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Abstract

There is increasing evidence that non-annotated short open reading frames (sORFs) can
encode functional micropeptides, but computational identification remains challenging.
We expand our published method and predict conserved sORFs in human, mouse,
zebrafish, fruit fly and the nematode C. elegans. Isolating specific conservation
signatures indicative of purifying selection on encoded amino acid sequence, we identify
about 2000 novel sORFs in the untranslated regions of canonical mRNAs or on
transcripts annotated as non-coding. Predicted sORFs show stronger conservation
signatures than those identified in previous studies and are sometimes conserved over
large evolutionary distances. Encoded peptides have little homology to known proteins
and are enriched in disordered regions and short interaction motifs. Published ribosome
profiling data indicate translation for more than 100 of novel sORFs, and mass
spectrometry data gives peptidomic evidence for more than 70 novel candidates. We

thus provide a catalog of conserved micropeptides for functional validation in vivo.
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Introduction

Ongoing efforts to comprehensively annotate the genomes of humans and other species
revealed that a much larger fraction of the genome is transcribed than initially
appreciated!. Pervasive transcription produces a number of novel classes of non-coding
RNAs, in particular long intergenic non-coding RNAs (lincRNAs)2. The defining feature of
lincRNAs is the lack of canonical open reading frames (ORFs), classified mainly by
length, nucleotide sequence statistics, conservation signatures and similarity to known
protein domains?. Although coding-independent RNA-level functions have been
established for a growing number of lincRNAs34, there is little consensus about their
general roless. Moreover, the distinction between lincRNAs and mRNAs is not always
clear-cuts, since many lincRNAs have short ORFs, which easily occur by chance in any
stretch of nucleotide sequence. However, recent observations suggest that lincRNAs and
other non-coding regions are often associated with ribosomes and sometimes in fact
translated’-16. Indeed, some of the encoded peptides have been detected via mass
spectrometry017-23, Small peptides have been marked as essential cellular components
in bacteriaz4 and yeast?5. More detailed functional studies have identified the well-
known tarsal-less peptides in insects26-29, characterized a short secreted peptide as an
important developmental signal in vertebrates39, and established a fundamental link
between different animal micropeptides and cellular calcium uptake3t32,

Importantly, some ambiguity between coding and non-coding regions has been
observed even on canonical mRNAs?!5: upstream ORFs (uORFs) in 5' untranslated
regions (5'UTRs) are frequent, well-known and mostly linked to the translational
regulation of the main CDS3334, To a lesser extent, mRNA 3'UTRs have also been found
associated to ribosomes, which has been attributed to stop-codon read-throughs3s, in
other cases to delayed drop-off, translational regulation or ribosome recycling3é, and
even to the translation of 3'UTR ORFs (dORFs)10. Translational regulation could be the
main role of these ORFs, and regulatory effects of translation (e.g., mRNA decay) could
be a major function of lincRNA translation!2, Alternatively, they could be ORFs in their
own right, considering well-known examples of polycistronic transcripts in animals such
as the tarsal-less mRNA26-28, [ndeed, many non-annotated ORFs have been found to
produce detectable peptides!?17, and might therefore encode functional
micropeptides3’.

Typically, lincRNAs are poorly conserved on the nucleotide level, and it is hard to
computationally detect functional conservation despite sequence divergence even when

it is suggested by synteny?238. In contrast, many of the sORFs known to produce
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1 functional micropeptides display striking sequence conservation, highlighted by a

2 characteristic depletion of nonsynonymous compared to synonymous mutations. This

s suggests purifying selection on the level of encoded peptide (rather than DNA or RNA)
+  sequence. Also, the sequence conservation rarely extends far beyond the ORF itself, and
s an absence of insertions or deletions implies conservation of the reading frame. These
¢  features are well-known characteristics of canonical protein-coding genes and have in

7 fact been used for many years in comparative genomics3949. While many powerful

s  computational methods to identify protein-coding regions are based on sequence

9 statistics and suffer high false-positive rates for very short ORFs4142, comparative

10 genomics methods have gained statistical power over the last years given the vastly

11 increased number of sequenced animal genomes.

