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Abstract

Conserved genetic programs often predate the homologous structures
and phenotypes to which they give rise; eyes, for example, have evolved
several dozen times, but their development seems to involve a common set
of conserved genes. Recently, the concept of orthologous phenotypes (or
phenologs) offered a quantitative way to describe this property. Phenologs
are phenotypes or diseases from separate species who share an unexpect-
edly large set of their associated gene orthologs. It has been shown that
the phenotype pairs which make up a phenolog are mutually predictive
in terms of the genes involved. Recently, we demonstrated the ranking of
gene–phenotype association predictions using multiple phenologs from an
array of species. In this work, we demonstrate a computational method
which provides a more targeted view of the conserved pathways which give
rise to diseases. Our approach involves the generation of synthetic pseudo-
phenotypes made up of Boolean combinations (union, intersection, and
difference) of the gene sets for phenotypes from our database. We search
for diseases that overlap significantly with these Boolean phenotypes, and
find a number of highly predictive combinations. While set unions pro-
duce less specific predictions (as expected), intersection and difference-
based combinations appear to offer insights into extremely specific aspects
of target diseases. For example, breast cancer is predicted by zebrafish
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methylmercury response minus metal ion response, with predictions MT-
COI, JUN, SOD2, GADD45B, and BAX all involved in the pro-apoptotic
response to reactive oxygen species, thought to be a key player in cancer.
We also demonstrate predictions from Arabidopsis Boolean phenotypes for
increased brown adipose tissue in mouse (salt stress response’s intersec-
tion with sucrose stimulus response); and for human myopathy (red light
response minus water deprivation response). We demonstrate the ranking
of predictions for human holoprosencephaly from the set intersections be-
tween each pair of a variety of closely-related zebrafish phenotypes. Our
results suggest that Boolean phenolog combinations may provide a more
informed insight into the conserved pathways underlying diseases than
either regular phenologs or the näıve Bayes approach.

Keywords— phenologs, deep homology, myopathy, breast cancer, methylmer-
cury response, brown adipose tissue, autophagy, oxidative stress

1 Background

Limbs are an example of homologous structures — existing in multiple species
— which appear to have evolved independently, but share underlying sets of
conserved genes [1, 2]. This concept, known as deep homology [1], explains the
remarkable convergent evolution of eyes several dozen times [3]; the underly-
ing genetic programs responsible for eye development must predate eyes [1]. It
follows that such deeply conserved genetic processes played some selectively ad-
vantageous role in the most recent common ancestor and produced a measurable
phenotype.

Phenologs are an extension of the homology of individual genes to sets of
genes affiliated with specific structures, phenotypes, or diseases. McGary et
al. defined phenologs as orthologous phenotypes — phenotypes from separate
species which share an unexpectedly large number of associated genes (as de-
termined by gene orthology). Furthermore, phenologs are mutually predictive;
genes involved in one phenotype, but not known to play a role in a second, are
predicted for the second, and vice versa [4]. Woods et al. further demonstrated
that gene–phenotype association predictions using phenologs can be improved
by integrating information from multiple phenologs across several species [5].
If cases of structural homology have a non-structural common ancestor, phe-
nologs fill in the theoretical gap for determining what that common ancestor
might have been.

Using phenologs, we previously demonstrated the prediction and experimen-
tal validation of vertebrate neural crest development genes such as SEC23IP on
the basis of the plant phenotype negative gravitropism defective [4]. Subse-
quently, we provided literature validation for genes we predicted for epilepsy
and atrial fibrillation from a k nearest neighbors search and Bayesian integra-
tion of orthologous phenotypes [5]. Whereas the k nearest neighbors approach
yielded a broad look at the orthologous processes which give rise to diseases
and phenotypes, we present in this manuscript a more focused look. Both
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the phenolog and deep homology hypotheses are based on a modularity postu-
late: proteins and genes function together in pathways or functional modules
which may be composed narrowly or broadly (and thus are divisible into more
narrowly-defined functionalities). Notably, Bowers et al. identified triplets of
proteins whose phylogenetic profiles — concurrent presence, absence, or combi-
nations of the two — obey higher order relationships than have presently been
explored using phenologs [6]. We were interested in determining whether these
logical relationships hold true in phenotypic space as well as functional module
space.

