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ABSTRACT9

We recently described rapid quantitative pharmacodynamic imaging, a novel method for estimating sensitivity
of a biological system to a drug. We tested its accuracy in simulated biological signals with varying receptor
sensitivity and varying levels of random noise, and presented initial proof-of-concept data from functional
MRI (fMRI) studies in primate brain. However, the initial simulation testing used a simple iterative approach
to estimate pharmacokinetic-pharmacodynamic (PKPD) parameters, an approach that was computationally
efficient but returned parameters only from a small, discrete set of values chosen a priori.

Here we revisit the simulation testing using a Bayesian method to estimate the PKPD parameters. This improved
accuracy compared to our previous method, and noise without intentional signal was never interpreted as
signal. We also reanalyze the fMRI proof-of-concept data. The success with the simulated data, and with
the limited fMRI data, is a necessary first step toward further testing of rapid quantitative pharmacodynamic
imaging.
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INTRODUCTION13

Measuring the sensitivity of an organ to a drug in vivo is a common, important research goal. The traditional14

approach is to independently measure biological responses to a range of different doses of drug. We recently15

described a novel method, rapid quantitative pharmacodynamic imaging (or QuanDynTM), for estimating16

sensitivity of a biological system to a drug in a single measurement session using repeated small doses of drug17

(Black et al., 2013). In that report, we tested QuanDynTM’s accuracy in simulated data with varying receptor18

sensitivity and varying levels of random noise. The initial simulation testing used a simple iterative approach to19

estimate pharmacokinetic-pharmacodynamic (PKPD) parameters including EC50, the plasma concentration of20

drug that produces half the maximum possible effect Emax. The iterative approach was computationally efficient21

but could only select EC50 from a short list of parameter values chosen a priori.22

Here we revisit the simulation testing using a Bayesian method to provide continuous estimates of the PKPD23

parameters. The Bayesian approach also identifies data too noisy to produce meaningful parameter estimates24

(using a model selection package described below). Bayesian methods have been used successfully in other25

PKPD analyses (Lavielle, 2014, to cite but one example). For the present purpose we applied a Bayesian data26

analysis package specifically designed for efficient voxelwise analysis of 4-dimensional imaging data (Bretthorst,27

2014; Bretthorst and Marutyan, 2014).28
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METHODS29

Simulated data30

We used a standard sigmoid PKPD model (Holford and Sheiner, 1982) to create 6 time-effect curves that could31

reasonably represent biological signal from a pharmacological challenge study: one with no response to drug32

(Emax = 0) and five with varying sensitivities to drug: Emax = 10 and EC50 ∈ {0.25,0.6,
√

2,π,7.5}.33

As in the previous work, the concentration of drug in plasma over time is modeled as

C(t) =
K

∑
k=1

Dk ·u(t− ts− tk) ·2−(t−ts−tk)/t1/2

where K doses of drug, Dk, are given at times tk, u(t) is the unit step function, ts (for “time shift”) is a fixed delay
between drug concentration and effect, and t1/2 is the elimination half-life of drug from plasma (Black et al.,
2013). Drug effect is modeled as

E(C) =
EmaxCn

(EC50)n +Cn

where C is C(t) from the previous equation and n represents the Hill coefficient. Baseline nonquantitative signal
drift was simulated by adding to each curve a quadratic function of time

B(t) = a0 +a1t +a2t2.

The full model is then

B(t)+E(C(t)).

The test curves were generated using K = 4, D1 = D2 = D3 = D4 = the dose of drug that produces a peak plasma34

concentration of 1 (arbitrary concentration units), ts = 0.5 min, t1/2 = 41 min, n = 1, a0 = 1000, a1 = 2/(40 min),35

and a2 = 0. The 6 resulting curves are shown in Figure 1.36

[Figure 1 about here.]37

Finally we added Gaussian noise to each time point. This was done 1000 times for each of the 6 curves above38

and for each of 8 noise levels from SD = 0.01Emax to 2Emax, resulting in 48,000 noisy time–signal curves plus39

the original 6 “clean” curves (see Supplemental Data).40

Testing the method using the simulated data41

In the simulated data described above, each of the 48,006 time courses were analyzed using the “Image Model42

