travelled -2.65 7 0.033 –
Tet, Col Tet velocity 6.15 6 0.0008 –
Tet, Col Col velocity -1.49 7 0.18 –
Tet, Col Tet tortuosity -0.15 6 0.89 –
Tet, Col Col tortuosity 3.04 7 0.019 –
Tet, Pau Tet dispersal rate 4.55 7 0.0026 –
Tet, Pau Pau dispersal rate 1.58 6 0.16 arctan
Tet, Pau Tet net distance travelled 3.88 6 0.0082 –
Tet, Pau Pau net distance travelled -0.47 6 0.65 –
Tet, Pau Tet velocity 7.67 6 0.0003 –
Tet, Pau Pau velocity -0.82 6 0.44 –
Tet, Pau Tet tortuosity -0.71 6 0.50 –
Tet, Pau Pau tortuosity 1.84 6 0.11 –
Col, Pau Col dispersal rate -7.00 7 0.0002 –
Col, Pau Pau dispersal rate 2.55 6 0.043 arctan
Col, Pau Col net distance travelled 3.19 7 0.015 square
Col, Pau Pau net distance travelled 0.34 6 0.74 –
Col, Pau Col velocity 0.44 7 0.67 –
Col, Pau Pau velocity 0.99 6 0.36 –
Col, Pau Col tortuosity 2.27 7 0.057 –
Col, Pau Pau tortuosity 0.71 6 0.50 –

Tet, Col, Pau Tet dispersal rate 4.84 7 0.0019 –
Tet, Col, Pau Col dispersal rate -9.68 7 < 0.001 –
Tet, Col, Pau Pau dispersal rate 3.44 5 0.019 –
Tet, Col, Pau Tet net distance travelled 3.50 5 0.017 –
Tet, Col, Pau Col net distance travelled -4.37 6 0.0047 –
Tet, Col, Pau Pau net distance travelled -1.48 5 0.20 –
Tet, Col, Pau Tet velocity 12.66 5 < 0.001 –
Tet, Col, Pau Col velocity -2.72 6 0.034 –
Tet, Col, Pau Pau velocity -0.13 5 0.90 –
Tet, Col, Pau Tet tortuosity -0.22 5 0.83 –
Tet, Col, Pau Col tortuosity 5.89 6 0.001 –
Tet, Col, Pau Pau tortuosity 0.30 5 0.77 arctan
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Supplementary Table S6: Statistical analysis of the correlation between dispersal, respectively movement,
and the relative strength of competition in the two-species metacommunities (see Fig. S7). The analysis
was done using LMMs and GLMMs where appropriate. Note that the test statistic reported is a t-
statistic for LMMs and a z-statistic for GLMMs. Observation level random effects are used in case of
overdispersion.

species response variable N t or z p random effect(s) error family
Tet dispersal rate 32 6.42 < 0.001 replicate, observation binomial
Tet net distance travelled 30 4.60 0.0001 replicate gaussian
Tet velocity 30 10.83 < 0.001 replicate gaussian
Tet tortuosity 30 -0.45 0.66 replicate gaussian
Col dispersal rate 32 -3.16 0.0016 replicate binomial
Col net distance travelled 31 -2.95 0.0063 replicate gaussian
Col velocity 31 -3.07 0.0046 replicate gaussian
Col tortuosity 31 4.78 < 0.001 replicate gaussian
Pau dispersal rate 31 0.78 0.44 replicate binomial
Pau net distance travelled 30 -1.72 0.10 replicate gaussian
Pau velocity 30 -1.47 0.16 replicate gaussian
Pau tortuosity 30 0.58 0.57 replicate gaussian
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