1z Here, we present results of an integrated computational pipeline to identify conserved
13 SORFs using comparative genomics. We greatly extended our previously published

14+ approachl0and applied it to the entire transcriptome of five animal species: human (H.
15 sapiens), mouse (M. musculus), zebrafish (D. rerio), fruit fly (D. melanogaster), and the
16 nematode C. elegans. Applying rigorous filtering criteria, we find a total of about 2000
17 novel conserved sORFs in lincRNAs as well as other regions of the transcriptome

15 annotated as non-coding. By means of comparative and population genomics, we detect
19 purifying selection on the encoded peptide sequence, suggesting that the detected
20 sORFs, of which some are conserved over wide evolutionary distances, give rise to
21 functional micropeptides. We compare our results to published catalogs of peptides
22 from non-annotated regions, to sets of sORFs found to be translated using ribosome
23 profiling, and to a number of computational sORF predictions. While there is often little
24« overlap, we find in all cases consistently stronger conservation for our candidates,
25 confirming the high stringency of our approach. Overall, predicted peptides have little
26 homology to known proteins and are rich in disordered regions and peptide binding
27 motifs which could mediate protein-protein interactions. Finally, we use published high-
28 throughput datasets to analyze expression of their host transcripts, confirm translation
29 of more than 100 novel sORFs using published ribosome profiling data, and mine in-
30 house and published mass spectrometry datasets to support protein expression from
31 more than 70 novel sORFs. Altogether, we provide a comprehensive catalog of

32 conserved sORFs in animals to aid functional studies.
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Results

Identification of conserved coding sORFs from multiple species alignhments.

Our approach, which is summarized in Fig. 14, is a significant extension of our
previously published method?0. Like most other computational studies, we take an
annotated transcriptome together with published lincRNA catalogs as a starting point.
We chose the Ensembl annotation (v74), which is currently one of the most
comprehensive ones, especially for the species considered here. In contrast to de novo
genome-wide predictions!743, we rely on annotated transcript structures including
splice sites. We then identified canonical ORFs for each transcript, using the most
upstream AUG for each stop codon; although use of non-canonical start codons has been
frequently described5-174445 there is currently no clear consensus how alternative
translation start sites are selected. Next, ORFs were classified according to their location
on lincRNAs or on transcripts from protein-coding loci: annotated ORFs serving as
positive control; ORFs in 3'UTRs, 5'UTRs or overlapping with the annotated CDS; or on
other transcripts from a protein-coding locus lacking the annotated CDS. We ignored
pseudogene loci: although pseudogenes have been associated with a variety of biological
functions#6-48, their evolutionary history makes it unlikely that they harbor sORFs as
independent functional units encoding micropeptides.

Based on whole-genome multiple species alignments, we performed a conservation
analysis to obtain four characteristic features for each ORF: most importantly, we scored
the depletion of nonsynonymous mutations in the alignment using phyloCSF4%; we also
evaluated conservation of the reading frame from the number of species in the (un-
stitched) alignment that lack frameshifting indels; finally, we analyzed the characteristic
steps in nucleotide-level conservation (using phastCons) around the start and stop
codons by comparing to the mean profile observed in annotated ORFs. Next, we trained
a classifier based on support vector machines (see also Crappe et al.5° for a related
approach) on confident sets of conserved small peptides and control sORFs from non-
coding regions: as positive control, we chose conserved small peptides of at most 100 aa
from Swiss-Prot with positive phyloCSF score. We discarded a number of presumably
fast-evolving peptides: 177 in human and 77 in mouse, which are associated with
antimicrobial defense, and 15 in fly of which 11 are signal peptides. As negative control,
we chose sORFs on classical ncRNAs such as pre-miRNAs, rRNAs, tRNAs, snRNAs, or
snoRNAs. Importantly, both of these sets overlap with a sizable number of genomic
regions that are highly conserved on the nucleotide level (phastCons conserved

elements; Fig. S1A). While each of the four conservation features performs well in
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discriminating positive and negative set (Fig. S1B), their combination in the SVM
reaches very high sensitivity (between 1-5% false negative rate) and specificity (0.1-
0.5% false positive rate) when cross-validating our training data (Fig. 1B and Fig. S1B).
The classifier is dominated by the phyloCSF score (Fig. S1B), but the additional
conservation features help to reject sSORFs on annotated pseudogene transcripts, which
typically do not show characteristic steps in nucleotide conservation near start or stop
codons (Fig. 1B inset).

We noted that known small proteins typically reside in distinct genomic loci, while many
predicted ORFs on different transcript isoforms overlap with one another or with
annotated coding exons. Therefore, we aimed to remove candidates where the
conservation signal could not be unambiguously assigned. We thus implemented a
conservative overlap filter by excluding ORFs overlapping with conserved coding exons
or with longer SVM-predicted ORFs (Methods). Most sORFs in 3'UTRs or 5'UTRs pass
this filter, but many sORFs from different mRNA and lincRNA isoforms are collapsed,
and most sORFs (85-99%) overlapping with annotated coding sequence are rejected

(Fig. 1C and Fig. S1D).

