
CIDANE: Comprehensive isoform discovery and abundance

estimation

Stefan Canzar∗†1,4, Sandro Andreotti†2, David Weese2, Knut Reinert‡2 and Gunnar
W. Klau‡3

1Center for Computational Biology, McKusick-Nathans Institute of Genetic
Medicine, Johns Hopkins University School of Medicine

2Department of Mathematics and Computer Science, Institute of Computer
Science, Freie Universität Berlin

3Life Sciences, Centrum Wiskunde & Informatica (CWI)
4Toyota Technological Institute at Chicago

April 11, 2015

Abstract

We present CIDANE, a novel framework for genome-based transcript reconstruction and
quantification from RNA-seq reads. CIDANE assembles transcripts with significantly higher
sensitivity and precision than existing tools, while competing in speed with the fastest methods.
In addition to reconstructing transcripts ab initio, the algorithm also allows to make use of
the growing annotation of known splice sites, transcription start and end sites, or full-length
transcripts, which are available for most model organisms. CIDANE supports the integrated
analysis of RNA-seq and additional gene-boundary data and recovers splice junctions that are
invisible to other methods. CIDANE is available at http://ccb.jhu.edu/software/cidane/.

1 Background

High-throughput sequencing of cellular RNA (RNA-seq) aims at identifying and quantifying the
set of all RNA molecules, the transcriptome, produced by a cell. Despite having largely identical
genomes, the RNA content of cells differs among tissues, developmental stages, and between dis-
ease and normal condition. For eukaryotes, differences are determined by the set of genes being
expressed, but also by the different mRNA isoforms each gene may produce; alternative splicing
and alternative transcription and polyadenylation define and combine exons in distinct ways.

RNA-seq technology can generate hundreds of millions of short (50-250bp) strings of bases, called
reads, from expressed transcripts at a fraction of the time and cost required by conventional Sanger

∗Corresponding author: canzar@jhu.edu
†Equal contribution
‡Shared last author

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

sequencing. The wealth of RNA-seq data produced recently has revealed novel isoforms [1, 2, 3]
and new classes of RNA [4], allowed a better characterization of cancer transcriptomes [5, 6], and
led to the discovery of splicing aberrations in disease [7, 8].

However, the step from sequencing to profiling the cellular transcriptome involves solving a
high-dimensional, complex puzzle, which poses major challenges to bioinformatics tools as every
single short read carries little information by itself. In particular, repeat and paralogous sequences,
as well as low-expressed regions and minor isoforms are difficult to assemble. Notice that transcripts
that are moderately expressed only in a subpopulation of cells manifest an overall low expression
level, as might be the case for long noncoding RNAs (lncRNAs) [4].

Unlike de novo transcript assembly approaches, which assemble reads solely based on the over-
lap of their sequences, genome-based methods employ a high-quality reference genome to better
resolve ambiguities imposed by highly similar regions of the genome and to recover lower expressed
transcripts. Genome-based methods first align reads to the genome to determine where each of the
reads originated and then assemble the alignments into transcript models. This in turn introduces
a critical dependence on the accuracy of the read alignment, which is affected by sequencing er-
rors, polymorphisms, splicing, and ambiguous reads that belong to repeats. Reads spanning splice
junctions between exons are particularly informative since they provide an explicit signal for the
detection of splice donor and acceptor sites. At the same time, the spliced alignment of such reads
is computationally challenging and error prone.

In case of an unbalanced split the prefix or suffix of a read that spans one of the two consecutive
exons may be short and thus aligns equally well to a large number of genomic positions. Guessing
the true origin can be further hampered by polymorphisms near the splice site. Besides incorrect
spliced alignments this can also lead to missed splice junctions, i.e. exon-exon junctions that are not
supported (covered) by any spliced alignment. Missed junctions can also result from read coverage
fluctuations (biases) or a generally low transcript abundance. While some of the existing methods
do take into account incorrect alignments by applying ad-hoc filters (Scripture [9], CLIIQ [10]) or
by not requiring the isoform selection model to explain all input alignments (MITIE [11]), none
of the existing approaches is able to deal with missed junctions. In this work we present a novel
framework CIDANE (C omprehensive I soform D iscovery and AbuN dance E stimation), which, for
the first time, allows to recover isoforms with uncovered splice junctions that are invisble to all
existing approaches.

On a high level, existing methods for genome-based transcript assembly adhere to the following
scheme: First, a set of candidate isoforms is defined as paths in a graph representing the base or
exon connectivity as indicated by the aligned reads. Then, a small subset of isoforms is selected that
explains the read alignments well. Since only a small number of transcripts is typically expressed in
a given cell type (compared to the number of candidates), the restriction to few isoforms prevents
fitting noise in the data.

Current methods mostly differ in the trade-offs they apply between the complexity of the model
and the tractability of the resulting optimization problem, which largely determines the quality of
the prediction: (i) Since the number of potential isoforms grows exponentially with the number of
exons of the locus, all existing methods restrict either implicitly or explicitly the number of candi-
dates they consider. Methods that do not enumerate isoforms explicitly either employ a simplified
model with transcript-independent coefficients (e.g. MITIE [11], Traph [13]), or separate the in-
trinsically interdependent minimality and accuracy objectives (Cufflinks [2]). (ii) A second crucial
algorithmic design decision is how to balance the two concurrent objectives. In an extreme case, the
two objectives are treated independently (e.g., Cufflinks [2], CLASS [14], CLIIQ [10], Traph [13],

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

Preprocessingmapped reads

exon boundary

TSS/TES

known isoforms

segment cover

splicing graph

Phase I

Model fitting

expressed isoforms
+

abundance estimates

Phase II

on-demand
isoform generation

new isoforms
improving solution

of Phase I

Postprocessing
isoform FPKM

pred 1 12.6

pred 2 15.3

... ...

... ...

... ...

Output

Figure 1: General workflow of CIDANE. Mandatory inputs (mapped RNA-Seq reads, exon bound-
aries) and optional inputs (transcription start (TSS) and end sites (TES), known transcripts)
are used to summarize read alignments into segment covers, which count reads falling into non-
ambiguously spliced segments of genes. From the corresponding splicing graph representation [12],
an initial set of candidate isoforms is derived and a subset of expressed isoforms with estimated
abundances is predicted by a regularized regression method during Phase I. This set forms the input
to the optional Phase II, where improving isoforms are built on-demand by a delayed column gen-
eration approach. New candidates inferred in Phase II are then added to the initial candidate set to
achieve a better fit of the model. After re-estimation of abundances and filtering (post-processing)
a list of isoforms with abundance estimates is returned in gtf format.

IsoInfer [15]). More recent state-of-the-art methods (e.g., MITIE [11], iReckon [16], SLIDE [17],
IsoLasso [18]) have recognize the importance of optimizing both objectives simultaneously and bal-
ance minimality and accuracy heuristically. (iii) Among methods that simultaneously optimize
for both objectives, the measure of minimality has an enormous impact on the tractability of the
resulting problem. The most immediate measure, the number of predicted transcripts (L0 norm),
leads to non-convex objectives and a computationally intractable optimization problem. Methods
like MITIE, Montebello [19], and iReckon, which employs a novel non-convex minimality measure,
therefore resort to a forward stepwise regression strategy, a Monte Carlo simulation, or numerical
optimization combined with random restarts, that generally do not find the best solution in this
model. Methods like SLIDE and IsoLasso thus replace the L0 norm by the convex L1 norm, i.e. the
sum of transcript abundances. (iv) Concerning the measure of accuracy, methods either apply a
least-squares loss function (e.g. IsoLasso, SLIDE, TRAPH) or compute more generally a maximum
likelihood assignment of reads to candidate isoforms. The latter typically requires a preselection of
transcripts (Cufflinks) or lead to the intractability of the resulting problem (iReckon, Montebello).

Here we present CIDANE, a comprehensive tool for genome-based assembly and quantification
of transcripts from RNA-seq experiments. The central idea of CIDANE is to trade the ability to
determine the provably best transcript prediction in the underlying model for a slight approximation
of the loss function. Intuitively, the accuracy and minimality measure (see (iii)-(iv)) fit noisy
observations (read alignments) and thus the impact of their (adjustable) approximation on the
overall prediction performance is expected to be rather limited. CIDANE therefore minimizes a
least-squares loss function based on full-length transcripts and replaces the L0 minimality measure
by the convex L1-norm. The L1 norm in fact selects a subset of transcripts with non-zero expression
levels that is predicted to be expressed in a given cell type. A formulation based on full-length
isoforms enables us to develop a comprehensive linear model (similar to SLIDE [17]) which, among
others, takes into account the dependence of the distribution of read pairs along a given transcript
on the estimated fragment length distribution. In contrast to previous methods, we employ a state-
of-the-art machine learning algorithm to compute the optimal (according to a strict mathematical

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

measure) balance between accuracy and minimality at essentially no additional computational cost.
In a second phase, CIDANE linearizes the least-squares loss function with bounded error, which
allows us to formulate our model based on all possible candidate transcripts without having to
enumerate them explicitly. Following the principle of delayed column generation [20], we only add
isoforms to our model “on demand”, i.e. if they help to strictly improve the overall prediction.

In contrast to Cufflinks, CIDANE implements a design that separates the assembly of full-length
transcripts from the identification of its elementary components, i.e. exons or retained introns.
This separation facilitates the incorporation of novel methods for splice site detection as well as
additional sources of information to yield more accurate transcript assemblies. Not only a growing
annotation of known splice sites, exon junctions, transcription start and end sites or even full-length
isoforms can guide the assembly for most model organisms, but also additional gene boundary data
can aid the interpretation of RNA-seq data. Our experiments demonstrate CIDANE’s superior
performance in all these different scenarios of optionally available levels of annotation as well as
in the interpretation of additionally available gene boundary data. Inferring transcript boundaries
from RNA-seq read coverage drops is hampered by biases in the assay and is thus error-prone.
We show that CIDANE’s integrated analysis of RNA-seq reads and reads obtained from the 5’
ends and polyadenylation sites of mRNA yields considerably more precise predictions of full-length
transcripts than an interpretation of RNA-seq data alone. The general workflow of CIDANE is
illustrated in Figure 1.

2 Results and Discussion

We compared the performance of CIDANE in reconstructing transcripts from RNA-seq data to
existing state-of-the-art methods. We evaluated the prediction quality on the transcript level based
on both simulated and real data. While simulated data capture the characteristics of real data only
to the extent that we understand the specifics of the experimental protocol, the performance analysis
based on real RNA-seq data today still lacks a gold standard RNA-seq library along with annotated
expressed transcripts. Therefore, the results of both types of experiments together provide a more
meaningful picture of the true performance of a transcript assembly method.

Using simulated data, we investigated the impact of transcript abundance on the prediction
quality and considered the scenario where a partial annotation of the (human) transcriptome is
available to guide the reconstruction. We assessed both, the mere absence or presence of a (true)
transcript in the prediction as well as the accuracy of the estimation of their abundances. Generating
perfect mapping files, we make a first attempt to quantify the dependence of current genome-based
transcript assembly tools on the accuracy of the read mapping. We demonstrate the superiority of
CIDANE on real data through an integrated analysis of modENCODE RNA data, including RNA-
seq, cap analysis of gene expression (CAGE), and Poly(A) Site sequencing (PAS-seq), obtained
from heads of 20 day old adult Drosophila melanogaster. CAGE and PAS-seq data facilitate the
mapping of transcription start and end sites, which are very difficult to infer from RNA-seq data
alone.

In both cases, we compared the prediction to a reference transcriptome referred to as ground
truth containing the true transcripts. Where not specified otherwise, we consider a true transcript
as recovered by a predicted transcript if their intron sequences are identical. A true single-exon
transcript is scored as recovered if it overlaps a predicted single-exon transcript. Every predicted
transcript is matched to at most one true transcript and vice versa. If rec, true, and pred denote the
number of recovered, true, and predicted transcripts, respectively, we applied recall (rec

true), precision

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

0.40 0.50 0.60 0.70

0.
40

0.
45

0.
50

0.
55

Precision

R
ec

al
l

f=0.4 f=0.5

f=0.6

●

●

●

●

Cufflinks
IsoLasso
CLASS
SLIDE
CIDANE
Mitie

(a) 75bp dataset

0.3 0.4 0.5 0.6 0.7

0.
40

0.
45

0.
50

0.
55

Precision

R
ec

al
l

f=0.3 f=0.4 f=0.5

f=0.6

●

●

●

●

Cufflinks
IsoLasso
CLASS
SLIDE
CIDANE
Mitie

(b) 100bp dataset

0.70 0.75 0.80 0.85 0.90

0.
45

0.
55

0.
65

Precision

R
ec

al
l

f=0.6

f=0.7

f=0.8

●

●

●

●

Cufflinks
iReckon
CIDANE
Mitie

(c) All transcripts

0.40 0.50 0.60

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Precision

R
ec

al
l

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

●

●

●

●

Cufflinks
iReckon
CIDANE
Mitie

(d) Novel transcripts

Figure 2: Each tool X ∈ {Cufflinks, IsoLasso, CLASS, SLIDE, CIDANE, Mitie} is represented
by a point with coordinates (precision of X, recall of X). F-score isolines are shown in light-gray.
Simulated datasets comprising 40 million 75bp (a) and 100bp read pairs (b), respectively. (c) and
(d): Precision and recall achieved by each tool when provided a partial annotation.