In this work, we describe the use of Boolean combinations of phenotypes
to generate pseudo-phenotypes representing hypothetical functional modules,
which are often more faithfully orthologous to the query diseases than were the
original components. We demonstrate the prediction of genes associated with
oxidative stress-related apoptosis in breast cancer from zebrafish, and increased
brown adipose tissue as well as myopathy from plants. We also provide the
source code and datasets.

2 Methods

2.1 Matrix framework

We utilized NMatrix, part of the SciRuby Project, for representation of sparse
matrices in the Ruby language; the storage type is known as ‘new’ Yale [7]
(described more thoroughly in [8]), which stores only the diagonal and non-zero
elements of each row.

As such, phenotypes may be represented as matrix rows and genes as columns;
as in [5], cells containing 1 have an observed association between a gene and
phenotype, and cells with 0 indicate no observation (as opposed to observed
negative association, which is not included in our model). One gene–phenotype
matrix is used to represent each species.

As in [5], inparanoid orthogroups may be utilized to translate individ-
ual species-specific gene–phenotype matrices into sets of orthogroup–phenotype
matrices, noting that each species pair requires a different gene-to-orthogroup
translation. Rows with the same contents, which might be thought of as repre-
senting in-paralogous phenotypes, are collapsed together; consequently, all rows
in a matrix are unique.

Within the resulting matrix, an all-versus-all search is performed, identifying
all pairs of phenotypes which overlap. The selected operation (and or not) is
carried out upon each overlapping pair. The latter operation is carried out
twice, e.g., A − B and B − A. If a resulting pseudo-phenotype is the same as
either of the inputs, or consists of fewer than three orthogroups, it is discarded.
Phenotypes with the exact same orthogroup sets are merged, as before.

Lastly, phenologs are identified between the target species and the computed
matrix (as in [4]). A filter is imposed, throwing away all phenologs with an inter-
section size of less than two. In addition, phenologs which predict no new genes
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Make boolean phenotypes by looking for 
overlapping phenotypes within a species

AND
NOT

Find phenologs between new phenotypes 
and species-of-interest phenotypes

Figure 1: Process for the identification of Boolean phenologs. While Boolean
combinations of phenotypes may be identified using any of the Boolean operators, we
examine and and not combinations, as these are likely to provide relatively narrower
views of the underlying conserved processes.
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(the intersection consists of the entire Boolean phenotype) are discarded. The
orthogroups within the pseudo-phenotype but outside the overlap are translated
into target-species gene identifiers and are considered to be candidates.

2.2 Correction for multiple hypothesis testing

To address the problem of multiple hypothesis testing, we performed an em-
pirical permutation test similar to that used in [4]. We experimented with two
different schemes and found that they produced similar results.

In both schemes, the psuedo-phenotype–orthogroup matrices from Figure 1
are used. In one, a single permutation is generated of an entire matrix and each
row (phenotype) has its contents rearranged according to that same permuta-
tion. In the other scheme, each row is permuted separately.

In each scheme, phenologs are calculated for the matrix permutation; the
process is repeated 1,000 times. The resulting distributions are plotted as in
Figures 2–3, and a positive predictive value is calculated [9] for every phenolog
as in [4].

Since the results were similar, we elected to use the single-permutation
scheme, as it preserves the joint distribution of genes and phenotypes.