Hundreds of novel conserved sORFs, typically much smaller than known

small proteins

With our stringent conservation and overlap filters, we predict 2002 novel conserved
sORFs of 9 to 101 codons: 831 in H. sapiens, 350 in M. musculus, 211 in D. rerio, 194 in D.
melanogaster, and 416 in C. elegans. Novel sORFs reside in lincRNAs and transcriptomic
regions annotated as non-coding, with relatively few sORFs predicted in 3'UTRs or
overlapping coding sequence relative to the size of these transcriptome regions (pre-
overlap filter; see Fig. S1C). Our pipeline recovers known or recently discovered
functional small peptides, such as all tarsal-less peptides26-28, sarcolamban32 and pgc5! in
flies, toddler3® in zebrafish together with its human and mouse orthologs, and BRK152
and myoregulin3! in human. We can confirm that many transcripts annotated as
lincRNAs in fact code for proteins. However, it is a relatively small fraction (1-7%) that
includes transcripts in intermediate categories, such as TUCPs in humans3 and RITs in C.
eleganss*. Further, we note that a sizable number of uORFs are predicted to encode
functional peptides, including the known case of MKKS35. Finally, we observe that the
great majority of predicted sORFs is much smaller (median length 11 aa for 3'UTR
sORFs in C. elegans to 49 aa for lincRNA sORFs in D. rerio) than annotated sORFs
(median length 81-83 aa), with sORFs in 3'UTRs and 5'UTRs typically being among the

shortest.


https://doi.org/10.1101/017772

bioRxiv preprint doi: https://doi.org/10.1101/017772; this version posted April 9, 2015. The copyright holder for this preprint (which was not

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

We assembled relevant information for the identified sORFs including coordinates,
sequences, transcript models, and features analyzed in the following sections in

Supplementary Tables 1-5.

Novel sORFs are under purifying selection on the amino acid level

Since selection on the level of the encoded amino acid sequence permits synonymous
sequence variation, we compared length-adjusted phyloCSF scores of predicted sORFs
to those of control ORFs matched for their nucleotide-level conservation (Fig. 2A;
methods). As expected from the design of our pipeline, we find that novel predicted
sORFs are specifically depleted of nonsynonymous mutations, and in most cases to a
similar extent as annotated ones. We also collected polymorphism data to perform a
similar but independent test on a population genomics level: aggregating SNPs from all
predicted sORFs (novel or annotated), we measured the dN/dS ratio and found that
nonsynonymous SNPs are suppressed compared to synonymous ones to a greater extent
than in control regions (Fig. 2B; Methods). This depletion is less pronounced than for
annotated small proteins, and the associated p-values are lower in the species with
higher SNP density (mouse and fruit fly with 16 and 45 SNPs/kb in the control regions)
than in zebrafish or C. elegans with 1.7 and 2.0 SNPs/kb, respectively. It fails to pass the
significance threshold in human with 2.4 SNPs/kb, where we get p=0.076 as the larger
value from reciprocal X2 tests.

These results confirm that predicted sORFs permit synonymous more than
nonsynonymous sequence variation when comparing within or between species,
suggesting that selection acts on the level of the encoded peptide sequence and

therefore implying functional peptide products.

Some novel sORFs are widely conserved

We next sought to evaluate how widely the predicted sORFs are conserved. First, we
took an alignment-based approach: we inferred most recent common ancestors from the
alignment by tallying the species with conserved start and stop codons and (if
applicable) splice sites, and without nonsense mutations. This analysis is dependent on
the accuracy of the alignment, but it does not require transcript annotation in the
aligned species. Using this method (see Fig. 2C) we find that after annotated small
proteins, uORFs are most widely conserved, followed by the other sORF types. Of the
novel sORFs found in human, 342 are conserved in placental mammals and 39 in the
gnathostome ancestor (i.e., in jawed vertebrates). 18 are found conserved in teleosts, 49

in Drosophilids, and 88 in worms of the Elegans group.
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We also addressed this question with a complementary analysis: we performed a
homology clustering of sORFs predicted in the different species using a BLAST-based
approach adapted for short amino acid sequences (Methods). This analysis clusters
1445 of in total 3986 sORFs into 413 homology groups, and 304 of 2002 novel
predictions are grouped into 138 clusters. The clusters containing at least one novel
predictions and sORFs from more than one species are summarily shown in Fig. 2D.
Some novel predictions cluster together with sORFs annotated in other species,
confirming the reliability of our approach and extending current transcriptome
annotations. For instance, several zebrafish lincRNAs are found to encode known small
proteins such as cortexin 2, nuclear protein transcriptional regular 1 (NUPR1), small
VCP/p97-interacting protein (SVIP), or centromere protein W. Conversely, some
lincRNAs from mouse and human encode small peptides with annotated (yet often
uncharacterized) homologs in other species. Further, a sORF in the 3'UTR of murine
Zkscan1 encodes a homolog of Sec61 gamma subunit in human, mouse, fish and fly. Also,
a sORF in the 5'UTR of the worm gene mnat-1 encodes a peptide with homology to
murine lyrm4 and the fly gene bcn92.