(rec
pred), and F-score, the harmonic mean of recall and precision (2·precision·recall

precision+recall), as a measure of
prediction quality. To not penalize potential novel discoveries, the calculation of precision ignores
predicted transcripts that do not overlap any of the reference transcripts.

2.1 Isoform reconstruction from simulated data

To obtain as realistic data as possible, we used the FluxSimulator [21] to generate RNA-seq datasets
based on ∼78.000 UCSC-known (Feb. (GRCh37/hg19)) human transcripts [22]. After assigning
randomized expression levels to all annotated transcripts following a distribution observed in real
data, the FluxSimulator simulates the individual steps of an RNA-seq experiment, including reverse
transcription, fragmentation, size selection, and sequencing. The version number of each tool along

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

with parameters used in our experiments are specified in Additional file 2, Section 1.

2.1.1 Ab initio transcript assembly

Mimicking the characteristics of real RNA-seq data, we generated four datasets comprising 40 and
80 million read pairs of length 75bp and 100bp, respectively. The fragment lengths observed after gel
electrophoresis are modeled by a normal distribution N(250, 25) for the 75bp reads and N(300, 30)
for the 100bp reads.1 We mapped each set of paired-end reads to the set of known transcripts
using TopHat2 [23]. We defined the ground truth as the set of all annotated (UCSC) transcripts
for which at least one paired-end read has been produced.

We compared the performance of CIDANE to the transcriptome reconstruction quality of Cuf-
flinks [2], CLASS [14], IsoLasso [18], SLIDE [17], and Mitie [11]. We did not include iReckon in this
first benchmark as it requires all known transcription start and end sites, which, as shown by the
experiments in Sections 2.1.2 and 2.2, provides a valuable guidance in transcript reconstruction.
While IsoLasso, SLIDE and CIDANE employ known exon-intron boundaries, Cufflinks and CLASS
do not allow for the incorporation of pre-computed or annotated splice sites. Cufflinks does accept
annotated full-length transcripts [24], a scenario which we will investigate in Section 2.1.2. In this
experiment, we disable CIDANE’s ability to re-combine acceptor and donor sites to form novel
exons. Since exon boundary information could be used to infer the originating strand, in the fol-
lowing we apply strand unspecific evaluation criteria. To eliminate a potential source of inaccuracy
prior to the reconstruction algorithm, we provided IsoLasso and SLIDE with the fragment length
distribution parameters as estimated by Cufflinks.

Figure 2(a) and 2(b) plot for each tool X a point with coordinates (precision of X, recall of X)
and shows F-score isolines. For the dataset comprising 40 million 75bp read pairs (Figure 2(a)),
CIDANE reconstructed transcripts with a recall value of 54.4%, a more than 18% increase over the
recall achieved by Cufflinks (45.9%) and CLASS (43.7%), and a ∼30% improvement over IsoLasso
(41.7%). At the same time, CIDANE predicts transcripts with the highest precision (71.6%), sim-
ilar to Cufflinks (71.4%). IsoLasso (65.4%) seems to suffer from a heuristic determination of the
regularization penalty. SLIDE appears at the lower left corner of the plot with recall 42.5% and
41.9%. Note that Cufflinks and CLASS model the transcript reconstruction problem as a cover-
ing problem minimizing the number of transcripts required to explain the input read alignments
qualitatively. Neglecting quantitative information at this stage, it is not surprising that the two
methods yield rather conservative predictions. Sections 2.1.2 and 2.2 show that the superior per-
formance of CIDANE compared to Cufflinks cannot be attributed (only) to the additional exon
boundary information. When provided with the exact same partial annotation of transcripts (Sec-
tion 2.1.2) or when exon boundaries are inferred from the read data alone (Section 2.1.2), CIDANE
still outperforms all existing methods.

The relative performance of the tools is similar when the same number of 100bp reads is gener-
ated (Figure 2(b)) or when the number of reads is doubled (Additional file 2, Figure 1). Cufflinks,
however, seems to have difficulties assembling the 80 million 100bp read pairs. Recall and preci-
sion achieved by the tools for the four different experimental designs are listed in Additional file 2,
Tables 1-4.

1The parameter files specifying the model of the RNA-seq experiment are available on our website
http://ccb.jhu.edu/software/cidane/.

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

 0

 0.2

 0.4

 0.6

 0.8

 1

Total High Med Low

re
c
a

ll

Cufflinks
IsoLasso
CLASS

SLIDE
Mitie
CIDANE

(a) 75bp dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

Total High Med Low

re
c
a

ll

Cufflinks
IsoLasso
CLASS

SLIDE
Mitie
CIDANE

(b) 100bp dataset

Figure 3: Recall achieved by the different methods in dependence of the expression level of true
transcripts in the two 40 million read pairs datasets. Transcripts with simulated FPKM > 0.1
(Total) are grouped into sets Low, High, and Med which contain the lowest expressed 20% of the
transcripts, the highest expressed 5%, and all remaining transcripts, respectively.

Dependence on transcript abundance Further, we analyzed the influence of transcript abun-
dance on the reconstruction capability of the different methods. We removed all transcripts that
have most of their bases uncovered (< 0.1 FPKM) from the ground truth and split the remaining
isoforms into three groups: Low comprises the 20% fraction of transcripts with lowest simulated
expression, High the highest 5% fraction, and Med contains the remaining 75% of true transcripts.
This subdivision corresponds to cutoffs in relative expression of ∼1.5 × 10−6 and ∼2.5 × 10−4

molecules, respectively. As expected, a higher abundance facilitates the reconstruction of iso-
forms (Figure 3). From the 75bp reads, however, CIDANE and SLIDE recover almost twice as
many lowly expressed isoforms (recall ∼31% and ∼30%, respectively) as Cufflinks (recall ∼16.1%),
whereas CLASS and IsoLasso recover only ∼6% and ∼3%, respectively. We observe similar results
for the 100bp dataset. Not surprisingly, doubling the number of reads facilitates the recovery of
low-expressed transcripts (Additional file 2, Figure 2). The ability of CIDANE to reconstruct, to
some extent, even lowly expressed isoforms is likely due to its two core algorithmic improvements:
First, CIDANE computes the entire regularization path in Phase I (see Section 4.1.2) to find the
right balance between prediction accuracy and sparsity. An objective that is skewed towards spar-
sity typically yields predictions that miss low-expressed transcripts. Second, our approach considers
a wider range of candidate transcripts than existing methods in Phase II (Figure 1). These include
isoforms whose low abundance might cause splice junctions to be uncovered by reads rendering
them invisible to other approaches. We investigate this effect in Section 2.1.4. Note that for
the two 40 million read pairs datasets SLIDE achieves a similar recall on low-expressed isoforms
only at the cost of a significantly lower precision and incurs a several orders of magnitude higher
computational cost than CIDANE (see Section 2.1.5). When analyzing the two 80 million read
pairs datasets, CIDANE reconstructs low-expressed transcripts with a ∼13% - 17% higher recall
compared to SLIDE. All expression-level dependent recall values can be found in Additional file 2,
Tables 1-4.

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Cufflinks IsoLasso CLASS SLIDE Mitie CIDANE

recall mapped
recall perfect

precision mapped
precision perfect

(a) 75bp dataset

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Cufflinks IsoLasso CLASS SLIDE Mitie CIDANE

recall mapped
recall perfect

precision mapped
precision perfect

(b) 100bp dataset

Figure 4: Dependence on mapping accuracy. Recall and precision of each tool is shown when
provided a perfect BAM file (”perfect”) and when provided the mappings computed by TopHat2
(”mapped”). Here we show the results on both 40 million read pairs datasets, similar results can
be observed for the 80 million read pairs datasets (Additional file 2, Figure 3).

Dependence on mapping accuracy In contrast to de novo assembly approaches, genome-
based methods depend on the accuracy of the preceding mapping of reads to a reference genome.
In this Section we make a first attempt to quantify this dependence. From reads simulated by
the FluxSimulator [21], we generated a perfect BAM file that mapped each read to its true origin.
In contrast, a BAM file output by TopHat2 or any other RNA-seq read aligner will generally
contain incorrect mappings of reads caused by sequencing errors, polymorphisms, splicing, and
read ambiguity due to repeats. We ran Cufflinks, IsoLasso, CLASS, Mitie, and CIDANE on the
perfect BAM files of all four simulated data sets and compared recall and precision of the transcript
assembly to the performance of the tools when provided with the BAM files generated by TopHat2
instead (Figure 4 and Additional file 2, Figure 3 and Tables 1-4). The difference in prediction
accuracy will be a rather conservative estimate on the mapping dependency, since we expect a
larger fraction of reads to be mapped incorrectly in real data than in idealized simulated data
that neglect sequencing errors and certain types of biases. Nevertheless, when assembling the 40
million 75bp read pairs we observe a 1.1 − 2.4 and 2.0 − 11.7 percentage point improvement in
recall and precision, respectively, when the true origin of all reads is known to the assembly tools
(Figure 4(a)). Generally, assembly tools seem to benefit mostly in terms of precision rather than
recall, independent of the experimental design. IsoLasso’s prediction precision seems to depend
the most from perfectly aligned reads.

2.1.2 Transcript assembly with partial annotation

We investigated the ability of Cufflinks, using the RABT approach presented in [24], iReckon,
Mitie, and CIDANE to exploit an existing, but incomplete annotation of transcripts. No other
assembly tool allowed to provide annotated transcripts. Such a partial annotation, available for
the human transcriptome and many other studied organisms, can provide valuable guidance for the
reconstruction of known isoforms, but algorithms must properly balance the preferential prediction
of known transcripts and the detection of novel, unknown isoforms.

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

●

●

●●

●

●

●

●
●

●

●●
●
● ●

●●●

● ●

●
●

●
●●

●
●●

●

●

●

●

●

●

●

●
●●
●
●

●

●●
●

●●● ●●
●

●

●

●

●

●

●●●●

●

●

●
●

●

● ●●

●

●●
●●

● ●

●

●●

●

●

●
●

●
●●

●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●●
●

●

●

●

●

●
●
●

●
●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

● ●●

●
●

●

●●

●

●

●

● ●
●
●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

● ●
●

●
●●●

●

●
●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

● ●

●

●●

●
●

●

●

●●

●

●
●●

●

●
●●●

●●

●●
●

●

●

●

●

●

●

●

●
●●

●●

●

●● ●
●

●

●
●

●
●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●
●●●●●
● ●
●●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●●

●

●●

●

●
●●●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●●
●

●

●

●●● ●● ●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●
●●

● ●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●
●

●

●●●●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●
●
●

●
●

●●●●
●●

●●

●
●

●
●

●

●
●

●

●

●●
●● ●●

● ●

●

●

●
●●

●●●
●

●

●●●

●

●

● ●

●●●

●

●●●
●●●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●●●
●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●●

●
●●

●

●
●
●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●●

●

●
●

●

●
●

●●
●

●

●

●●●●●

●

●

●

●
●

●●

●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●●
●●● ●

●
●

●
●●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

● ●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●●

●
●

●

●●

●
●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●●●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●
● ●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●
●

●
●●●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●●●

●●
●●

●

●
●●

●

●

● ●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●●●

●

●
●

●

●
●

●
●●

●●
●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●
●●

●●

●

●● ●●
●

●

●●
●●●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

● ●

●

●
●

●●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●●●
●

●

●

●

● ●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●
●

●●●

●

●● ●

●

● ●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●
● ●●

●●

●

●

●

●

●

● ●
●

●

●●●●
●●

●

●●

●

●
●

●

●
●●

●
●

●

●●
●

●●

●

●
●●● ●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●
●

●
● ●

●

●

●

●●

●●

●
●● ●●
●

●
●

●

●

●

● ●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●
●●

● ●

●

●

●●

●
●

●

●

●
●●

●
●●

● ●

●

●
●

●

●●
●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●●
● ●

●

●
●

●
●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●
●

●●
●
●●
●

●
●

●
●

●
●

●

●

●
● ●●

●

●

●
●

●

●

●

●●

●

●

●

●
● ●

●●

●●

●
●

●●
●●●

●
●

●

●
●

●
●●
●

●
●

●●
●

●

●
●
● ●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●
●

●●●
●●●

●

●
●

●

●
●●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●
●

●
●

●
●●●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●
●
●

●
●

●
●

●

●●●
●●

●

●

●

●●●
●

●

●

● ●
●●

●
●

●

●

●
●

●

●●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●●●●
●●●

●

●

● ●

●

●
●●

● ●

●

●
●●

●

●
●

●

●
●
●●

●
●
●

●

●●

●

●

●●
●●●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●
● ● ●

●●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●
●● ●

●●
●
● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●
● ●
●

●

●

● ●
●

●

●●

●

●●●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●
●
●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