3 Results

3.1 Hypothesis

Diseases may consist of multiple phenotypes; such diseases are called syndromes.
The definition of “phenotype” requires that they be observable [10], but we won-
dered if it might be helpful to separate phenotypes — as syndromes may be di-
vided — into components. The components might be thought of as potentially
arising from errors in distinct functional modules of genes. We hypothesized
that it might be possible to identify such modules by performing various math-
ematical set operations (and, or, xor, not) on overlapping phenotype gene sets.
Reasoning that or (∪, union) and xor would produce broader rather than nar-
rower views of phenotype orthology, we elected to consider and (∩, intersection)
and not (−, subtraction) most carefully (Figure 1). In this paper, we present
tests of the Boolean phenolog computational strategy and describe several ex-
amples in detail, accompanied by literature support for the predicted candidate
genes where available.

3.2 Increased brown adipose tissue from Arabidopsis

To demonstrate the power of this method, we present the first highly ranked
phenotype prediction from the first test run (mouse phenotypes from Arabidop-
sis combination phenotypes using the Boolean and operation). The mouse
phenotype increased brown adipose tissue amount is well-predicted from the in-
tersection of the plant GO biological processes response to salt stress ∩ response
to sucrose stimulus (Figure 4).
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Figure 2: Real and null distributions based on a permutation test of Human–
Zebrafish Boolean not phenologs. The solid blue line represents the real distri-
bution of p values between phenotypes in a target species and Boolean phenotypes in
a source species. The null distribution is based on 1,000 independent runs, permuting
each matrix as a unit rather than each row independently. The distributions shown
are for predicting human from zebrafish using the not operation.
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Figure 3: Real and null distributions based on a permutation tests of Boolean
phenologs. As with the human–zebrafish not permutation test, the real data offer
more extreme hypergeometric frequencies than randomized data, with a generally
greater separation between real and random on the not combinations than set inter-
section phenologs. Each x axis bin spans a single log10 order of magnitude, with the
labels corresponding to the more negative exponent in the bin boundary. The solid
blue lines and circles represent the real distribution of p values between phenotypes in
a target species and Boolean phenotypes in a source species. The null distributions,
the dashed red line, are based on 1,000 independent runs, permuting each matrix as a
unit rather than each row independently. The distributions shown are for predicting
human (Hs) from mouse (Mm), yeast (Sc), A. thaliana (At), C. elegans (Ce), and
zebrafish (Dr), using the not and and operations.
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response to salt stress

response to sucrose 
stimulation

increased 
brown adipose 

tissue (BAT)
& 2.66E-5

0.0176

2.06E-46 known

overlap 2
3 predicted

PPV=0.980N=3,383

Figure 4: Mouse increased brown adipose tissue genes may be predicted
by Arabidopsis Boolean phenotype response to salt stress ∩ response to
sucrose stimulus. This figure represents the first mouse result outputted by the
search of Arabidopsis phenotype intersections. The given intersection is the single
nearest neighbor. The probability of seeing such an overlap (or larger) by chance is
p ≤ 10−5 (FDR = 0.980), smaller by several orders of magnitude than the probability
of seeing either of the individual phenologs separately (p ≤ 10−2 for salt stress alone
and 2 × 10−4 for sucrose stimulus, neither of which meets our significance threshold
of p < 10−4). The intersection size is two, with set sizes of six and five; thus, three
orthogroups are predicted for the increased brown adipose tissue phenotype.

The most consequential difference between brown and white adipose tissue
(BAT and WAT) is that the former dissipates energy as heat while the latter
stores it. The uncoupling of mitochondrial oxidative phosphorylation in BAT is
accomplished by uncoupling protein UCP1 , the molecular site of non-shivering
thermogenesis [11]. Drug-induced uncoupling has been pursued as a treatment
for obesity, sometimes with lethal consequences [12,13]. A better understanding
of BAT versus WAT physiology might potentially be useful for addressing the
obesity epidemic.

The three genes predicted for increased BAT were Pgd (6-phosphogluconate
dehydrogenase), Psmd4 (part of the 26S proteasome), and a large orthogroup
of homeobox proteins (including Pitx1–3 , Isx , Pax2–8 , Rax , Alx3 , Esx1 , Crx ,
Otx1/2 , Phox2a/b, and Sebox ).