We also find 109 clusters of entirely novel predictions, such as 29 sORFs in 5'UTRs and
16 in 3'UTRs conserved between human and mouse, a 15 aa uORF in solute carrier
family 6 member 8 (SLC6A8) conserved across vertebrates, or another 15 aa peptide
from the 5'UTR of the human gene FAM13B conserved in the 5'UTRs of its vertebrate
and fly homologs. One novel 25 aa peptide from annotated lincRNAs is predicted in
three vertebrates and four other ones in two out of three. The other 22 human lincRNA
sORFs found to be conserved in vertebrates (Fig. 2C) cluster together with annotated
sORFs or are not detected in the other species for various reasons: they do not pass the
overlap filter, do not use the most upstream start codon, or lack transcript annotation in
mouse and zebrafish. Besides the 15 aa uORF peptide in FAM13B, there are also several
peptides encoded in 3'UTRs or of mixed annotation conserved between vertebrates and
invertebrates. Two clusters of unclear significance, consisting mainly of sORFs in the
3'UTRs of zinc-finger proteins, share a common HTGEK peptide motif, a known
conserved linker sequence in C2H2 zinc fingers5é. Finally, we note that our sequence-
based approaches cannot resolve structural and/or functional homologies that persist
despite substantial sequence divergence as observed between different animal peptides
interacting with the Caz* ATPase SERCA3132, or between bacterial homologs of the E. coli
CydX protein5’. We expect that further homologies between the predicted sORFs could

be uncovered using more specialized approaches.
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Taken together, this conservation analysis shows that novel sORFs are often widely
conserved on the sequence level; further functional homologies could exist that are not

detectable by sequence3132,

Conserved sORFs are predicted with high stringency

Many recent studies have addressed the challenge of identifying novel small protein-
coding genes by means of computational methods or high-throughput experiments.
These studies were performed in different species with different genome annotations,
searching in different genomic regions, allowing different length ranges and using often
quite different underlying hypotheses, for instance with respect to non-canonical start
codons. Accordingly, they arrive at very different numbers. To reconcile these different
approaches, we inclusively mapped sORFs defined in 15 other studies with published
lists of coordinates, sequences or peptide fragments, to the comprehensive set of
transcriptomic ORFs analyzed here (Supplementary Table 6). With the caveat that other
studies often prioritized findings by different criteria, we then compared results with
regard to the aspect of main interest here: conservation of the encoded peptide
sequence, by means of comparative and population genomics as in Figs. 2A and B. We
grouped studies by methodology, and by organism and genomic regions analyzed. We
then compared sORFs predicted in our study but not in others to sORFs that were
predicted elsewhere and analyzed but rejected here (Fig. 3). We used our results before
applying the overlap filter. Considering changes in annotation (e.g., of coding sequences,
lincRNAs and pseudogenes), we only compared to those sORFs that we analyzed and
classified into the corresponding category. Generally, we find rather limited overlap
between our predictions and results from other studies, which is partially explained by
differences in applied technique and underlying hypothesis. We also find that the sORFs
that we predict for the first time have consistently much higher length-adjusted
phyloCSF scores than those found in other studies but rejected in ours; in many cases,
we also find that the dN/dS ratio of nonsynonymous vs. synonymous SNP density is
lower, albeit in a similar number of cases there is not enough data to render the p-value
significant (we used the larger one from reciprocal X2-tests).

First, we compared to a study using ribosome profiling in zebrafish3¢, with similar
overlap as reported in our previous publication?9, the results of which are re-analyzed
with the updated transcriptome annotation for comparison (Fig. 3A-B). Ribosome
profiling provides evidence of translation in the cell types or developmental stages
analyzed, but in addition to coding sORFs it also detects SORFs with mainly regulatory

functions such as uORFs. Next, we compared to 7 studies employing mass
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spectrometry!7-22: matching given protein sequences or re-mapping detected peptides to
the set of sORFs analyzed here, we find only between 1 and 12 common results from
between 3 and almost 2000 sORFs (Fig. 3C-E). Note that up to 62% of peptides
identified in these studies come from pseudogene loci which we excluded. While mass
spectrometry provides direct evidence for peptide products, it is also performed in
specific cell lines or tissues and has limited dynamic range. This can prevent detection of
small peptides, which might be of low abundance or half-life, or get lost during sample
preparation. Both experimental methods cannot distinguish sORFs coding for conserved
micropeptides from those coding for lineage-specific or fast-evolving functional
products. It is thus not surprising that these sORFs are as a group less conserved than
the ones found using conservation as a selection criterion.