● ●●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●●●

●
●

●
●

●

●
●●

●
●

●

●

●
●
●

●

●

●

●

●

●
●●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●● ●

●●

●

●
●

●

●●
●

●●●●
●

●

●

●

●
●

●● ●
●

●

●
●

●●

●●●
● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●● ●● ●

●

● ●

●

●

●

●

●

●●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●
●

●

●

●

●
●

●

●

● ●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●● ●
●●

●

●

●

●● ●
●●

●

●

●●

●
● ●●

●

●

●●
●

●
●

●
●

●

●
●

●
●
●

●●
●

●

●
● ●●

●

●

●

●●●●
●

● ●

●

●

●

●
●

●

●●

●●

●●●
●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●

●

●●●●
●●●

●

●●
●

●

●●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●● ●

●

●

●●
●

● ●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●●
●

●

●●

●

●
●
●

●

● ●
●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●●

●

● ●

●
●

●

●

●

●● ● ●

●

●
●●●

●●
●
● ●

●

● ●●

●●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●● ●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

● ●

●
●

●
●

●

●
●

●●
●

●

●
●

●

●
●●

●
●●●

●
●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●● ● ●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●●

●
● ●

●

●
●

●● ●●●
●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●●●

●●

●

●

●● ●●
●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●●

●

●

●

●

●

●
●

● ●

●

●●
●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●●

●

●
●●

●

●
●

●

●

●●

●

●

●●●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●
●

●●

● ●

●

●●
●●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●
●●

●

●●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

● ●

●

●

●●

●●

●
●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●●
●

●●●●
●

●

●
●

●

●
● ●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●
●

●

●

●
●

●

●
●●

●

●●●●●

●

●
●

●

●

●●
●

●

●
●

●

● ●

●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●
●
●

●●

●

●●

●

●●●●
●

●●

●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●●●

●

●
●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●●

●
●

●

●●

●

●●
●

●

●

●

●

●●
●●●

●

●

●●
●

●●●●●

●
●

●●

●
●

●

● ●

●
●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●

●● ●

●

●●

●

●
●

●●

●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●

●●
●●●

●

●

●

●
● ●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●
●

● ●●●
●
●

●

●

●

●

●

●●
●●

●
●

● ●●●●●
●●

●●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●● ●
●
●

●

●●
●
●
●

●●

●

●
●

●

●

●

●●
●

●
●
● ●

●●
●

●

●

●

●
●

●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●●●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

● ●● ●
●
●

●●

●

●

●

●
●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●● ●

●

●●

●

●

●

●●

●●
●●

●

●

●●●

●

●

●

●●●

●

● ●
●

●
●

●

●

● ●
●
●

●

●

●
●●

●●

●

●

●

●
●
●

●●
●●●●

●●

●

●
●

●
●

●
●
●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●●

●●

●
●● ●

●
●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●●

●

●
● ●

●

●

●

●●●
●●

●
●

●

●●

●

●
●●●

●●

●

●

●● ●
●

●

●

●

●

●
●●
● ●

●

●●

●

●●

●

●
●

●

●

● ●

●
●

●

●

● ●●
●

●
● ●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●● ●

●
● ●
●

●

●
●

●

●
●

●

●

●

●

●

●●●●

●

●

● ●●

●

●
●

●

●
●

●

● ●
●

●

●●● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●●●●

●

●

●

●

●

●

●●
●

●●
●
●●●●●●

●

●
●

● ●
●

●●

●

●

●

●

●

● ●●●

● ●

●

●

●

●

●

●

●

●●●●
●●

●●●

●

●
●

●

●

●
●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

● ●
●

●●

●

●
●

●●
●

●

●●
●
●

●

●

●

●●●

●

●
●

●
●

●
●●
●

●
●
●

●
●

●

●
●●●

●

●
●

●

●
●● ●

●
●●

●

●

●●●
●●●●●

●
●●

●

●

●

●

●
●
●

●

●
●● ●
●●

●

●
●

●●
●
●

●

●

●●
●●

●●
●●

●
●

●

●
●

●●
●

●

●

●●● ●● ●
●

●
●●

●

●

●●●

●

●●

●

●
●●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●● ●
●

●
●

●
●

●●

●
●●

●
●

●●

●
●

●● ●

●
●

●

●●●

●

●●
●●

●

●

●

●

●

●●●
● ●

●●

●
● ●

●
●

●

●

●

●●

●

●

●
● ●

●

●●● ●
●●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●● ●
●

●

●

●●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●●
● ●●

●●
●●

●

●●

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

predicted expression

tr
ue

 e
xp

re
ss

io
n

(a) CIDANE

●

●

● ●

●

●

●

●
●

●

●●●
● ●

●●●

●●

●
●

●
●●

●
●●

●

●

●

●

●

●

●

●
●●

●
●

●

●●
●

● ●● ●●
●

●

●

●

●

●

●●●●

●

●

●
●

●

● ●●

●

●●
● ●

●●

●

●●

●

●

●
●

●
●●

●●

●●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

● ●●

●
●

●

● ●

●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●●
●

●
●●●

●

●
● ●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

● ●

●

● ●

●
●

●

●

●●

●

●
●●

●

●
●●●

●●

●●
●

●

●

●

●

●

●

●

●
●●

●●

●

●● ●
●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●
● ●●●●
● ●
● ●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●● ●

●

● ●

●

●
●● ●

●

●

●

●
●

●●

●

●
●

●

●

●

●
● ●

●

●

●

●● ●●●●●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●●
●●

● ●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●●●●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●● ●●
●●

●●

●
●

●
●

●

●
●

●

●

●●
● ● ●●

●●

●

●

●
●●

●●●
●

●

●●●

●

●

● ●

●● ●

●

●●●
●● ●● ●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●●
●

●
●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●●

●

●
●

● ●

●
●●

●

●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

● ●

●

●
●

●

●
●

●●
●

●

●

●●●●●

●

●

●

●
●

●●

●

●

●

●
● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●●●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●●
●●● ●

●
●

●
●●

●

●

●

●

●
●

●

●
●●●

●
●

●

●

●

●

●

●

●●

●

● ●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●●
●

●

●

●●

●
●●●●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

● ●●●

●

● ●

●

●

●

●

●●
●
●

●

●

●

●

●
● ●

●

●
●●
●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●
●

●
●● ●

●
●

●

●

●

●

●●

●

●

●
● ●

●

●

●
●●●

●●
● ●

●

●
●●

●

●

● ●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●●●

●

●
●
●

●
●

●
●●

● ●
●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●
●●

●●

●

● ●●●
●
●

●●
●● ●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●
●

●●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

● ●●
●

●

●

●

● ●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●
●

●●
●

●

● ●●

●

●●

●

●

●

●

●

●
●

●●
●●

●

●

●

●●
●●●

●●

●

●

●

●

●

● ●
●

●

●●● ●
●●

●

● ●

●

●
●
●

●
● ●

●
●

●

●●
●

●●

●

●
●● ●●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●
●

●
●●

●

●

●

●●

● ●

●
●● ●●

●

●
●

●

●

●

● ●

●

● ●

●

●
●

●

●
●
●

●

●●

●

●
● ●

● ●

●

●

●●

●
●

●

●

●
●●

●
●●

●●

●

●
●

●

● ●
●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●●
● ●

●

●
●

●
●

●

●

●

●

●

●
● ●●

●

●●

●

●

●

●

●

●
●

●●
●
●●

●

●
●

●
●

●
●

●

●
● ●●

●

●

●
●

●

●

●

●●

●

●

●

●
● ●

●●

●●

●
●

●●
●● ●

●
●

●

●
●

●
●●
●

●
●

● ●
●

●

●
●
● ●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●
● ●●

●● ●

●

●
●

●

●
●●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●
●

●
●

●
●●●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●●●
●●

●

●

●

● ● ● ●
●

●

●●
● ●

●
●

●

●

●
●
●

● ●

●●

●

●
● ●

●

●

●
●

●

●

●

●

●

●●●●
●● ●

●

●

● ●

●

●
●●

● ●

●

●
●●

●

●
●

●

●
●
● ●

●
●

●

●

●●

●

●

●●
●●●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

● ●●
● ●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●
● ● ●

● ●
●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●
●
● ●

●

●
●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●
●●
●

●

●

● ●
●

●

●●

●

●●●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
● ●●

●
●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●●

●●

●

●
●

●

●●
●

●●● ●
●

●

●

●

●
●
●●●

●

●

●
●

●●

●●●
● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●● ●● ●

●

●●

●

●

●

●

●

● ●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●
●

●

●

●

●
●

●

●

● ●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●● ●
● ●

●

●

●

● ●●
●●

●

●

●●

●
● ●●

●

●

● ●
●

●
●

●
●

●

●
●

●
●

●
●●

●

●

●
● ●●
●

●

●

● ●●●
●

● ●

●

●

●

●
●

●

●●

●●

● ●●
●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●
●

●

● ●●●
●●●

●

●●
●

●

●●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●● ●

●

●●
●

● ●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●●
●

●

●●

●

●
●

●
●

● ●
●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●●

●

●●

●
●

●

●

●

● ●● ●

●

●
●●●

●●
●

●●
●

● ●●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●● ●●●

●

●

●

●

●

●

●●

●

●

●

●
●●
●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●
●
●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

● ●

●
●

●
●

●

●
●

●●
●
●

●
●

●

●
●●

●
●●●

●
●●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●●

●
● ●
●

●
●

●●●●●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●●

●●

●

●

● ●●●
●

●
●●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●
●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●
●

●

●

● ●
● ●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●●

●

●
● ●

●

●
●

●

●

● ●

●

●

● ●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●
●

● ●

● ●

●

● ●
● ●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●
●

● ●●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●●

●●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●●●
●

●●●●
●

●

●
●

●

●
● ●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●●

●
●

●

●
●●

●

●● ●●●

●

●
●

●

●

●●
●

●

●
●
●

●●

●

●

●

●

●

● ●●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
● ●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●
●

●

●●

●

● ●

●

●●● ●
●

● ●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●● ●

●

●
● ●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●●

●
●

●

●●

●

●●
●

●

●

●

●

● ●
●● ●

●

●

●●
●

● ●●●
●

●
●

● ●

●
●

●

●●

●
●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●

●●●

●

●●

●

●
●

● ●

●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●

●●
● ●●

●

●

●

●
●●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●
●

●●
●●

●
●

●

●

●

●

●

●●
●●

●
●

● ●● ● ●●
●●

●●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●●
●

●
●

●●

●

●
●

●

●

●

●●
●

●
●

● ●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●● ●●

●

● ●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

● ●● ●
●
●

●●

●

●

●

●
●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
● ●●

●

●●

●

●

●

●●

●●
●●

●

●

●●●

●

●

●

●● ●

●

● ●
●

●
●

●

●

● ●
●
●

●

●

●
●●

●●

●

●

●

●
●

●
● ●

●● ●●

●●

●

●
●

●
●

●
●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●●

●●

●
●● ●

●
●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●●

●

●
● ●
●

●

●

●● ●
●●

●
●

●

● ●

●

●
●●●

● ●

●

●

● ●●
●

●

●

●

●

●
●●
● ●

●

●●

●

●●

●

●
●
●

●

● ●

●
●

●

●

●● ●
●

●
●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
● ●●

●
●●
●

●

●
●

●

●
●

●

●

●

●

●

● ● ●●

●

●

●●●

●

●
●

●

●
●

●

● ●
●

●

●●● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●●● ●

●

●

●

●

●

●

●●
●

●●
●

●●●●●●
●

●
●

● ●
●
● ●

●

●

●

●

●

●●●●

● ●

●

●

●

●

●

●

●

● ●●
●

●●
●●●

●

●
●
●

●

●
●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

● ●
●

● ●

●

●
●

●●
●

●

●●
●

●
●

●

●

●●●

●

●
●

●
●

●
●●

●
●

●
●

●
●

●

●
●● ●

●

●
●

●

●
●● ●

●
●●

●

●

●● ●
●●●●●
●

●●

●

●

●

●

●
●
●

●

●
●● ●

●●

●

●
●

●●
●
●

●

●

●●
●●
● ●

●●
●
●

●

●
●

●●
●

●

●

●● ●●● ●
●

●
●●●

●

●

●

●●●

●

●●

●

●
● ●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●●●
●

●
●

●
●
●●

●
●●

●
●

●●

●
●
●●●

●
●

●

●●●

●

●●
● ●
●

●

●

●

●

●●●
● ●

● ●

●
● ●

●
●

●

●

●

●●

●

●

●
● ●

●

●●●●
●●

●

●

●●
●

●

●

●

● ●

●
●

●

●

●

●●●●

●

●

●●

●
●

●
●

●

●●
●

●

●

●

●

●

●

● ●

●

●●
●●

●
●●

●●

●

●●

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

predicted expression

tr
ue

 e
xp

re
ss

io
n

(b) Cufflinks

●

●

●●

●

●

●

●
●

●

●●
●
●● ●●●

●●

●
●

●
●●

●
●●

●

●

●

●

●

●

●

●
●●
●

●

●

●●
●
● ●●●●
●

●

●

●

●

●

●●●●

●

●

●
●

●

●●●

●

●●
● ●

●●

●

●●

●

●

●
●

●
●●

●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●●
●

●

●

●

●

●
●
●

●
●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

● ●●

●
●

●

●●

●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●
●

●
●●●

●

●
●●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

● ●

●

●●

●
●

●

●

●●

●

●
● ●

●

●
● ●●

●●

●●
●

●

●

●

●

●

●

●

●
● ●
●●

●

●● ●
●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●
●●●●●

● ●
● ●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●
●

●●●

●

●●

●

●
● ●●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
● ●

●

●

●

●●●●● ●●

●

●

●

●●
●

●

●

●

●

●

●●

●

● ●
●●

●●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●●●●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●● ●●
●●