Phosphogluconate dehydrogenase is a lipogenic enzyme in the pentose phos-
phate pathway, and seems to be expressed in WAT, BAT, and liver, with activity
varying according to sex and tissue [14]. Pankiewicz et al. also found that oestra-
diol regulates liver Pgd expression; whereas Puerta et al. found that oestradiol
decreased BAT thermogenesis only in cold-acclimated rats [15]. While the full
story would require a full literature review to elucidate, Pgd seems to be an
interesting candidate.

The case for Psmd4 is only slightly clearer. UCP1 ubiquitinylation is as-
sociated with BAT in cold-acclimated animals, and ubiquitinylation seems to
control the rate of UCP1 turnover by the proteasome [16]. It is therefore possible
that Psmd4 plays a direct role in BAT thermogenesis.
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response to methylmercury

response to metal ion

breast cancer NOT 5.83E-5

9.97E-5
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21 known

overlap 2

5 predicted

N=12,270 PPV=0.992

Figure 5: Breast cancer is predicted from genes involved in zebrafish methyl-
mercury response but not response to metal ion. Five genes were predicted
for breast cancer. The phenolog overlap was of size two, and nineteen known breast
cancer genes were missed. The probability of seeing an overlap between breast cancer
and defective methylmercury response alone is p ≤ 10−4.

Regarding predictions in the third group, homeobox genes are involved in
adipogenesis, but it’s unclear whether any of the candidates play a role; these
too may be worthy of additional exploration.

In short, candidate genes can be predicted from plant combination pheno-
types at high predictive values (PPV = 0.980) and may be worthy of additional
exploration.

3.3 Set difference: methylmercury and breast cancer

Next, we looked at Boolean combinations consisting of set differences, reasoning
that these would identify more narrowly-defined modules rather than the larger
assemblies of processes in which those specific modules play a role.

Perhaps the most striking example of the applicability of this technique,
and of Boolean phenologs in general, is the case of human breast cancer being
predicted from response to methylmercury less response to metal ion (PPV =
0.992, p ≤ 10−5; Figure 5). We expected that the genes predicted would by
DNA repair-related, as with many cancer phenologs (for example, breast cancer
has a phenolog in plants with the intersection of DNA repair and response to
gamma radiation, p ≤ 10−5, with two predicted orthogroups: ATR and ERCC6 ,
which both appear to be DNA repair genes). Instead, these genes highlight two
other pathways by which organisms (or individual cells) suppress cancer growth:
apoptosis and oxidative stress response.

Methylmercury (MeHg+ or just MeHg) is an organometallic cation, so this
example appears at first glance to be a strange combination. However, the re-
sponse to methylmercury GO annotation is a child node of response to organic
substance in the directed acyclic graph, not response to metal ion. A recent ar-
ticle by McElwee et al. examines the effects of organic (MeHgCl) and inorganic
mercury (HgCl2) on C. elegans, finding eighteen genes which were important
to mercurial exposure response — and only two which responded to both types
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of mercury [17]. The mechanisms for mercury toxicity are incompletely under-
stood, but it seems clear that even if the two mechanisms are the same or similar
(as argued by Clarkson et al. [18]), the organismal and cellular responses differ.
Thus, we believe this phenolog to be consistent with the findings of McElwee et
al. [17].

Five genes are predicted: MT-COI , JUN (c-Jun), SOD2 , GADD45B , and
BAX . All of these genes — MT-COI especially — appear to be involved in the
apoptotic response to reactive oxygen species (ROS). The mechanisms by which
methylmercury generates ROS are not entirely clear, as previously mentioned,
but are reviewed by Farina et al. [19]. Generally, MeHg+ forms a complex with
lower-weight thiol and selenol groups, especially glutathione (reviewed sepa-
rately in [20]). When such groups occur in mitochondrial creatine kinase or
respiratory chain proteins, the compound can inhibit mitochondrial function,
leading to depolarization of that organelle’s membrane and overproduction of
ROS [19].