Next, we compared our results against other computational studies!8435058-60, Here, we
can often match much larger number of sORFs, but except for predictions of the CRITICA
pipeline in mouse cDNAs58, we again find only limited overlap: we predict between 0
and 23% of analyzed sORFs found elsewhere, indicating a high variability in different
computational methods, even though many of them use evolutionary conservation as a
filter. The consistently better conservation indicators for our results (Fig. 3F-N) confirm
that the deeper alignments and sensitive conservation features used here lead to
increased performance. However, we remark that our method is not designed to find
sORFs in alternative reading framesé162 unless their evolutionary signal strongly
exceeds what comes from the main CDS (e.g., because it is incorrectly annotated); also,
the limited overlap with Ruiz-Orera et al.¢? is not unexpected since their focus was on
newly evolved lincRNA sORFs, which are by definition not well conserved. Finally,
Crappé et al.>? and Ladoukakis et al.#3 limited their search to single-exon sORFs, whereas
66% and 20% of sORFs predicted by us in the transcriptomes of mouse and fly,
respectively, span more than one exon. However, even when restricting the comparison
to single-exon sORFs, we find better conservation indicators for our results.

Given the consistently higher phyloCSF scores and often better dN/dS ratios of our
sORFs when comparing to other studies, we conclude that our results present a high-

stringency set of sORFs coding for putatively functional micropeptides.

Novel peptides are often disordered and enriched for linear peptide motifs
We next investigated similarities and differences of sORF-encoded peptides to
annotated proteins. First, we used amino acid and codon usage to cluster predicted
sORFs, short and long annotated proteins and a negative control consisting of ORFs in

non-coding transcriptome regions with small phyloCSF scores. Looking at amino acid

10
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usage, we were surprised to find that our novel predictions in four out of five species
clustered with the negative control. However, when choosing subsamples of the data,
novel predictions also often clustered together with annotated proteins, suggesting that
their overall amino acid usage is intermediate. Indeed, the frequencies of most amino
acids lie between those of positive and negative control. Interestingly, however, we
found that novel predictions clustered robustly with annotated proteins when analyzing
codon usage (with the exception of fruit fly).

Dissimilarity with annotated proteins was also confirmed when testing for homology to
the known proteome using BLAST. Only a small fraction of novel predictions, mainly
those in the 'CDS overlap' and 'other’ categories, give significant hits (Fig. 4A). While
some novel sORFs are homologous to annotated small proteins as revealed by the
clustering analysis in Fig. 2C, there is no significant overlap between the sORFs that
were assigned to homology clusters and those that have similarity to known proteins
(Fisher's p > 0.1 for all species except for C. elegans where p=0.003). Hence, even
completely novel sORFs are sometimes conserved over wide distances.

We then hypothesized that differences in amino acid composition might give rise to
different structural properties. We used [UPred®3 to detect intrinsically unstructured
regions, and found that novel predictions are much more disordered than known small
proteins or a length-matched negative control (Fig. 4B). This could suggest that the
peptides encoded by conserved sORFs adopt more stable structures only upon binding
to other proteins, or else mediate protein-protein or protein-nucleic acid interactionsé4.
It has recently become clear that linear peptide motifs, which are often found in
disordered regions, can be important regulators of protein function and protein-protein
interactions®s. Indeed, when searching the disordered parts of sSORF-encoded peptides
for matches to motifs from the ELM database®é, we find that the increased disorder
comes with a higher density of such motifs in the predicted peptides (Fig. 4C), as was
also observed recently for peptides identified with mass spectrometry?23.

Since a recent study identified toddler and a number of other predicted signal peptides
from non-annotated ORFs30, we searched our novel candidates with signalpé’. Fig. 4D
shows that a small number of our predicted sORFs have predicted signal sequences, and
that most of these lack trans-membrane domains, but this does not exceed expectations
from searching a length-matched control set. However, the typically lower amino acid
conservation at the N-terminus of signal peptides could imply that some genuine
candidates escape our conservation filters.

Taken together, these results show that novel sORF-encoded peptides are different from

annotated proteins in terms of amino acid usage and sequence homology, that they are

11
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enriched in disordered regions and peptide motifs, and that only few of them encode

signal peptides.