Selection” package from the Bayesian Data-Analysis Toolbox (Bretthorst and Marutyan, 2014; Bretthorst, 2014).43

The Toolbox computes the posterior probability for the set of models (Bretthorst, 1988) given a 4d data set.44

A Markov chain (Gilks et al., 1996) is used to draw samples from the joint posterior probability for all of the45

parameters including the choice of model. The Markov chain Monte Carlo simulation included the full model46

B(t)+E(C(t)), the baseline model B(t), and a “no signal” model. Each model has equal prior probability, or47

more precisely we specify that the conditional probability of any model, given the supplied prior probabilities48

for the parameters relevant to that model, is equal to that of any other model (see Bretthorst, 2014, section 22.1,49

at equation 22.6). Monte Carlo integration is then used to obtain samples from the posterior probability for50

each model and from the posterior probability for each parameter given the model. For the present analysis51

we specified 2500 samples at each step (50 samples run in parallel, repeated 50 times). Simulated annealing is52

used to minimize the risk of convergence to a non-global local maximum (see Bretthorst, 2014, appendix B, for53

details). If the posterior probability for the model indicated the full model, B(t)+E(C(t)), was preferred, the54

package also returned values for EC50, ts, Emax, a0, a1, and a2. The software returns both the mean parameter55
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values and the values from the simulation with maximum likelihood; the present report uses the latter. This56

analysis was repeated for each of the 48,006 time courses.57

To provide more even sampling of parameter space across the conventional logarithmic abscissa for58

concentration-effect curves, EC50 was coded as 10q, where q = log10 EC50, and a uniform prior probability59

was assumed for q with range [−3,1.3], corresponding to a wide range of EC50 values from 0.001 to 20.0. A60

uniform prior with range [0,1] min was used for the time shift parameter ts. The Hill coefficient n and the61

drug’s elimination half-life—parameters that for biological data could be estimated separately, from a typical62

PK study—were fixed at n = 1 and t1/2 = 41 minutes. Emax and the coefficients of the signal drift function63

a0 +a1t +a2t2 were marginalized.64

Since tissues with high values of EC50 respond less to a given dose of drug, i.e. E � Emax, the ratio65

SD/Emax� SD/E underestimates the effect of noise relative to the observed effect. Therefore we computed a66

signal-to-noise ratio (SNR) to simplify comparisons across the various input values of EC50 and noise. We defined67

“signal” as the maximum value of E(C(t)), without added noise, for 0≤ t ≤ 40min, i.e. the local maximum of the68

modeled signal shortly after the last dose of drug, less the input linear drift at that same time point. In Figure 169

this value can be appreciated near the right side of the plot and ranges from about 3 for EC50 = 7.5 to about 9 for70

EC50 = 0.25. We define SNR as the ratio of this signal to the standard deviation of the added noise.71

Testing the method on in vivo data72

We tested the model described above using the same phMRI (pharmacological fMRI) data we analyzed previously73

with the iterative method, namely, regional BOLD-sensitive fMRI time-signal curves from midbrain and striatum74

in each of two animals (Black et al., 2013). Each animal was studied twice, at least 2 weeks apart, producing 875

regional time-signal curves. On each day a total of 0.1 mg/kg of the dopamine D1 agonist SKF82958 was given76

intravenously, divided into 4 equal doses on one day and into 8 equal doses on the other day (Black et al., 2013,77

Table 4 and Figure 10).78

The iterative analysis had allowed only values of 5 or 30 minutes for the half-life of drug disappearance from79

the blood during the scan session; here we used a uniform prior probability over [2,60] minutes for t1/2. Prior80

probabilities for all other parameters were the same as described above for the simulated data.81