●●

●
●

●
●

●

●
●

●

●

●●
●●●●

●●

●

●

●
●●

●●●
●

●

●●●

●

●

● ●

●●●

●

●●● ●●●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

● ●

●

●
●
● ●

●
● ●

●

●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●●

●

●
●

●

●
●

●●
●

●

●

●●●●●

●

●

●

●
●

●●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●●
●

●
●

●

●

●

●

●

●
●●

●
●

●

●
●●●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●●

●

●●
● ●● ●

●
●

●
●●

●

●

●

●

●
●

●

●
●● ●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●●

●
●

●

●●

●
●●● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

● ●●●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●
●●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●
●

●
●●●

●
●

●

●

●

●

●●

●

●

●
● ●

●

●

●
●●●

●●
●●

●

●
● ●

●

●

●●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●● ●●

●

●
●
●

●
●

●
●●
●●

●
●

●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●
●●

●●

●

●● ●●
●

●

● ●
● ●●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●●

●

●
●

●●
●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●●●
●
●

●

●

● ●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●
●

●●●

●

●●●

●

●●

●

●

●

●

●

●
●

●●
●●

●

●

●

●●
● ●●

●●

●

●

●

●

●

● ●
●

●

●●
●●

●●

●

●●

●

●
●
●

●
●●

●
●

●

● ●
●
● ●

●

●
●●●●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

● ●

●

●

●
●

●
●●

●

●

●

●●

● ●

●
●● ●●

●

●
●

●

●

●

●●

●

●

● ●

●

●
●

●

●
●
●

●

● ●

●

●
●●

●●

●

●

●●

●
●

●

●

●
●●

●
●●

●●

●

●
●

●

● ●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●
● ●

●

●
●

●
●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●
●

●●
●

●●
●

●
●

●
●

●
●

●

●
●●●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

● ●

●●

●
●

●●
●● ●

●
●

●

●
●

●
● ●

●

●
●

●●
●

●

●
●
●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●●●
●● ●

●

●
●

●

●
●●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ●
●

●
●

●
●●●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●
●

●
●

●
●

●

●●●
●●

●

●

●

●●●●
●

●

●●
● ●

●
●

●

●

●
●

●

●●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●●●●
● ●●
●

●

●●

●

●
●●

●●

●

●
●●

●

●
●

●

●
●
●●

●
●

●

●

●●

●

●

●●
●●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●● ●
●●

●

●
●
●

●
●

●

●
●

●

●

●●
●

●

●
●● ●

●●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●●
●

●

●●

●

●●●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●●●

●
●

●
●

●

●
●●

●
●

●

●

●
●
●

●

●

●

●

●

●
● ●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●● ●

● ●

●

●
●

●

●●
●

● ●●●
●

●

●

●

●
●
●● ●

●

●

●
●

● ●

● ●●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●● ●●●

●

●●

●

●

●

●

●

● ●
●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●● ●
●

●

●

●

●
●

●

●

● ●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●●●
●●

●

●

●

●● ●
●●

●

●

●●

●
●●●

●

●

●●
●

●
●
●
●

●

●
●

●
●

●
●●

●

●

●
● ●●
●

●

●

●● ●●
●

●●

●

●

●

●
●

●

●●

●●

●●●
●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●
●

●

●●●●
●●●

●

●●
●

●

●●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●●●

●

●●
●

●●

●

●

●
●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●●
●

●

●●

●

●
●
●

●

● ●
●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
● ●

●

●●

●
●

●

●

●

●● ●●

●

●
●●●

●●
●

●●
●

● ●●

● ●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●●

●

●

●

●
●

●
●

●

●

●
●
● ●● ●●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

● ●●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●
●

●●

●
●

●
●

●

●
●

●●
●

●

●
●

●

●
● ●

●
●●●

●
●●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●●

●
● ●

●

●
●

●●●●●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●●●

●●

●

●

●●● ●
●

●
●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●
●

●●

●

● ●
● ●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●●

●

●
●●

●

●
●

●

●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●

●
●

●

●
●

●●

●●

●

●●
● ●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●
●

●●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●●

●

●

●●

●●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●●●
●

●●●●●
●

●
●

●

●
●●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●
●●

●

●●●●●

●

●
●

●

●

●●
●

●

●
●

●

● ●

●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●
●
●

●●

●

●●

●

●●●●
●

●●

●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●

● ●●

●

●
●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●●

●
●

●

●●

●

●●
●

●

●

●

●

●●
●●●

●

●

●●
●

●●● ●●

●
●

● ●

●
●

●

●●

●
●

●
●

●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●
●

● ●●

●

●●

●

●
●

● ●

●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●

●●
●● ●

●

●

●

●
● ●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●
●

●●● ●
●

●
●

●

●

●

●

●●
●●

●
●

● ●● ●● ●
●●

●●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●
●

●

● ●●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●
●

●
● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●●
●

●
●

●●

●

●
●

●

●

●

●●
●
●
●

● ●
●●

●

●

●

●

●
●

●

●

●

●

●
●
● ● ●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●●
●

●

● ●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

● ●●●
●

●

●●

●

●

●

●
●

● ●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●● ●
●

●●

●

●

●

●●

●●
● ●●

●

● ●●

●

●

●

●● ●

●

●●
●

●
●

●

●

●●
●

●

●

●

●
●●

●●

●

●

●

●
●

●
●●

●● ● ●

●●

●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●●

●
●●●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●●

●

●
● ●

●

●

●

●●●
● ●

●
●

●

● ●

●

●
●●●

●●

●

●

●●●
●

●

●

●

●

●
●●
● ●

●

●●

●

●●

●

●
●

●

●

●●

●
●

●

●

● ●●
●

●
●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●●●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●●● ●

●

●

● ●●

●

●
●

●

●
●

●

●●
●

●

● ●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●●
●
●●

●
●●●●●●

●

●
●

●●
●

●●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●●
●
●●
● ●●

●

●
●

●

●

●
●

●●

●

●

●

●

●● ●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●●
●

● ●

●

●
●

●●
●

●

●●
●

●
●

●

●

●● ●

●

●
●

●
●

●
●●

●
●
●

●

●
●

●

●
●●●

●

●
●

●

●
●●●

●
●●

●

●

●●●
●●●●●

●
●●

●

●

●

●

●
●

●

●

●
●●●

●●

●

●
●

●●
●
●

●

●

●●
● ●
●●
● ●

●
●

●

●
●

●●
●

●

●

●● ●●● ●
●

●
●●●

●

●

●

●●●

●

●●

●

●
● ●

●

● ●●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●●●
●

●
●

●
●

●●

●
● ●

●
●

●●

●
●

●●●

●
●

●

●●●

●

●●
●●

●

●

●

●

●

●●●
●●

●●

●
●●
●

●

●

●

●

●●

●

●

●
●●

●

●●●●
●●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●● ●
●

●

●

●●

●
●

●
●●●
●

●

●

●

●

●

●

●●

●

●●
● ●●
●●
●●

●

● ●

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

predicted expression

tr
ue

 e
xp

re
ss

io
n

(c) iReckon

●

●

● ●

●

●

●

●
●

●

●●●
● ●

●● ●

●●

●
●

●
● ●
●
● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●●
●
●●● ●●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●●●

●

●●
●●

● ●

●

●●

●

●

●
●

●
● ●

● ●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●●
●

●
●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●●
●

●
●●●

●

●
●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●●

●
●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

● ●

●

●●

●
●

●

●

● ●

●

●
●●

●

●
●●●

●●

●●
●

●

●

●

●

●

●

●

●
●●

●●

●

●● ●
●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●
●●●●●

●●
● ●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

● ●

●
●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●● ●

●

●●

●

●
●● ●

●

●

●

●
●

●●

●

●
●

●

●

●

●
● ●

●

●

●

●●●●●● ●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●
● ●
●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●●●●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

● ●● ●
● ●

● ●

●
●
●
●

●

●
●

●

●

●●
●● ●●

●●

●

●

●
●●

● ●●
●

●

●●●

●

●

●●

● ●●

●

●●●●● ●●●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●
●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●

●
● ●

●

●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

● ●

●

●
●

●

●
●

● ●
●

●

●

● ●●●●

●

●

●

●
●

● ●

●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

● ●

●

●●
●●● ●

●
●

●
●●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●●

●
●

●

●●

●
●●●●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

● ●●●

●

●●

●

●

●

●

● ●
●
●

●

●

●

●

●
● ●

●

●
● ●
●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●
●
●

●
●

●
● ● ●
●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●
●●●

●●
● ●

●

●
●●

●

●

● ●
●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
● ●●●

●

●
●

●

●
●

●
● ●
●●
●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●
● ●

●●

●

● ●●●
●
●

●●
●● ●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●
●

● ●
●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●
●

●●
●

●

● ●●

●

●●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●
● ●●

●●

●

●

●

●

●

●●
●

●

● ●
●●

●●

●

●●

●

●
●

●

●
● ●

●
●

●

●●
●

● ●

●

●
●●●●

●

●

● ●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●
●

●
● ●

●

●

●

●●

●●

●
●● ●●

●

●
●

●

●

●

● ●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●
● ●

● ●

●

●

●●

●
●
●

●

●
●●

●
● ●

● ●

●

●
●

●

● ●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●●
●●

●

●
●

●
●

●

●

●

●

●

●
● ●●

●

●●

●

●

●

●

●

●
●

●●
●

●●
●

●
●

●
●

●
●

●

●

●
●●●

●

●

●
●

●

●

●

●●

●

●

●

●
● ●

●●

●●

●
●

●●
● ● ●

●
●

●

●
●

●
●●

●

●
●

●●
●

●

●
●
●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

● ●●
● ●●

●

●
●

●

●
●●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●
●
●

●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●●
●

●
●

●
● ●●

●

● ●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●
●

●
●

●
●

●

●●●
●●

●

●

●

● ● ●●
●

●

●●
●●

●
●

●

●

●
●
●

●●

●●

●

●
● ●

●

●

●
●

●

●

●

●

●

● ●●●
● ●●
●

●

● ●

●

●
● ●

● ●

●

●
●●

●

●
●

●

●
●

●●

●
●
●

●

●●

●

●

●●
●●●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●
●● ●

● ●

●

●
●

●
●
●

●

●
●

●

●

●●
●

●

●
●●●

●●
●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●●

●

● ●●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●●●

●
●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●● ●

● ●

●

●
●

●

●●
●

● ●● ●
●

●

●

●

●
●

● ●●
●

●

●
●

●●

● ●●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●● ● ●● ●

●

●●

●

●

●

●

●

●●
●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●
●

●

●

●

●
●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

● ●
● ●

●

●

●

● ● ●
●●

●

●

● ●

●
● ●●

●

●

● ●
●

●
●
●
●

●

●
●

●
●

●
●●

●

●

●
● ●●

●

●

●

● ●●●
●

● ●

●

●

●

●
●

●

●●

●●

● ●●
●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●
●

●

● ●●●
● ●●

●

●● ●

●

●●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

● ●●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●●
●

●

●●

●

●
●

●
●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●●

●

● ●

●
●

●

●

●

● ●● ●

●

●
●●●

● ●
●

● ●
●

● ●●

● ●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●

●
●
●●●●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

● ●

●
●

●
●

●

●
●

● ●
●

●

●
●

●

●
●●

●
●●●

●
●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●●

●
● ●

●

●
●

●●●●●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●●

●●

●

●

● ●● ●
●

●
●●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●
●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●
●