In the case of a malfunction of any one of the predicted genes, the effects
of ROS may be magnified. Mitochondria rely on SOD2 (Mn-SOD; reviewed
in [21]) for conversion of extremely toxic superoxide into molecular oxygen and
hydrogen peroxide, which can be eliminated by catalase. Several of the genes
(JUN, reviewed in [22]; and GADD45B and BAX, reviewed in relation to p53
in [23]) play well-characterized roles in stress-induced apoptosis, triggered in
the event the cell is overwhelmed by free radicals (or other agents which cause
damage).

MT-COI, part of complex IV of the oxidative phosphorylation pathway, is
the site of an extremely common germ line mutation in cancer patients, which
seems to predispose those individuals toward developing cancer [24]. The oc-
currence of this mutation may suggest a role for this cytochrome C oxidase
component in the pro-apoptotic pathway.

Induction of apoptosis is a key route by which chemotherapy targets can-
cers — and by which cancers circumvent chemotherapy. The roles of Bcl-2
and Bax are reviewed in [25]. Notably, Bcl-2 binds Bax (the protein products
of BCL-2 and our prediction BAX, respectively), and BCL-2 over-expression
confers chemotherapy resistance. When Bcl-2 is low or absent, however, Bax
homodimerizes, leading to cell death. Bax is also thought to interact with the
mitochondrial voltage-dependent ion channel, and is directly induced by p53 in
response to DNA damage.

Interestingly, a model already exists that might explain these breast cancer
gene predictions. Martinez-Outschoorn et al. proposed, in 2010, the “autophagic
tumor stroma model of cancer.” Essentially, the model hypothesized that tu-
mors induce oxidative stress in the tumor microenvironment in order to cause
stromal cells to release nutrients which are used for cancer growth [26, 27]. In-
deed, Trimmer et al. found that loss of Caveolin-1 (Cav-1) — whose stromal
presence is a strong predictor of survival — dramatically promotes breast can-
cer growth. Loss of Cav-1 may be rescued by over-expression of SOD2, another
tumor suppressor, which relieves oxidative stress by processing mitochondrial
superoxide radicals. [27]
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defective response to red light

defective response to water 
deprivation

myopathy NOT 1.1E-5

2.4E-5

unity

3 known

overlap 2
5 predicted

N=3,383 PPV=0.991

Figure 6: Myopathy is predicted from plant genes involved in red light
response but not response to water deprivation. Among 3,383 human–plant
orthogroups, three are involved in myopathy; five in the Boolean phenolog defective
response to red light less defective response to water deprivation; and two in the in-
tersection (p ≤ 10−5, PPV = 0.987). The sub-phenolog myopathy / red light has
p ≤ 10−5.

GADD45B also plays a pro-apoptotic role, and was found to be down-
regulated in at least two cases of hepatocellular carcinomas (reviewed in [28]).
Both GADD45B and to a lesser extent SOD2 were observed to be up-regulated
in inflammatory breast cancer (IBC) [29]. The differential regulation argues for
a GADD45B cancer role, whether as an oncogene or a tumor suppressor; and
evidence in mice suggests that all of the Gadd45 genes, including Gadd45b, are
involved in cancer immune response and are tumor suppressors [30].

These observations suggest further investigations into MT-COI ’s role in
apoptosis and oxidative stress response — and hint that all of the predicted
genes may be involved in a tumor suppression transcriptional program.

3.4 Myopathy from Arabidopsis

Myopathy is a broad category of disease categorized by muscular weakness with
twenty-one associated human genes; three of these genes (DYSF , ACTA1 , and
FHL1 ) are members of human–plant orthogroups.