RESULTS82

Simulated data83

Example84

Figure 2 provides an example result from one time course, to orient the reader to the following summary. Note85

that the parameter estimates are (approximately) the best estimates for the provided noisy data, even though they86

differ slightly from the input values used to produce the data.87

[Figure 2 about here.]88

Sensitivity: p(model) with signal89

The full PKPD model explained the data better than a simpler model, i.e. p(model) >0.5, except when signal was90

low (higher EC50) or noise was substantial (Figures 3, 4).91

[Figure 3 about here.]92

[Figure 4 about here.]93

False positives: p(model) with noise only94

For the data sets containing no intentional signal, i.e. noise added to the Emax = 0 line, the Toolbox never returned95

p > 0.5 for any of the 8,000 curves. In other words, there were no false positives.96
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Accuracy97

Accuracy of the EC50 estimate was considered for time courses with p(model) >0.5. Figure 5 shows the mean98

estimated EC50 as a function of the input EC50; as expected, accuracy is best with higher SNR. Figure 6 shows99

the ratio of estimated EC50 to input EC50 in terms of SNR. Perfect accuracy would produce a ratio of 1.0, and100

values >1.0 indicate overestimation of EC50, i.e. underestimation of the sensitivity to drug.101

[Figure 5 about here.]102

[Figure 6 about here.]103

In vivo data104

The full PKPD model was selected for 6 of the 8 regional time-signal curves (see Table 1). The data and selected105

model curves are shown in Figure 7.106

[Table 1 about here.]107

[Figure 7 about here.]108

DISCUSSION109

Simulation testing110

Bayesian parameter estimation for the QuanDynTM quantitative pharmacodynamic imaging method produced111

excellent results in simulated data: first, the Model Select method very accurately identified time courses with112

a meaningful drug-related signal, until noise overwhelmed signal, i.e. when SNR < about 3.5. The Bayesian113

Data-Analysis Toolbox successfully avoided false positives, correctly refraining from identifying a signal in every114

noise-only time course, even where sensitivity was 100%. In time courses with a signal, mean accuracy was115

reasonable even in the face of low SNR, as shown in Figures 5 and 6. Furthermore, the errors were conservative,116

with EC50 usually erring on the high side (figure 6). Said differently, the most likely quantitative error was to117

report slightly lower sensitivity to drug, especially when sensitivity is in fact low.118

Limitations119

This simulation used a simple noise model that may be best suited to a temporally stable, quantitative outcome120

measure, such as positron emission tomography, arterial spin labeling, or quantitative BOLD. However, because121

the PKPD model E(C) is simply added to the baseline model B(t), the latter can be replaced with a more complex122

signal, if needed, for non-quantitative imaging methods. For instance, Fourier series have been used to model123

typical BOLD-sensitive fMRI data over long time intervals. The baseline model B(t) could be optimized further124

to best suit a specific scanner, tracer or sequence, or to other experimental design choices.125

Similar comments hold for the signal as well as for noise: the QuanDynTM quantitative pharmacodynamic126

imaging method will perform less well if the PKPD model does not realistically model the data. However, prior to127

initiating an expensive imaging study, one would determine the appropriate family of PKPD models for the drug128

to be tested, based on traditional dose-response experiments. We discuss this point further in (Black et al., 2013).129

The choice of imaging method also affects the signal characteristics; for instance, typical BOLD implementations130

may not provide adequately linear responses to biological signal. On the other hand, using a more traditional131

phMRI design, the magnitude of the acute BOLD response to a single dose of drug per imaging session did132

increase monotonically with larger doses (Miller et al., 2013).133

In vivo data134

Even with the relatively simple signal and noise models adopted for this initial testing, the tested method appeared135

to handle reasonably the in vivo data from a BOLD phMRI study (Figure 7). Further validation will require a136

larger set of similar multi-dose phMRI data, and comparison data from a more traditional dose-response study137

design.138

4/6

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2016. ; https://doi.org/10.1101/017921doi: bioRxiv preprint 

https://doi.org/10.1101/017921
http://creativecommons.org/licenses/by-nc/4.0/


The QuanDynTM method described here has several potential advantages compared to the traditional approach139

to quantifying a drug effect, which is to estimate the population EC50 by sampling a wide range of doses, one140

dose per subject and several subjects per dose. That approach is an excellent choice when the population under141

study is homogeneous (e.g. an inbred rodent strain), but does not apply well to single human subjects. One might142

adapt the traditional approach by repeatedly scanning a single subject, one dose per scan session, but that option143

brings its own complications, including scientific concerns such as sensitization or development of tolerance with144

repeated doses in addition to the practical and ethical consequences of repeated scanning sessions in each subject.145