3'UTR sORFs are not consistently explained by stop-codon readthrough or

alternative terminal exons

sORFs in 3'UTRs (dORFs) are least likely to be predicted as conserved compared to the
other categories (Fig. S1C), but nevertheless we were surprised to find so many of them
(between 33 in zebrafish and 229 in human). Although the existence of conserved
dORFs was observed before>9, and translation was also detected in ribosome profiling?©,
to the best of our knowledge there are no known examples of functional peptides
produced from 3'UTRs (with the exception of known polycistronic transcripts).
Therefore we explored the possibility that these ORFs actually represent conserved
read-through events as suggested previously356869, or come from non-annotated
alternative C-terminal exons.

We first checked 283 read-through events in Drosophila previously predicted by
conservationé8, and 350 detected using ribosome profiling35. None of these coincides
with any of the 41 sORF candidates we find in fly 3'UTRs, even though 3 of the
candidates in Jungreis et al.68 were predicted as conserved and only rejected by the
overlap filter. Similarly, none of 42 read-through events detected using ribosome
profiling in human cells35 was predicted as conserved. However, three out of 8 known or
predicted read-through events in human?? (in MPZ, OPRL1 and OPRK1) and one out of 5
read-through events predicted in C. elegans (in F38E11.6)¢8, were here incorrectly
classified as 3'UTR sORFs (naturally, they have an in-frame methionine downstream of
the annotated stop codon).

Given this small but finite number of false positives, we therefore explored our dORF
candidates more systematically. In Fig. 4A, we had already established that dORF-
encoded peptides have very little homology to known proteins, in contrast to the
domain homology found in Drosophila readthrough regions¢s. Next, we checked that
there is a very pronounced conservation step near the stop codon of annotated ORFs
containing a predicted sORF in their 3'UTR, even though it is slightly smaller than for
control ORFs lacking dORFs (Fig. 5A for human; see Fig. S5A for other species). This
indicates that sequence downstream of the stop codons is indeed much less conserved
and that these stops are not recently acquired (premature) stop codons or unused due
to programmed frameshifts upstream. We made a number of further observations
arguing against readthrough: dORFs are not generally close to the annotated stop codon

or in the same frame, since we find only a small difference in the distribution of these

12


https://doi.org/10.1101/017772

bioRxiv preprint doi: https://doi.org/10.1101/017772; this version posted April 9, 2015. The copyright holder for this preprint (which was not

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

distances and in most cases no preference for a specific reading frame (Fig. 5B and C;
Fig. S5B and C); further, we observe a large number of intervening stop codons (Fig. 5D
and Fig. S5D), and a step in conservation near the dORF start codons significantly more
pronounced than for control ORFs in 3'UTRs (Fig. 5E and Fig. S5E). In addition, this
observation makes it unlikely that dORFs represent non-annotated alternative terminal
exons (where this methionine would not be associated with a conservation step).
Further, if such un-annotated exons existed in large numbers, we would expect that at
least some of our (pre-overlap filter) predictions overlap with already annotated
alternative exons. However, except for Drosophila we only find at most two dORFs with
CDS overlap, which is not more than expected compared to non-predicted dORFs (Fig.
5F and Fig. S5F).

In sum, these data suggest that our identification of 3'UTR sORFs is not systematically
biased by conserved readthrough events or non-annotated terminal exons. Notably, we
also identified candidates that clearly represent independent proteins, such as the dORF
in the mouse gene Zkscan1 encoding a homolog of SEC61G, and a 22 aa dORF in the fly
gene CG43200 which is likely another one of several ORFs in this polycistronic

transcript.

Experimental evidence for translation of and protein expression from

predicted sORFs

Finally, we mined a large collection of publicly available and in-house generated data to
verify translation and protein expression from predicted sORFs. In order to form
expectations as to where and how highly our novel candidates could be expressed, we
first analyzed publicly available RNA-seq expression datasets for different tissues
(human and mouse) or developmental stages (zebrafish, fruit fly, and worm)
(Supplementary Table 7). We then compared mRNAs coding for short proteins and
lincRNAs with conserved sORFs with other mRNAs and lincRNAs, respectively (Fig.
S6A). This analysis revealed that annotated short proteins come from transcripts with
higher expression and lower tissue or stage specificity than long proteins. Conversely, it
is well known that lincRNAs are not as highly and widely expressed as mRNAs53.71; we
additionally find that lincRNAs with predicted sORFs are more highly and widely
expressed than other lincRNAs. This analysis indicates that peptide products of novel
sORFs could be of lower abundance than known small proteins, and that profiling
translation or protein expression from a limited number of cell lines or tissues might not
always yield sufficient evidence. We therefore used several datasets for the subsequent