Using the Boolean analysis, we find that the combined Arabidopsis pheno-
type response to red light less response to water deprivation, predicts the involve-
ment of five orthogroups in myopathy (PPV = 0.991; p ≤ 10−5; Figure 6). The
first of these orthogroups is comprised of members of the SWI/SNF complex
and Mediator, including MED25 , ARID1A (BAF250A), ARID1B (BAF250B),
and PTOV1 . MED25 has been observed in a family with Charcot–Marie–Tooth
(CMT) syndrome, including childhood onset distal muscle weakness [31].

ARID1A and ARID1B are both muscle-related. In knockouts of the former,
relatively fewer skeletal muscle cells differentiate from embryonic stem cells com-
pared to other differentiation products [32]. ARID1B is associated with Coffin–
Siris syndrome, which includes hypotonia among its symptoms [33].

In the second orthogroup, two of the three genes are involved in mus-
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cle. CREM is expressed in ventricular myocytes [34] and ATF1 is a hypoxia-
responsive transcriptional activator of skeletal muscle via mitochondrial UCP3
[35]; the third, CREB1, is expressed in fibroblasts and not in myocytes [34].

The third set of predictions is TFEB, TFEC, TFE3, and MITF . TFEC is
a transcriptional activator of non-muscle myosin, and so is ruled out — but is
nevertheless an interesting prediction. Over-expression of TFEB relieves Pompe
disease, a disability of heart and skeletal muscles, by stimulating autophagy [36].
MITF has a known autophagy role resembling that of TFEB [37] and is involved
in a variety of developmental processes, but no evidence exists suggesting it or
TFE3 are involved in myopathy.

An autophagy link for these predictions is further supported by the fourth
predicted orthogroup, consisting of a number of cytochrome P450 (family 2)
genes: CYP2A6–17/13, CYP2B6, CYP2C8–9/18–19, and CYP2D6/E1/F1/
J2/S1/U1/R1/W1. Cytochrome P450 is the site of a number of drug inter-
actions — notably with grapefruit, cranberry, and pomegranate juice, which
inhibit CYP3A4, a metabolizer of statins. CYP2C8, CYP2C9, and CYP2C19
are involved in various statin-induced myopathies [38–40]. At least with the
last of these, the mechanism is autophagy related [41]. Similarly, predicted gene
CYP2D6 increased statin efficacy and is a predicted drug interaction site with
3A4 [42]. Finally, CYP2E1 metabolizes ethanol — which also causes myopathy
— and inhibits autophagy [43–45].

Two genes for which we found no literature support are FAM50A and FAM50B,
predicted as a single orthogroup; neither appears to be particularly well re-
searched. These may be good candidates for autophagy genes.

There are at least two other Boolean phenologs of myopathy (both inter-
sectional rather than subtractive) at p ≤ 10−6 (PPV = 0.987). The first of
these is response to light stimulus∩ response to red light (p ≤ 10−4 and 10−5 for
the individual components), which predicts the cytochrome P450 orthogroup.
The second is response to auxin stimulus∩response to light stimulus (the former
component has p ≤ 10−4), predicting GHDC . We found no literature support
for GHDC, a gene about which little is known; it may thus be an interesting
candidate for myopathy and autophagy.

3.5 Holoprosencephaly

Finally, in order to demonstrate predictions from multiple phenologs and to
show the utility of intersection phenologs, we present an example of a disease
with many phenologs among the and (intersection) pseudo-phenotypes.

The concept of k nearest neighbors-based ranking discussed in previous
work [5] is analogous to the k = 1 case of Boolean or (set union) phenologs. We
present here an example of and (set intersection) phenologs for k = 1, with can-
didate genes for holoprosencephaly (HPE) predicted from D. rerio intersection
phenologs (see Table 1). In this case, many phenologs are supported by simi-
larly good p values, and predict a variety of genes (see Table 2 for kNN-based
rankings). It is worth noting that no single component’s p value is better than
the Boolean p value.
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phenotype A phenotype B candidates