●

●

●●
●●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●● ●

●

●

●

●

●

●
●

●●

●

●●
●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●● ●

●

●
●●

●

●
●

●

●

● ●

●

●

●●●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●
●

●●

● ●

●

● ●
●●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●
●

●●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

● ●

● ●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●●●
●
●●● ●●

●

●
●

●

●
●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●
●

●

●

●
●

●

●
●●

●

●●● ●●

●

●
●

●

●

●●
●

●

●
●

●

● ●

●

●

●

●

●

●●●●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
● ●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●
●

●

●●

●

●●

●

●●●●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●●●

●

●
●●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

● ●

●
●

●

●●

●

●●
●

●

●

●

●

● ●
●● ●

●

●

●●
●

● ●●●●

●
●

●●

●
●
●

●●

●
●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●

●●●

●

●●

●

●
●

●●

●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●

●●
●●●

●

●

●

●
●●

●

●
●●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●

●

●

●
●

●●
●●

●
●
●

●

●

●

●

● ●
● ●

●
●

● ●●● ●●
● ●

●●

●

●

●
●

●

●
●

●
● ●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●
●
●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●●
●
●

●

●●

●

●
●

●

●

●

●●
●

●
●

●●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
● ●●●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●●●●
●

●

●●

●

●

●

●
●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●● ●
●

● ●

●

●

●

● ●

●●
●●●

●

●●●

●

●

●

●●●

●

●●
●

●
●

●

●

●●
●

●

●

●

●
●●

●●

●

●

●

●
●

●
● ●

●●●●

●●

●

●
●

●
●

●
●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●●

●●

●
●● ●
●
●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●● ●

●

●
●●●

●

●

●●●
●●

●
●

●

● ●

●

●
●●●

●●

●

●

●●●
●

●

●

●

●

●
●●
●●

●

●●

●

●●

●

●
●

●

●

●●

●
●

●

●

●● ●
●

●
● ●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●● ●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●●●●

●

●

● ●●

●

●
●

●

●
●

●

●●
●

●

●●● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●●● ●

●

●

●

●

●

●

●●
●

● ●
●

● ●●● ●●
●

●
●

●●
●

●●

●

●

●

●

●

● ●●●

● ●

●

●

●

●

●

●

●

●● ●●
●●

● ●●

●

●
●
●

●

●
●

●●

●

●

●

●

● ●●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

● ●
●

●●

●

●
●

●●
●

●

●●
●

●
●

●

●

●● ●

●

●
●

●
●

●
●●
●
●
●

●

●
●

●

●
●●●

●

●
●

●

●
●●●

●
●●

●

●

●●●
●●● ●●

●
●●

●

●

●

●

●
●

●

●

●
●● ●

●●

●

●
●

●●
●
●

●

●

● ●
●●

● ●
●●

●
●

●

●
●

●●
●

●

●

●● ●●●●
●

●
●● ●

●

●

●

●●●

●

●●

●

●
● ●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●●●
●

●
●

●
●

●●

●
●●

●
●

●●

●
●

●● ●

●
●

●

● ●●

●

●●
●●
●

●

●

●

●

●●●
● ●

● ●

●
●●

●
●

●

●

●

●●

●

●

●
●●

●

●●●●
●●

●

●

● ●
●

●

●

●

●●

●
●

●

●

●

●●●●

●

●

● ●

●
●

●
●

●

●●
●

●

●

●

●

●

●

● ●

●

● ●
●●●
●●

●●

●

●●

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

predicted expression

tr
ue

 e
xp

re
ss

io
n

(d) Mitie

Figure 5: Correlation between simulated and predicted transcript abundance for FPKM values
≤ 500 on set Annot for (a) CIDANE, (b) Cufflinks, (c) iReckon, and (d) Mitie. Additional file 2,
Figure 4 shows the full range of FPKM values, as well as log-scale plot after removing transcripts
with predicted FPKM value 0.

Our algorithmic scheme allows the incorporation of annotated transcription start and end sites
during the isoform inference (see Sections 4.1.1 and 4.2.3). CIDANE accounts for a higher confidence
in annotated versus novel transcripts by adjusted model parameters (see Sections 4.1.2 and 4.3).

From 1440 genes on chromosomes 1 and 2 for which between 2 and 8 isoforms have been
annotated we randomly removed at least one and at most 50% of the known isoforms and provided
each tool with the resulting ∼65% (Annot) of the originally ∼6300 known transcripts. The hidden
∼35% of annotated transcripts (New) constitutes the reference set (ground truth) in evaluating
the ability of each method to infer novel isoforms in the presence of an incomplete annotation. As
before, we used the FluxSimulator to generate 4 million read pairs (75bp), which were mapped to
the ∼6300 transcripts by TopHat2 [23]. Experiments with 2 million and 8 million simulated read
pairs led to similar performance results as shown below for 4 million read pairs.

Overall (Figure 2(c)), CIDANE predicted transcripts with highest recall and precision. CIDANE
achieved a recall of ∼71.4%, which is ∼29% higher than the one of Cufflinks (∼55.3%), combined
with a precision of ∼88%, which is ∼29% higher than the precision of iReckon (∼68%). Concerning
the ability to correctly predict novel isoforms (Figure 2(d)), CIDANE recovered significantly more
unknown transcripts than Cufflinks (recall ∼51.8% versus ∼34.1%). iReckon was able to reconstruct
slightly more novel isoforms than CIDANE (∼55.8% versus ∼51.8%), but only at the cost of a
lower recall with respect to annotated transcripts (Annot) (74% versus 82%) and a considerably
lower precision (∼39.4% versus ∼65.7%). The precision in this case corresponds to the fraction of
predicted novel isoforms matching an isoform in set New.

2.1.3 Abundance estimation accuracy

In addition to evaluating the absence and presence of true transcripts in the prediction, we compared
the accuracy of the abundance estimation of CIDANE to existing methods. We restrict this analysis
to set Annot (see previous Section) to reduce the impact of isoform inference performance on the
measure of abundance estimation quality. For every transcript in set Annot we compared the
predicted FPKM (Fragments Per Kilobase of transcript per Million fragments sequenced) value to
the true FPKM value calculated from the number of simulated paired-end reads. True transcripts

9

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative error threshold

C
or

re
ct

ly
 e

st
im

at
ed

 is
of

or
m

s

●

● ●

●

Cufflinks
iReckon
CIDANE
Mitie

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error threshold

R
ec

al
l b

el
ow

 th
re

sh
ol

d

●

● ●

●

Cufflinks
iReckon
CIDANE
Mitie

Figure 6: Relative error of predicted transcript abundances in FPKM. Left: Fraction of transcripts
with non-zero predicted abundance implying a relative abundance error below a certain threshold.
Right: Recall when scoring a transcript only if the relative abundance error is below a certain
threshold.

that were not predicted by a method were considered as reconstructed with zero abundance. To
reduce side effects on the abundance estimation due to very short transcripts, we limited the analysis
to transcripts of length at least 500bp (∼98, 5%).

We observed similar Pearson correlation coefficients between true and predicted abundances for
Cufflinks (0.96), iReckon (0.98), and CIDANE (0.97), see Fig. 5. To obtain a more detailed picture
of the abundance estimation accuracy, we evaluated the relative error erel := |θ∗t −θ′t|/θ∗t of reported
abundance values θ′t for transcript t, compared to the true abundances θ∗t .

Figure 6(a) plots the fraction of predicted transcripts with a relative abundance error below
a certain threshold. Similarly, Figure 6(b) presents the recall values for each tool when scoring a
true transcript as recovered only if the relative abundance error is below a certain threshold. Both
Figures support the superior isoform reconstruction performance of CIDANE, not only in terms
of correctly recovered isoforms, but also when taking into account their abundances. Isoforms
with small relative error contribute predominantly to the improved performance of CIDANE, in
particular compared to Cufflinks.

2.1.4 Delayed recovery of transcripts

In this benchmark, we demonstrate the capability of CIDANE to recover in Phase II (Figure 1)
isoforms containing splice junctions that are not supported by any read. Note that a junction
between neighboring exons can also be supported (”covered”) by a read pair which maps to the
two exons, even if none of the reads spans the junction. From the ∼6300 transcripts expressed by
the genes selected in the previous benchmark set, we simulated 2 million 75 bp read pairs. 118
transcripts had at least one splice junction uncovered and are therefore invisible to any method
that derives candidate transcripts from a splicing graph representation of the read alignments (see
Section 4.1.1). We note that this simulation neglects sequencing errors and any sequence specific
or positional fragment biases. Furthermore, the mapping of reads to known transcripts is less
error-prone than the spliced mapping to a reference genome and thus the number of such invisible

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

isoforms is expected to be larger in practice. As before, CIDANE is given only the known exon
boundaries and the mapped reads as input. For performance reasons, the delayed generation of
transcripts was applied only to genes containing at most 50 exons, covering more than 99% of
the genes. For larger genes CIDANE output the initial solution returned by our regularized linear
regression approach (Phase I in Figure 1).

CIDANE successfully recovered ∼24.6% of the invisible transcripts expressed in our simulated
cellular transcriptome. Cufflinks, Mitie, and IsoLasso (provided with exon boundaries) did not pre-
dict a single invisible isoform, while SLIDE recovered ∼5%. In rare cases, SLIDE in fact consideres
candidates with uncovered junctions if otherwise only short candidates with at most 2 exons would
exist (personal communication). We suspect that this strategy is one of the main causes for the
very slow running time of SLIDE (see next Section).

When provided with a partial annotation (Annot) as in the previous benchmark, iReckon and
Cufflinks recovered only one and two isoforms, respectively, whereas CIDANE recovered 17 (∼40%)
out of 42 invisible transcripts not contained in set Annot. Mitie again did not predict any invisible
transcript. For each of the three invisible isoforms recovered by iReckon and Cufflinks, the provided
annotation (Annot) reveals the uncovered splice junction within an alternative isoform. Neither of
the methods was able to reconstruct any uncovered novel splice junction.

2.1.5 Running times

All benchmarks were performed on a machine equipped with 2 Intel Xeon CPU X5550 @2.67GHz
Quad Core and 72 GB memory, and all tools with multithreading support (Cufflinks, iReckon,
SLIDE, Mitie) were allowed to use up to 16 threads. The current implementation of CIDANE uses
only one thread. Only the pricing ILP solver uses up to 16 threads.

For the 75 bp dataset comprising 40 million read pairs assembled ab initio (Section 2.1.1),
the running times of CIDANE in basic mode omitting Phase II (∼25 min), Cufflinks (∼21 min),
IsoLasso (∼22 min), Mitie (∼40 min), and CLASS (∼73 min) were all within minutes to less than
two hours, while SLIDE required ∼55.6 hours to complete. When assembling 80 million read
pairs, the running time of CIDANE remains virtually unchanged, while it increases to ∼42 min
for IsoLasso, ∼132 for CLASS, ∼59 min for Cufflinks, ∼125 min for Mitie, and to ∼62.3 hours for
SLIDE. CIDANE’s optional search for invisible transcripts in Phase II requires an additional ∼31
min or ∼28 min of computation for the 40 and 80 million read pairs datasets, respectively. The
number of reads mostly affects the preprocessing phase, where CIDANE counts reads mapping to
unambiguous exon segments. The computational complexity of the optimization problems solved
in Phase I and Phase II does not directly depend on the number of reads sequenced.

When providing an incomplete annotation (Section 2.1.2), we observed running times of ∼2
minutes for CIDANE, ∼3 minutes for Cufflinks, ∼5.5 min for Mitie, and ∼175 min for iReckon.
Note that the latter experiment involves a smaller number of genes than the datasets analyzed in
the ab initio setting.

2.2 Integrating real RNA-seq, CAGE, and PAS-seq

RNA-seq data provide an explicit signal for the detection of introns that is more informative than
mere read coverage. Spliced alignments span splice junctions between exons and can be leveraged
to infer splice donor and splice acceptor sites and thus the boundary of internal exons. In contrast,
the reconstruction of transcript boundaries, i.e. the transcription start site (TSS) at the 5′ end and

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

the transcription end site (TES) at the 3′ end, relies on a read coverage drop that is blurred by
biases in the RNA-seq assay and is thus error-prone.