analysis.
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First, we mined publicly available ribosome profiling datasets in various human and
mouse tissues or cell lines, and in zebrafish (Supplementary Table 8). Several metrics to
identify translated regions from such data have been proposed®14-16; we rely here on the
ORFscore method used in our previous publication!9, which exploits the frame-specific
bias of the 5' positions of ribosome protected fragments to distinguish actively
translated regions from those transiently associated with ribosomes or contaminants. It
requires relatively deep coverage and a very clear 3 nt periodicity in ribosomal
fragments, which is not always easily achievable (e.g., due to species-specific ribosome
conformational properties!135). We evaluated the ORFscore metric for datasets from
human (HEK293 cells#5, KOPT-K1 cells72 and human brain tissue’3), mouse (embryonic
stem cells16 and brain tissue’3), and another zebrafish dataset® in addition to the one
used beforel0, The performance of these datasets was assessed by comparing ORFscore
values of sORFs coding for annotated small proteins to those of the negative control
from Fig. 1 by means of the Kolmogorov-Smirnoff D statistic; available datasets for D.
melanogaster3ss and C. elegans’ did not give a satisfying separation between positive and
negative control (D < 0.55) and were not used.

Fig. 6A shows that predicted lincRNA sORFs have significantly higher ORFscores than
the negative control (p-values between 2e-7 and 0.002), and similarly 5'UTR sORFs
(p=2.5e-7 to 0.005) and sORFs in the "other" category (p=3.5e-7 to 0.04). sORFs in
3'UTRs reach marginal significance in some samples (p=0.02 for mouse brain and
zebrafish). Choosing an ORFscore cutoff of 6 as done previously!?, we find 45 novel
sORFs translated in the human datasets, 15 in mouse, and 50 in zebrafish, respectively.
We also find evidence for the translation of several non-conserved length-matched
control sORFs, indicating that this set could contain lineage-specific or newly evolved
coding ORFs or ORFs with regulatory functions.

Next, we searched for peptide evidence in mass spectrometry datasets (Supplementary
Table 9). We analyzed 3 in-house datasets to be published elsewhere: one for a mix of 3
human cell lines (HEK293, HeLa, and K562), one for a mix of 5 human cell lines (HepG2,
MCF-10A, MDA-MB, MCF7 and WI38), and one for murine C2C12 myoblasts and
myotubes. Further, we mined several published datasets: one for HEK293 cells?5, one for
11 human cell lines’¢, one for mouse NIH3T3 cells??, one for mouse liver’s, and whole-
animal datasets from zebrafish79, fly8081, and C. eleganss?. All datasets were mapped with
MaxQuant83 against a custom database containing our candidates together with protein
sequences from UniProt. PSMs (peptide spectrum matches) were identified at 1% FDR,
and those mapping to another sequence in UniProt with one mismatch or ambiguous

amino acids were excluded. Using this strategy, we recover between 43 and 131
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annotated small proteins per sample and confirm expression for 34 novel predictions in
human, 26 in mouse, 2 in zebrafish, 3 in fly and 9 in C. elegans (Fig. 6B). For instance, we
obtain PSMs for the recently described myoregulin micropeptide3! and for the long
isoform of the fly tarsal-less gene26-28, In total, we find peptidomic evidence for 57
lincRNA sORFs. As observed previously in human7.18, mouse?23 and zebrafish!® we also
find PSMs for sORFs in 3'UTRs and 5'UTRs. MaxQuant output for PSMs and their
supported sORFs is listed in Supplementary Tables 10-14, and the spectra with peak
annotation are shown in Supplementary Figures 7-11.

In human and mouse, the results for novel predictions have considerable overlap of 17
and 8 hits, respectively, indicating that peptides from some sORFs can be reliably
detected in multiple independent experiments. We also find more than one peptide for 9
and 11 novel sORFs in human and mouse and for one sORF in fly and worm,
respectively. Likely as a consequence of the differences in expression on the RNA level
(Fig. S6A), the PSMs supporting our novel predictions have generally lower intensities
than those supporting the positive control (Mann-Whitney p=4e-9; Fig. S6C). However,
we also observed that these PSMs are shorter than those mapping to UniProt proteins
(p=0.005; Fig. S6D) and are of lower average quality: comparing Andromeda scores and
other measures of PSM quality, we found that values for the PSMs supporting expression
of novel predictions are smaller than for those mapping to the positive control (Fig. S6E-
G). To test for the possibility of misidentifications, we therefore mapped two of our
human datasets also against a 3-frame translation of the entire human transcriptome. As
expected given the significantly (7.5fold) larger database, many PSMs (69 of 240) for
annotated and novel sORFs now fall below the 1% FDR cutoff, but none of the spectra
supporting the novel identifications is assigned to a different peptide sequence, and
additional PSMs identified in these runs have similarly lower quality. Low-quality
identifications can also result when posttranslational modifications of known proteins
are not considered during the search8485 (B. Bogdanov, H.Z. and M.S., under review). We
therefore re-mapped one of the human datasets allowing for deamidation or
methylation. Both possibilities again lead to a larger search space, such that 5 and 27 of
117 PSMs, respectively, fail to pass the FDR cutoff. Further, one of 14 PSMs supporting
novel candidates is now attributed to a deamidated protein, but 7 of 103 PSMs mapping
to sORFs in the positive control are also re-assigned, even though most of these sORFs
have independent evidence from other PSMs. This suggests that targeted mass
spectrometry approaches, complementary fragmentation techniques, or validation runs