brain development
axon guidance LHX2

muscle organ development PRKCI

dorsal/ventral pattern formation
floor plate formation NODAL

adenohypophysis development FGF3

somitogenesis
nervous system development NEO1

endocrine pancreas development WNT5A/B

muscle organ development
muscle cell fate specification

SCUBE1/3
blood circulation

somitogenesis

somitogenesis
blood circulation

muscle cell fate specification

adenohypophysis development
blood circulation

DISP1
muscle cell fate specification

blood circulation
axon guidance

CXCL12
striated muscle cell development

axon guidance

nervous system development

SMO

floor plate formation
muscle organ development

endocrine pancreas development
embryonic digestive tract morphogenesis

nervous system development

floor plate formation
muscle organ development

endocrine pancreas development
embryonic digestive tract morphogenesis

floor plate formation
muscle organ development

adenohypophysis development
embryonic digestive tract morphogenesis

muscle organ development
endocrine pancreas development
adenohypophysis development

embryonic digestive tract morphogenesis

endocrine pancreas development
adenohypophysis development

embryonic digestive tract morphogenesis

adenohypophysis development embryonic digestive tract morphogenesis

diencephalon development neural plate morphogenesis

Table 1: Holoprosencephaly genes are predicted by many intersection phe-
nologs at the same p value. We include holoprosencephaly as an example because
it has many Boolean and phenologs from zebrafish at the same p value (6 × 10−7,
which is the lowest p value meeting the filtering criteria). Phenotypes A and B are
arbitrarily labeled and indistinguishable overall (but not within individual pairs of
table rules). Consider the first entry: brain development and axon guidance predicts
gene LHX2 ; but brain development and muscle organ development predicts PRKCI.
Nineteen different Boolean phenologs predict Smoothened. Rows are grouped first by
candidate genes, but also by phenotype A when candidate genes differ. PPV = 0.999.
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orthogroup members magnitude
SMO 19

SCUBE1/3 5

DISP1 2
CXCL12 2

NEO1 1
WNT5A/B 1

FGF3 1
NODAL 1
LHX2 1

PRKCI 1

Table 2: Holoprosencephaly candidate genes may be ranked by evidence.
We ranked by hand the genes suggested for testing from the phenotypes in Table 1 as
they would be ranked by either the näıve Bayes or additive classifiers in the previous
Chapter. We included the magnitude (the number of times the gene is predicted by
a phenolog in Table 1). Genes within ranks are predicted with the same score (e.g.,
NEO1 and LHX2 ) and are thus equally likely under this model). The best predicted
gene is SMO, also known as Smoothened.

The most highly predicted gene is SMO (Smoothened), which is indeed an
HPE gene — as determined by Rosenfeld et al. in 2010 [46], subsequent to the
creation of our database. Rosenfeld et al. also identified DISP1 , ranked third.
NODAL, one of the bottom-ranked genes, has been observed as promoting an
HPE-like phenotype in chick embryos [47] and mice (reviewed in [48]). Another
gene ranked with NODAL, LHX2 (Lim1 /Lhx2 ), is required for mouse head
formation [49] and seems to regulate the development of the midline of the
brain in that species [50].

The second-ranked orthogroup, consisting of SCUBE1 and SCUBE3, is sug-
gested for HPE candidacy by its role in mouse brain formation (specifically
SCUBE1 ) [51], but does not appear to be directly associated with HPE.

3.6 Discussion

Boolean phenologs offer a marked improvement over the k nearest neighbors
approach described previously [5]. The basis for the improvement is not entirely
clear, but may be partially subjective: we selected preferentially those Boolean
phenologs where the p value is less than both the components. Nonetheless, for
the not phenologs, all Boolean p values are more significant at our maximum p
threshold of 1×10−4. This property is made more likely, but not guaranteed, by
the mathematics of set intersection probabilities. If the subtracted phenotype
intersects with the query, the Boolean phenotype will have a smaller intersection
as a result of the subtraction; and thus the p value is more likely to rise above
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our threshold. The p value of two sets with no intersection is within ε of unity.
A minor contributor is the way in which the genes in the single-species matri-

ces are translated into orthogroups. For example, plant phenotypes regulation of
telomere maintenance and regulation of chromosome organization have differing
sets of genes; but when the genes are translated into human–plant orthogroups,
and those plant genes without human orthologs are removed, the two pheno-
types collapse into one (these are in-paralogs in A. thaliana with respect to
H. sapiens).