The conceptual separation of (i) the discovery of exons and (ii) the assembly of exons into
transcripts allows CIDANE to employ additional sources of information in both modules. Not only
a comprehensive (yet incomplete) annotation available for most model organisms can guide tasks
(i) and (ii) (see Section 2.1.2), but additional gene boundary data can aid the interpretation of
RNA-seq data [25].

By integrating Drosophila melanogaster RNA-seq, cap analysis of gene expression (CAGE),
and Poly(A) Site sequencing (PAS-seq) data, GRIT [25] assembled transcripts with a considerably
higher recall and precision than Cufflinks. CAGE and PAS-seq produce reads from the 5′ ends and
polyadenylation sites of mRNAs, respectively, and thus facilitate the mapping of TSS and TES.
Since reconstructing transcripts from RNA-seq data alone is intrinsically underdetermined [26],
mapped TSS/TES can reduce the search space significantly, particularly for complex loci, and are
thus expected to yield more accurate transcriptome predictions. In fact, experiments on simulated
data performed in [15] already suggested the importance of TSS/TES information in transcript
assembly.

In this section, we demonstrate the superiority of our comprehensive transcript assembly ap-
proach on the integrated analysis of modENCODE RNA data, comprising stranded RNA-seq,
CAGE, and PAS-seq obtained from 20 days old adult D. melanogaster heads [25]. We reconstruct
transcripts ab initio without relying on any elements of the annotation of the D. melanogaster
genome. Instead, we employ exon and transcript boundary information obtained through the
boundary discovery procedure of GRIT [25]: Exons and introns are identified by read coverage and
spliced alignments, respectively; gene regions then contain exons that are connected by introns. In
addition to splice donor and splice acceptor sites, TSS and TES are identified from read coverage
peaks in the CAGE and PAS-seq data. For details we refer the interested reader to the original
description of the procedure in [25].

Candidate transcripts considered by CIDANE correspond to paths in the splicing graph (see
Section 4.1.1). In this experiment, CIDANE constructs nodes and edges representing exons and
introns, respectively, that are discovered from the data by the above mentioned method. Only
paths from exons whose 5′ boundary coincide with an identified TSS (and end with a splice donor
site) to exons whose 3′ boundary coincide with an identified TES (and begin with a splice acceptor
site) are considered. Single exon transcripts are bounded by identified TSS and TES on the 5′ and
3′ ends, respectively.

We compared the performance of CIDANE, GRIT (latest version 1.1.2c), and Cufflinks when
reconstructing the cellular transcriptomes from stranded RNA-seq, CAGE, and PAS-seq generated
from dissected heads of 20 days old adult D. melanogaster, using four replicates, two male and two
female (see [25] or Additional file 2, Table 5). In the experiments performed in [25] on the same data
sets, GRIT drastically outperformed annotation tools Scripture [9] and Trinity+Rsem[27] in terms
of recall and precision. Here we apply the same evaluation criteria as in [25] and thus refrain from
benchmarking CIDANE against tools Scripture and Trinity+Rsem. Similar to [25] we assumed a
FlyBase 5.45 [28] transcript to be expressed in our sample if it is either composed of a single exon or
if otherwise every splice junction is supported by at least one read. Since transcripts contained in
the resulting ground truth by definition had no uncovered splice junctions, we disabled the delayed
transcript recovery mode (Phase II in Figure 1) of CIDANE. Applying the above criteria, between
∼8200 and ∼10, 000 transcripts were expressed in each of the four D. melanogaster head samples.

We considered an expressed transcript in the resulting ground truth as successfully recovered if

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

0.1 0.2 0.3 0.4 0.5 0.6

0.
05

0.
15

0.
25

0.
35

Precision

R
ec

al
l

f=0.1

f=0.2

f=0.3

f=0.4

●

●

●
●

● Cufflinks
GRIT
CIDANE

(a) 50 bp TSS/TES tolerance

0.2 0.3 0.4 0.5 0.6 0.7
0.

15
0.

20
0.

25
0.

30
0.

35
0.

40
Precision

R
ec

al
l

f=0.3

f=0.4

f=0.5

●

●

●
●

● Cufflinks
GRIT
CIDANE

(b) 200 bp TSS/TES tolerance

0.45 0.55 0.65 0.75

0.
20

0.
30

0.
40

0.
50

Precision

R
ec

al
l

f=0.4

f=0.5

f=0.6

●

●

●
●

● Cufflinks
GRIT
CIDANE

(c) 100, 000 bp TSS/TES tol.

0.55 0.65 0.75 0.85

0.
35

0.
45

0.
55

0.
65

Precision

R
ec

al
l

f=0.5

f=0.6

f=0.7●

●

●
●

● Cufflinks
GRIT
CIDANE

(d) Intron chain prediction

Figure 7: Recall and precision of transcript prediction by Cufflinks, GRIT, and CIDANE from
integrated RNA data. Different thresholds in TSS/TES accuracy are applied in true positive
definition.

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

the sequence of introns (intron chain) match perfectly (same criteria as for simulated data) and if
optionally the transcript boundaries, i.e. TSS and TES, lie within 50, 200, or 100, 000 bp of each
other. Predicted transcripts that do not match any transcript in the ground truth but which are
annotated in FlyBase do neither count as false positives nor as true positives. A comparison on
the inton chain level ignores TSS and TES accuracy entirely and provides a meaningful measure
of prediction quality if gene boundary information is either not available or not taken into account
(Cufflinks). While a 50 and 200 bp tolerance assess the precision of transcript boundaries with
different stringency, a relaxation to 100, 000 bp captures the multiplicities of identical intron chains
that differ only by alternative promoters and/or polyadenylation sites.

Figure 7 depicts recall, precision, and F-score achieved by Cufflinks, GRIT, and CIDANE when
predicting transcripts from integrated RNA data of adult D. melanogaster heads. Points of the
same color correspond to the four replicates. Their precise coordinates are listed in Additional
file 2, Tables 6-9. As was done in [25], we filtered transcripts predicted by GRIT with expression
score lower bounds less than 1× 10−6 estimated FPKM at a marginal 99% significance level.

Figures 7(a)-7(b) take into account the accuracy of transcript boundaries with different toler-
ances. If predicted and annotated TSS/TES are required to lie within 50bp of each other (Fig-
ure 7(a)), the lack of read data on the 5′ ends and polyadenylation sites of mRNAs results in a
significantly poorer performance of Cufflinks compared to GRIT. Employing the same amount of
data as GRIT, however, CIDANE achieves a recall of ∼29-31%, compared to ∼15-21% for GRIT,
combined with a slightly higher precision. If we relax the TSS/TES tolerance to 200bp (Fig-
ure 7(b)), GRIT’s prediction profits from the additional CAGE and PAS-seq data mostly in terms
of precision. Again, CIDANE manages to reconstruct more transcripts than GRIT with a slightly
higher precision. Figures 7(c)-7(d) neglect the accuracy of transcript boundaries. In both cases,
CIDANE combines the superior precision of GRIT with the superior recall of Cufflinks. Notice that
in each analysis the transcriptome predictions of GRIT and CIDANE are based on the exact same
mapping of exons, introns, TSS, and TES. The superiority of our approach results entirely from a
more coherent assembly of exons into transcripts.

Concerning the efficiency, CIDANE ran less than two minutes per sample, while GRIT (allowing
up to 16 threads) took ∼3h of computation. Note that GRIT’s runtime includes the discovery of
exon and transcript boundaries.

3 Conclusion

We present CIDANE, which provides major improvements in cellular transcriptome reconstruction
from RNA-seq over existing assembly tools. Through a carefully chosen trade-off between model
complexity and tractability of the resulting optimization problem, and by applying state-of-the-art
algorithmic techniques, CIDANE builds full-length transcript models from short sequencing reads
with higher recall and precision than was possible before. CIDANE is engineered to not only assem-
ble RNA-seq reads ab initio, but to also make use of the growing annotation of known splice sites,
transcription start and end sites, or even full-length transcripts, available for most model organisms.
Our experiments show that CIDANE’s core algorithmic engine yields more accurate transcriptome
reconstructions than competing tools, in all these different scenarios and under various realistic
experimental designs. Furthermore, CIDANE can employ additional gene boundary data to guide
the assembly, thereby improving the precision of the reconstruction significantly.

To some extent, Phase II of CIDANE allows to recover splice junctions that are invisible to all
existing approaches. Such junctions are not supported by any read alignment and can be observed

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

T Heaviest Isoform
Problem

a)

b)

c)

d)

e)

4{ {

32{

Figure 8: Schematic diagram illustrating CIDANE’s workflow. In the first phase, a linear model
is fitted (black line in c) to a compact representation of the observed read mappings (a) using an
initial set Tinit of candidate transcripts (b). Second, transcripts not in Tinit that can help to improve
the prediction are iteratively identified as optimal solutions to the Heaviest Isoform problem (d).
The newly constructed isoform (e) is used to adjust the fitting (orange line in c).

predominantly among low-expressed transcripts. While CIDANE in basic mode (Phase II omitted)
reconstructs a human cellular transcriptome from 80 million aligned read pairs in ∼25 min, the
recovery of invisible junctions is a more complex task. For genes larger than 50 exons the iterative
determination of invisible transcripts might become too expensive in practice and is disabled by
default in our current implementation. Future work on the fixed-parameter tractability of the
Heaviest Isoform problem might allow us to push the limits even further.

We expect that CIDANE will provide biologists with accurate transcript predictions from the
very large, complex data sets that currently emerge from RNA-seq experiments. Such a high-
resolution RNA-seq data interpretation is essential for any type of downstream analysis and will
help to expand the catalogue of genes and their splice variants.

4 Methods

In this work, we assume mRNA fragments to be sequenced from both ends, yielding paired-end
reads. Nonetheless, all results trivially apply to single-end reads. For each locus, identified as
connected components of read mappings, CIDANE reconstructs isoforms from RNA-seq data in
three phases (Figure 8). First (Section 4.1), a linear model is fitted (Figure 8c) to a compact
representation of the observed read mappings (Figure 8a) using a set of fully supported candidate
transcripts (Figure 8b). Here, our approach differs from existing methods mainly in (i) carefully
designed regression coefficients that model (similar to SLIDE) the distribution of reads along a
transcript, and in (ii) applying a state of the art machine learning algorithm to balance the ac-
curacy of the prediction and the number of isoforms assigned a non-zero expression level. In a
second phase (Section 4.2), CIDANE explores the space of transcripts that is neglected by existing
methods due to computational challenges. To iteratively identify such a transcript that can help
to improve the current prediction we have to solve a problem (Figure 8d) that we formalize as

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

the Heaviest Isoform problem (HIS). If the “heaviest” isoform does not improve the current
prediction CIDANE is guaranteed to have found the best possible set of isoforms without having
explicitly enumerated all potential isoforms in the exponentially large space. Otherwise, the newly
constructed isoform (Figure 8e) can be used to adjust our fitting.

Although we show that HIS is NP-complete, we propose an integer linear programming (ILP)
formulation that exploits certain properties of RNA-seq data and (optionally) known splicing char-
acteristics that allow for the efficient solution of the ILP. For example, only a small number of
combinations of exons enclosed by two mapped read mates is typically consistent with an estimated
fragment length distribution, yielding a small number of variables in our formulation. Furthermore,
we (optionally) disregard transcripts whose alternative promoter and polyadenylation sites coincide
with acceptor and donor sites of internal exons, since signals read by the transcription and splicing
mechanism to identify start (end) sites and acceptor (donor) sites differ significantly. Note that
this restriction is conceptually equivalent to considering only maximal paths in the splicing graph
as candidates, as is done by current methods. CIDANE, however, tries to restore maximal paths
that are broken due to uncovered splice junctions. At the same time, the flexibility of an ILP
formulation allows CIDANE to incorporate additional data or knowledge concerning, for instance,
exon-intron boundaries, assembled exons, intron retentions, and transcription start and end sites.

The prediction is fine-tuned (Section 4.3) by re-fitting the linear model using the initial set
of candidate transcripts augmented by all improving transcripts identified in the second phase
of CIDANE. Finally, the expression levels of the reconstructed transcripts are re-estimated and
converted into FPKM (Fragments Per Kilobase of transcript per Million fragments sequenced) in
a post-processing phase (Section 4.3).