That option, like the population method, would also require that subjects receive doses substantially higher than146

the EC50, which may often be inappropriate in early human studies. Specifically, to estimate EC50, traditional147

population PKPD studies require drug doses that produce effects of at least ∼ 95%Emax (Dutta et al., 1996). For148

all these reasons, the QuanDynTM method may prove to be a better choice when single-subject responses are149

important, such as for medical diagnosis or individualized treatment dosing. We elsewhere discuss potential150

challenges related to moving this approach into humans (Black et al., 2013).151
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Figure 1. Simulated tissue responses for various values of EC50, i.e. the test data before adding noise.
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Figure 2. The upper panel shows simulated dose-effect data generated using Emax = 10.0, EC50 =
√

2,
ts = 0.50, added to 1000+ .05t +0t2 and Gaussian noise with SD= 2. In the lower panel, superimposed on the
data is the predicted time course of drug effect over time, drawn using the parameter values returned by the
Bayesian Data-Analysis Toolbox as most likely given these data and the PKPD model: Emax = 10.6,
EC50 = 1.43, ts = 0.451, a0 = 1000, a1 = 0.0553, a2 =−0.000149. For this time course, p(model) was
estimated as 0.540, and the SD of the residuals was 2.04.
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Figure 3. The fraction of time courses for which p(model) >0.5 is shown on the vertical axis as a function of
the EC50 and SD used to generate the time courses.
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Figure 4. The mean ± SD probability of the full PKPD model is shown for each combination of EC50 and
noise as a function of that combination’s SNR as defined in Methods. Points with SNR outside the range shown
here are omitted for clarity.
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Figure 5. The mean accuracy of the estimated EC50 for time courses with p(model)> 0.5 is shown as a function
of the input EC50. SNR for each estimate is shown by the width of the marker, as indicated by the legend at
lower right. The diagonal line indicates equality, i.e., perfect accuracy.
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Figure 6. The mean ± SD accuracy of the estimated EC50 for time courses with p(model) >0.5 is shown as a
function of SNR as defined in Methods. Here accuracy is defined as the output EC50 divided by the input EC50.
The full-width horizontal lines indicate perfect accuracy (ratio = 1.0) and 3/2 and 2/3 of perfect accuracy. The
accuracy of the estimated EC50 is superb when SNR > about 6.5, and tends to be accurate for SNR as low as 0.9.
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Figure 7. Time-signal curves from in vivo data from a phMRI study, in red, with the selected model in dark
blue. A-D, 4-dose experiments. E-H, 8-dose experiments. Left column, midbrain. Right column, striatum. See
Table 1 for further details.
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Table 1. Model select results from in vivo data

Panel Doses Animal Region Prob. Emax EC?
50 t1/2 ts

A 4 1 Midbrain 1.00 12.59 3.44 58.33 0.98
B 4 1 Striatum 1.00 −13.58 4.15 59.48 0.81
C 4 2 Midbrain 1.00 29.27 6.32 3.93 0.23
D 4 2 Striatum 1.00 −2.48 0.001 40.58 0.01
E 8 1 Midbrain 0.00 – – – –
F 8 1 Striatum 0.02 – – – –
G 8 2 Midbrain 0.76 7.38 0.418 13.16 0.18
H 8 2 Striatum 1.00 −13.9 1.63 2.00 0.72

Panel, relevant panel in Figure 7. Prob., probability of the full PKPD model. EC?
50, the ratio of EC50 to the peak

concentration Cmax after a single 25 µg/kg dose of drug. Emax is in BOLD signal units, and t1/2 and ts are in
minutes.
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