The filtering procedure also plays a role. The original phenolog method
looked for any intersection at all; we require an intersection of size two or larger,
and additionally that at least one new orthogroup is predicted. For and pheno-
types, these last two criteria imply that the intersection between the Boolean
components must be at least size three.

The probability of finding such a three-way intersection by chance is quite
low, and would ordinarily be described by the multivariate hypergeometric dis-
tribution (thus, the given probabilities may be conservative over-estimates).
The frequency of the three-way intersections — higher than would be expected
at random — is a product of the way in which gene–phenotype associations are
discovered by biologists.

It follows, then, that the standard hypergeometric distribution may not be
conservative enough for phenologs that are “circular”. We define circular by
way of an example. Bardet–Biedl syndrome candidate genes which were identi-
fied subsequent to the assembly of our gene–phenotype association database are
perfectly predicted by the zebrafish Boolean phenotype melanosome transport
less embryonic specification defect (p ≤ 10−25). However, zebrafish melanosome
transport is studied at least in part for its role in Bardet–Biedl syndrome. As
such, melanosome transport-associated genes at the time of database construc-
tion were already only one patient validation away from being Bardet–Biedl-
associated genes. Circularity may explain the unusually extreme hypergeomet-
ric p values in the human–mouse Boolean phenologs (see Figure 3).

An additional concern is over-training. One might argue, for example, that
by subtracting every phenotype from every other phenotype, and then looking
for phenologs, one is simply trimming away some of the less immediately rele-
vant portions of phenotype gene sets; however, Boolean phenologs simply pro-
vide good hints about which genes and processes should be studied for a deep
homology role. Some genes may be missed, but the advantage is an observably
lower false positive rate. As with any predictive methodology, we view Boolean
phenologs as hypothesis generators, suggesting starting points for deeper inves-
tigation.

A final issue is confirmation bias, particularly when pursuing literature val-
idation. Ioannidis argued in 2005 that most published research findings are
false positives, in part due to the failure of researchers to share negative results
(which are more likely to be correct) [52]. Indeed, our gene–phenotype asso-
ciation matrices only contain “positive” and “unobserved,” and lack negatives.
Negatives would be extremely useful for evaluation of results as well. Particu-
larly when predicting extremely well-studied diseases like cancer, it’s unlikely
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that one will find a well-characterized gene which is not in some way associated
if one looks long enough. One potential approach might be is to silently insert
an additional random prediction in some set fraction of phenologs selected for
literature validation, and then determine how frequently the random prediction
is marked as true by the researcher.

4 Conclusions

Boolean phenologs offer a computational approach to calculate phenologs [4,5],
in a manner designed to focus attention on specific component modules and
subprocesses which underlie diseases and phenotypes, as well as the non-obvious
homologies which exist between organisms. Here, we have presented Boolean
phenolog models for human diseases such as myopathy and breast cancer, as well
as increased brown adipose tissue in mice. We describe a number of predictions
worthy of further testing, including FAM50A and FAM50B for autophagy and
MT-COI for oxidative stress and apoptosis in cancer.

Notably, as with phenologs, the Boolean approach offers insight into those
elements of diseases, traits, or processes which are conserved and well-studied.
A human–zebrafish phenolog is informative about breast cancer only insofar as
cancer is affected by well-characterized processes shared between the two organ-
isms. Phenologs are incapable of highlighting the uniquely human components
of breast cancer, but can give us information about the roles of oxidative stress
and apoptosis — or about DNA repair genes — in cancer.
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