4.1 Phase I: Regularized linear regression

Similar to count based methods like SLIDE, IsoLasso, we summarize the observed read mappings
into segment covers (Figure 8a). Instead of trying to explain each read mapping with it precise ge-
nomic coordinates we count the number of reads that fall into non-ambiguously connected segments
of the genome. Segments in S represent minimal exon fragments that are covered by reads and
bounded by splice sites or transcription start or end sites (see Additional file 2, Figure 5), derived
from spliced alignments, extracted from a set of gene annotations, or supported by additional data.
For sequences of segments s̄i and s̄′i, a segment cover ci = (s̄i, s̄

′
i, bi) then counts the number bi of

read pairs r = (r1, r2) where r1 and r2 map with a signature consistent with s̄i and s̄′i, respectively,
i.e. the mapping of r1 (r2) spans precisely the set of segment boundaries that are implied by s̄i (s̄′i)
(see Additional file 2, Figure 6). Faux segment covers (s̄j , s̄

′
j , 0) indicate that the corresponding

combination of segments was not observed in the read data and can help to identify false positive
predictions. We denote the set of segment covers, including faux covers (see Additional file 1,
Section 1), by C.

4.1.1 Candidate Isoforms

We derive the initial set of candidate isoforms T (Figure 8b) used to explain the observations
(segment covers) as paths in a splicing graph [12]. Nodes in a splicing graph correspond to segments
S and edges connect exon fragments whose consecutivity is indicated by (spliced) alignments. Under
the assumption that every splice junction of every expressed isoform is covered by at least one
mapped read, every expressed (true) transcript is among the paths in the splicing graph. For a
formal specification of a splicing graph as employed in CIDANE see Additional file 1, Section 2.

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

We further define sets T SS and PAS, which contain potential transcription start and end sites,
respectively. These sets can be compiled from annotated transcription start sites and polyadeny-
lation sites, additional read data from the 5′ ends and polyadenylation sites of mRNAs (see Sec-
tion 2.2), or purely from read mapping data. The latter is based on an exclusion principle: We do
not allow for transcripts whose alternative promoter or polyadenylation sites coincide with acceptor
and donor sites of internal exons and thus exclude all segments with spliced alignments supporting
their 5′ or 3′ end from T SS and PAS, respectively. This exclusion strategy is equivalent to con-
sidering only maximal paths in the graph, as is done by current methods, and can easily be relaxed
in CIDANE by setting T SS := S and PAS := S.

The set of candidate isoforms among which we select our initial prediction is then obtained by
enumerating all paths in the splicing graph that start at a segment in T SS and end at a segment
in T ES.

4.1.2 Model fitting

We apply a linear model (Figure 8c) to estimate the number of reads originating from segments
of the genome. Assuming that every position of an expressed transcript is equally likely chosen
as starting position of a sequenced RNA fragment, we model the expected number of fragments
mapping to segment cover c = (s, s′, b) as

∑
t∈T `t,cθt, where `t,s̄ is the expected number of starting

positions of fragments obtained from transcript t that show a mapping signature consistent with
c. The expression level θt of transcript t counts the expected number of mapped fragments per
transcript base (FPB), which is converted to FPKM at a later stage (Section 4.3). `t,c depends on
the length of segments in s̄ and s̄′, the length of segments in t enclosed by s and s′, the read length,
and the cDNA fragment length distribution. Equations defining `t,c as used in our model are given
in Additional file 1, Section 3. In contrast, methods like TRAPH, MITIE, and IsoInfer/IsoLasso
define coefficients `c that neglect the dependence on transcripts t. Note that the distribution of
reads along a transcript is generally not uniform, but typically unknown. The same applies to all
the experimental data used in this study. Any prior knowledge concerning the likelihood of starting
positions can be incorporated into our model through adjusted `t,c coefficients.

We employ the sum of squared errors (i.e. differences between estimated and observed number
of reads) as a measure of accuracy of our prediction, weighted by an estimator for the variance of
observations b [15]. Fitting our model using all candidate transcripts would allow to fit noise in the
data by predicting a large number of isoforms with low but non-zero expression levels. Since in a
given cell type really only a small subset of candidate transcripts is expressed our approach seeks
a sparse set of expressed isoforms by augmenting, similar to SLIDE and IsoLasso, the objective by
the L1-norm of the isoform abundances. Our (initial) prediction θ ≥ 0 comprises all transcripts
with non-zero expression level in the optimal solution to:

min
θ≥0

∑
c=(s̄,s̄′,b):

c∈C

(
b−∑t∈T `t,cθt√

max{ε, b}

)2

+ λ
∑
t∈T

θt (1)

For faux covers, we replace b = 0 by ε (default: ε = 1). This so-called Lasso regression selects
isoforms by setting the expression levels of all other transcripts to zero one at a time with increasing
penalty terms λ.

The overall quality of the prediction crucially depends on the right choice of the regularization
parameter λ. In contrast to previous methods, we balance the relative importance of the accuracy

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

of the prediction and its simplicity (number of transcripts with non-zero expression level) based on
the entire path of values for λ. As the coefficient path is piecewise linear, the entire regularization
path can be computed at the cost of a single least-squares fit [29]. We apply a coordinate descent
algorithm implemented in the glmnet Fortran code [30], that cyclically optimizes, for a given λ,
each isoform abundance separately, holding all other abundances fixed. Update operations (inner
products) directly profit from our sparse matrix of `t,c values (see Additional file 1, Section 3).
Furthermore, considering a sequence of decreasing values for λ exploits estimates at previous λ’s
as warm-start. After having computed the entire path of values for λ, our initial prediction is
obtained from the optimal solution to (1) for the value of λ that yields the best adjusted R2 score.
The adjusted R2 adjusts the goodness of fit (R2) for the number of isoforms used. If CIDANE
is provided with a partial annotation of the transcriptome of an organism, the higher confidence
in annotated transcripts is modeled by scaling the regularization penalties λ assigned to unknown
transcripts by a factor of γ (default: γ = 2).

4.2 Phase II: Delayed generation of improving isoforms

The aim of CIDANE’s second phase is to recover isoforms with uncovered splice junctions (”invisible
transcripts”) that are not included in the candidate set of the regularized least squares regression
due to their possibly very large number. We employ a delayed column generation technique [20] to
identify new candidate isoforms that improve the optimal solution of the regularized least squares
regression without exhaustive enumeration of all possible candidates. Particularly suited for large-
scale linear programs, we formulate a piecewise-linear approximation (Additional file 1, Section 4)
of the following quadratic program that is equivalent to the regularized least squares objective
function (1):

min
∑
ci∈C

(
ei√

max{ε, bi}

)2

+ λ
∑
t∈T

θt (2)

s.t.
∑
t∈T

`t,ciθt + ei = bi ∀ci ∈ C (3)

θ ∈ R|T |+ is the vector of transcript abundances, and e ∈ R|C| denotes the vector of errors,
i.e. differences between estimated and observed read counts per segment cover. The generation of
columns (i.e. variables θt) is then accomplished by means of an ILP formulation presented below. In
the following we let m := |C| be the number of segment covers falling into the considered locus and
we let A be the corresponding coefficient matrix of constraints (3). Since the number of transcripts a
gene can potentially encode grows exponentially with the number of its exons, constructing matrix
A in full is impractical, even for comparatively small genes. Rather, we consider a restricted
problem that contains only a small subset of all possible transcripts, represented by the θ-variables,
and generate novel isoforms, i.e. columns of A, as needed to improve the overall prediction.

To identify an isoform that can help to improve the prediction in terms of objective (2), Dantzig’s
simplex method [20] requires to determine a variable (transcript) θtj with negative reduced cost
c̄j = λ−pTAj , where p is the vector of simplex multipliers and Aj is the column of A representing
transcript tj . Instead of computing the reduced cost associated with every possible transcript tj
we consider the problem of minimizing (λ − pTAj) over all tj , or equivalently, the problem of
maximizing pTAj over all transcripts tj . According to constraint (3), for every 1 ≤ i ≤ m, entry i

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

of column Aj has value `tj ,ci . The task is therefore to find a transcript tj such that∑
ci∈C

(pi`tj ,ci) > λ. (4)

If no such transcript exists all reduced costs are nonnegative and the current solution is optimal.
Next we model this optimization problem as a variant of the heaviest induced subgraph problem [31]
and propose an integer linear programming formulation. For ease of notation, here we only consider
the case where reads span single exons. For the general case of reads spanning an arbitrary number
of exons we refer the reader to Additional file 1, Section 5.

Consider graph G = (V,E) that contains one vertex for each exon of a locus. We assume that
the exons are numbered from left to right from 1 to n and identify each vertex by the corresponding
exon number. We identify each segment cover (s̄, s̄′, b) with single exon sequences s̄ = 〈i〉, s̄′ = 〈j〉
by (i, j, b) and include an edge e = (i, j) in E. For each edge e ∈ E we denote by V̄ (e) the set of
vertices whose associated exons lie between the exons given by segments i and j, i.e. V̄ (e) := {k ∈
V : i < k < j}. We assign to each edge e ∈ E a weight function we : P(V̄ (e)) 7→ R. Then finding
an improving transcript is equivalent to the following variant of the heaviest induced subgraph
problem:

Definition 1 (Heaviest Isoform problem). Given graph G = (V,E) and edge weight functions
we, find T ⊆ V such that the induced subgraph has maximal total edge weight, where each induced
edge e contributes weight we(T ∩ V̄ (e)).

Edge weights we model the corresponding summands on the left-hand side of equation (4) and
thus depend on the selection of exons between the mates of a cover (see Additional file 1, Section 3).
In Additional file 1, Section 6, we show that the Heaviest Isoform problem is NP-complete. For
single-end reads that span at most 2 exons the weight function is no longer dependent on T ∩ V̄ (e)
and the Heaviest Isoform problem becomes polynomial-time solvable by a dynamic program.

This problem can be captured by the following integer linear program. For each vertex i in G
a binary variable xi indicates whether vertex i is contained in the solution. For every edge e ∈ E
and every set V̄j ⊆ V̄ (e) we have a binary variable ye,j which is 1 if and only if vertices selected
by the x-variables are consistent with V̄j and induce e, enforced by the constraints below. In the
objective function we let we,j := we(V̄j):

max
∑
e∈E

∑
V̄j⊆V̄ (e)

we,jye,j

s.t. ye,j ≥
∑

vi∈e∪V̄j

xi +
∑

vi∈V̄ (e)\V̄j

(1− xi)+

− |V̄ (e)| − 1 e ∈ E, V̄j ⊆ V̄ (e)

ye,j ≤ xi e ∈ E, V̄j ⊆ V̄ (e),

vi ∈ e ∪ V̄j

ye,j ≤ 1− xi e ∈ E, V̄j ⊆ V̄ (e),

vi ∈ V̄ (e) \ V̄j

Depending on the quality of the data (determined by e.g. sequence specific or positional biases
and read mapping accuracy) an isoform that is built by our ILP formulation might improve the

19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

prediction with respect to objective (1) by balancing, for instance, read coverage fluctuations. To
prevent fitting noise in the data we require novel isoforms to explain segment covers c that are
not supported by any transcript in the initial solution T ∗ returned by the regularized least squares
regression (1), i.e. ∀t ∈ T ∗ : `t,c = 0. We refer to this set of initially unsupported segment covers

as C̃ ⊆ C. To reduce the impact of spurious read mappings we require a certain number kc of read
counts to be observed on the set of newly supported segment covers:∑

ci∈C̃

bi
∑

V̄j⊆V̄ (ei)

yei,j ≥ kc (5)

Intuitively, variables ye,l associated with an edge e = (i, j) guess the selection of exons between
exons i and j. Since for large j − i their exponential number would render our ILP approach
infeasible, we neglect sets V̄j that would imply fragments of very unlikely length. More precisely,

we apply lower and upper bounds ˇ̀ and ˆ̀ in the computation of `t,c (see equation (1) in Additional
file 1) that limit the lower and upper 5%-quantile, respectively, of the estimated fragment length
distribution. In Additional file 1, Section 7, we translate this fragment length restriction into lower
and upper limits on the total length of exons in V̄j , which allow us to enumerate feasible exon
combinations in V̄j by an efficient splicing graph based backtracking scheme.

The construction of improving transcripts can be further guided by additional information such
as exon-intron boundaries, transcription start and end sites, or exon connectivity. In the following
we introduce constraints that we optionally add to our ILP formulation, depending on the available
type of data, to ensure that the x variables encode a transcript that exhibits the desired structure.

4.2.1 Exon compatibility

Splice acceptor and splice donor sites can be derived from spliced alignments or extracted from a
set of gene annotations. Here we consider the case of a set of known exons E . The more general
case where the pairing of alternative acceptor and donor sites is unknown can be reduced to this
case by simply including all possible combinations of acceptor and donor sites of an exon in E .
Alternatively, the structure of a splicing graph along with the individual mapping of acceptor and
donor sites can be enforced through exon connectivity constraints as shown in the next Section.

To ensure that the segments in S selected by the x variables form only valid exons in E we link
the segments of each exon Ej ∈ E by an indicator variable zj :

xi =
∑
Ej3si

zj 1 ≤ i ≤ |S| (6)

This constraint implies that (i) every selected segment si (i.e. xi = 1) must be part of exactly one
selected exon Ej (i.e. zj = 1), (ii) all segments of a selected exon must be included, and (iii) no
pair of overlapping, and hence incompatible, exons can be selected simultaneously.

4.2.2 Exon connectivity

For some complexe genes it is computationally infeasible to enumerate all paths in the splicing graph
to obtain the set of candidate isoforms. For such genes our delayed isoform generation approach
allows the exploration of all candidate isoforms without explicitly enumerating them. Constraint (7)
with ui,j := 0 therefore captures the splicing graph structure in a way that the path induced by

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

the selected set of segments agrees with the set of edges E in the splicing graph: A simultaneous
selection of two segments si and sj , i < j, without selecting any segment sk with i < k < j is
not feasible if the splicing graph does not contain edge (vi, vj). Notice that this scheme allows to
assemble novel exons by selecting acceptor sites (incoming edge) and donor sites (outgoing edge)
independently.

Alternatively, we can allow up to k (default: k = 2) new edges to be selected from a set of “valu-
able” edges E′ missing in the splicing graph. At most k binary variables ui,j , 1 ≤ i < j ≤ |S|, can
be set to 1 for (vi, vj) /∈ E to relax the corresponding constraint (7). We experimented with valuable
sets of edges E′ that allow the explanation of observed covers that cannot be explained using solely
edges in E. In general, however, any novel intron can be simply modeled by a corresponding edge
in E′.

1 + ui,j ≥ xi + xj −
∑

i<k<j

xk (7)

1 ≤ i < j ≤ |S|, (vi, vj) /∈ E∑
(i,j)∈E′

ui,j ≤ k (8)

ui,j = 0 1 ≤ i < j ≤ |S|, (9)

(vi, vj) /∈ E ∪ E′

4.2.3 Transcription start and end sites

We also have to ensure that improving transcripts built by our ILP start at segments in T SS
and end at segments in PAS. Our model captures both the exclusion of potential transcription
start and end sites from spliced alignments (see Section 4.1.1), and the inclusion of transcript
boundaries, from e.g. a RNA-seq read coverage drop or from additional reads from the 5′ ends and
polyadenylation sites of mRNAs (see Section 2.2).

Variables ssi and esi indicate the start and terminal segment of the generated isoform, respec-
tively. We must select precisely one transcription start and end site (constraints (10)-(11)) from
sets T SS and T ES, respectively (constraints (12)-(13)). Designated start and end sites must be
part of the predicted transcript (constraint (14)-(15)). Finally, no segment upstream of the start
segment (16) and no segment downstream of the end segment (17) can be part of the predicted
isoform.

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

∑
vi∈V

ssi = 1 (10)

∑
vi∈V

esi = 1 (11)

ssi = 0 vi /∈ T SS (12)

esi = 0 vi /∈ T ES (13)

xi ≥ ssi vi ∈ V (14)

xi ≥ esi vi ∈ V (15)

xi ≤ 1−
|V |∑

j=i+1

ssj vi ∈ V (16)

xi ≤ 1−
i−1∑
j=1

esj vi ∈ V (17)

4.2.4 Intron retentions

The explicit exon model described in Section 4.2.1 captures intron retentions by simply merging
the flanking exons and the retained intron into one virtual exon that is added to set E . Similarly,
the more general exon connectivity formulation that is based on individual splice sites rather than
assembled exons trivially includes the connectivity of intron retentions.

4.3 Phase III: Fine-tuning and post-processing

To adjust the regularization penalty λ to the increased set of candidate transcripts implicitly con-
sidered by the delayed isoform generation approach and to reduce the effect of the piecewise-linear
approximation of the loss function, CIDANE resolves (1) with the candidate set T containing addi-
tionally all transcripts generated in the course of the delayed isoform generation phase. We increase
the sensitivity of this fine-tuning step by reducing the regularization penalty prior to the delayed
transcript generation by a multiplicative factor (default 0.9) and in turn express a higher confi-
dence in fully supported isoforms by selectively increasing λ′ = α · λ (default: α = 1.3) for delayed
generated transcripts.

Let transcripts T ∗ = {t1, . . . , tm} with non-zero abundance θ∗t1 , . . . , θ
∗
tm be returned by the

regularized regression (1) solved in Phase I, optionally including the additional isoforms provided
by our delayed isoform generation approach (Phase II). CIDANE determines the final prediction
by post-processing T ∗ as follows. First, to avoid biases introduced by the regularization penalties
λ we resolve (2)-(3) for λ := 0 using set T ∗ instead of T to obtain expression levels θ′ti . Second, we
re-estimate the expression levels by computing a final assignment of mapped reads to isoforms that
is guided by the relative abundances θ′ti :

r(tj) =
∑

ci∈C:`tj ,ci>0

bi ·
`tj ,ciθ

′
tj∑

tk∈T∗
`tk,ciθ

′
tk

,

where r(tj) is the number of reads assigned to isoform tj . This assignment of reads to isoforms

22

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

corrects overestimation or underestimation of the total number of reads within a gene due to non-
uniform read mapping coverage. For all isoforms tj ∈ T ∗ with r(tj) ≥ α (default: α = 10),
we compute transcript expression levels in FPKM and finally return all isoforms whose predicted
expression in FPKM is at least β-percent (default: β = 10) of the expression of the most abundant
transcript for the same gene. When run with a partial annotation of the transcriptome of an
organism, we increase the expression threshold β to 20% for novel transcripts.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We thank Nathan Boley for providing the data and support necessary for the integrated analysis
of modENCODE RNA data. We thank Veronica Lee for her help in generating the perfect read
mappings. We thank Sören Laue for helpful discussions on the computation of regularization paths.
SC was supported in part by US National Institutes of Health grant R01-HG006677.

References

[1] Pan, Q., Shai, O., Lee, L.J., Frey, B.J., Blencowe, B.J.: Deep surveying of alternative splicing
complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40(12),
1413–1415 (2008)

[2] Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg,
S.L., Wold, B.J., Pachter, L.: Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology
28(5), 511–515 (2010)

[3] Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F.,
Schroth, G.P., Burge, C.B.: Alternative isoform regulation in human tissue transcriptomes.
Nature 456(7221), 470–476 (2008)

[4] Djebali, S., et al.: Landscape of transcription in human cells. Nature 489(7414), 101–108
(2012)

[5] Eswaran, J., Cyanam, D., Mudvari, P., Reddy, S.D., Pakala, S.B., Nair, S.S., Florea, L.,
Fuqua, S.A., Godbole, S., Kumar, R.: Transcriptomic landscape of breast cancers through
mrna sequencing. Scientific Reports 2, 264 (2012)

[6] Seo, J.-S., Ju, Y.S., Lee, W.-C., Shin, J.-Y., Lee, J.K., Bleazard, T., Lee, J., Jung, Y.J., Kim,
J.-O., Shin, J.-Y., Yu, S.-B., Kim, J., Lee, E.-R., Kang, C.-H., Park, I.-K., Rhee, H., Lee, S.-H.,
Kim, J.-I., Kang, J.-H., Kim, Y.T.: The transcriptional landscape and mutational profile of
lung adenocarcinoma. Genome Res. 22(11), 2109–2119 (2012)

[7] Berger, M.F., et al.: Integrative analysis of the melanoma transcriptome. Genome Research
20(4), 413–427 (2010)

23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

[8] Twine, N.A., Janitz, K., Wilkins, M.R., Janitz, M.: Whole transcriptome sequencing reveals
gene expression and splicing differences in brain regions affected by alzheimer’s disease. PLoS
ONE 6(1), 16266 (2011)

[9] Guttman, M., Garber, M., Levin, J.Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L.,
Koziol, M.J., Gnirke, A., Nusbaum, C., Rinn, J.L., Lander, E.S., Regev, A.: Ab initio re-
construction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic
structure of lincRNAs. Nature Biotechnology 28(5), 503–10 (2010)

[10] Lin, Y.-Y., Dao, P., Hach, F., Bakhshi, M., Mo, F., Lapuk, A., Collins, C., Sahinalp, S.C.:
Cliiq: Accurate comparative detection and quantification of expressed isoforms in a population.
In: Raphael, B., Tang, J. (eds.) Algorithms in Bioinformatics. Lecture Notes in Computer
Science, vol. 7534, pp. 178–189. Springer, Berlin, Heidelberg (2012)

[11] Behr, J., Kahles, A., Zhong, Y., Sreedharan, V.T., Drewe, P., Rätsch, G.: Mitie: Simultaneous
rna-seq-based transcript identification and quantification in multiple samples. Bioinformatics
29(20), 2529–2538 (2013)

[12] Heber, S., Alekseyev, M., Sze, S.H., Tang, H., Pevzner, P.A.: Splicing graphs and EST assembly
problem. Bioinformatics (Oxford, England) 18 Suppl 1, 181–188 (2002)

[13] Tomescu, A.I., Kuosmanen, A., Rizzi, R., Mäkinen, V.: A novel min-cost flow method for
estimating transcript expression with RNA-Seq. BMC Bioinformatics 14 (suppl 5), 15 (2013)

[14] Song, L., Florea, L.: CLASS: constrained transcript assembly of RNA-Seq reads. BMC Bioin-
formatics 14 (suppl 5), 14 (2013)

[15] Feng, J., Li, W., Jiang, T.: Inference of isoforms from short sequence reads. J. Comput. Biol.
18(3), 305–321 (2011)

[16] Mezlini, A.M., Smith, E.J., Fiume, M., Buske, O., Savich, G.L., Shah, S., Aparicio, S., Chiang,
D.Y., Goldenberg, A., Brudno, M.: iReckon: simultaneous isoform discovery and abundance
estimation from RNA-Seq data. Genome research 23(3), 519–529 (2013)

[17] Li, J.J., Jiang, C.-R., Brown, J.B., Huang, H., Bickel, P.J.: Sparse linear modeling of next-
generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation.
Proceedings of the National Academy of Sciences 108(50), 19867–19872 (2011)

[18] Li, W., Feng, J., Jiang, T.: IsoLasso: A LASSO regression approach to RNA-seq based tran-
scriptome assembly. Journal of Computational Biology 18(11), 1693–1707 (2011)

[19] Hiller, D., Wong, W.H.: Simultaneous isoform discovery and quantification from RNA-seq.
Statistics in Biosciences 5(1), 100–118 (2013)

[20] Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific, Bel-
mont (MA) (1997)

[21] Griebel, T., Zacher, B., Ribeca, P., Raineri, E., Lacroix, V., Guigó, R., Sammeth, M.: Mod-
elling and simulating generic rna-seq experiments with the flux simulator. Nucleic Acids Re-
search 40(20), 10073–10083 (2012)

24

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

[22] Hsu, F., Kent, W.J., Clawson, H., Kuhn, R.M., Diekhans, M., Haussler, D.: The UCSC known
genes. Bioinformatics 22(9), 1036–1046 (2006)

[23] Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S.: Tophat2: accurate
alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome
Biology 14(4), 36 (2013)

[24] Roberts, A., Pimentel, H., Trapnell, C., Pachter, L.: Identification of novel transcripts in
annotated genomes using RNA-Seq. Bioinformatics (2011)

[25] Boley, N., Stoiber, M.H., Booth, B.W., Wan, K.H., Hoskins, R.A., Bickel, P.J., Celniker, S.E.,
Brown, J.B.: Genome-guided transcript assembly by integrative analysis of RNA sequence
data. Nat Biotech 32(4), 341–346 (2014)

[26] Lacroix, V., Sammeth, M., Guigo, R., Bergeron, A.: Exact transcriptome reconstruction from
short sequence reads. In: Crandall, K.A., Lagergren, J. (eds.) Algorithms in Bioinformatics.
Lecture Notes in Computer Science, vol. 5251, pp. 50–63. Springer, Berlin, Heidelberg (2008)

[27] Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis,
X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A.,
Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., Regev,
A.: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat
Biotechnol 29(7), 644–652 (2011)

[28] Marygold, S.J., Leyland, P.C., Seal, R.L., Goodman, J.L., Thurmond, J., Strelets, V.B., Wil-
son, R.J., the FlyBase consortium: Flybase: improvements to the bibliography. Nucleic Acids
Research 41(D1), 751–757 (2013)

[29] Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. The Annals of
Statistics 32(2), 407–499 (2004)

[30] Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010)

[31] Kortsarz, G., Peleg, D.: On choosing a dense subgraph. In: Foundations of Computer Science,
1993. Proceedings., 34th Annual Symposium On, pp. 692–701 (1993)

Additional Files

Additional file 1 — Algorithmic details

Additional file 2 — Additional figures and tables

25

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 12, 2015. ; https://doi.org/10.1101/017939doi: bioRxiv preprint

https://doi.org/10.1101/017939