using synthetic peptides?3 should be used to verify expression of ambiguous candidates.
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In summary, we cross-checked our predictions against a variety of high-throughput
data: RNA-seq indicates that sORF-harboring lincRNAs are not as highly and widely
expressed as other mRNAs, but more than lincRNAs without conserved sORFs.
Analyzing ribosome profiling and mass-spectrometry data, we find evidence for
translation and protein expression from 110 and 74 novel sORFs, respectively, across all

datasets.

Discussion

In our search for functional sORF-encoded peptides, we followed the idea that
evolutionary conservation is a strong indicator for functionality if the conservation
signal can be reliably separated from background noise and other confounding factors,
such as overlapping coding sequences or pseudogenes. We therefore used conservation
features that are very specific to known micropeptides (and canonical proteins), namely
a depletion of nonsynonymous mutations, an absence of frameshifting indels, and
characteristic steps in sequence conservation around start and stop codon. We then
chose confident sets of positive and negative control sORFs, both of which have many
members that are highly conserved on the nucleotide level, and combined these features
into a machine learning framework with very high sensitivity and specificity.
Importantly, our refined pipeline also achieves a more reliable rejection of sORFs on
pseudogene transcripts. Pseudogenes are important contaminants since frequent
intervening stop codons imply that many of the resulting ORFs are short. While many
pseudogenes are translated or under selective constraint,*8 sORFs in these genes
probably do not represent independent functional or evolutionary units.

Our integrated pipeline identifies sSORFs comprehensively and with high accuracy, but
we want to highlight a number of caveats and avenues for future research. First, the
scope and quality of our predictions depends on the quality of the annotation: in some
species, pseudogenes, lincRNAs and short ncRNAs (especially snoRNAs and snRNAs)
have been characterized much more comprehensively, explaining some of the
differences in the numbers seen in Fig. 1D. For instance, a recent study suggests that
incomplete transcriptome assembly could lead to fragmented lincRNA identifications
that obscure the presence of longer ORFs.8¢ Second, the quality of the predictions
depends on the choice of the training data: while we aimed to choose negative controls
that are transcribed into important RNA species and therefore often conserved on the
nucleotide level, the training set is inevitably already separable by length alone, since

there are only very few known small peptides below 50 aa, and very few ORFs on
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ncRNAs longer than that. A larger number of functionally validated very short ORFs
would help to more confidently estimate prediction performance in this length range.
Third, we remark that in some cases segmental duplications and/or genomic repeats
give rise to a number of redundant sORFs, for instance in a 50kb region on zebrafish
chromosome 9, or on chromosome U in flies. Fourth, our analysis is currently limited to
finding canonical ORFs, even though usage of alternative initiation codons could be
widespread15-17.4445 Alternative start codon usage might even produce specific
conservation signals that could be leveraged to confidently identify ORF boundaries.
Fifth, our approach is limited by the quality of the multiple species alignment: while the
micropeptides characterized so far have very clear signatures allowing an alignment-
based identification, there could be many instances where sequence conservation within
the ORF and its flanking regions is not sufficient to provide robust anchors for a multiple
alignment. For instance, functionally homologous micropeptides can be quite diverged
on the sequence level. If additional homologous sequence regions can be reliably
identified and aligned, a codon-aware re-alignment of candidate sequences®” could also
help to improve detection power. Further, we currently only tested for a depletion of
nonsynonymous mutations, but more sensitive tests could be implemented in a similar
way49,

Sixth, since we did not find sORFs from our positive control or other known
micropeptides to overlap with each other or longer ORFs, we used a quite conservative
overlap filter to choose from each genomic locus one ORF most likely to represent an
independent evolutionary and functional unit. This filter could be too restrictive: most
importantly for sORFs overlapping annotated long ORFs in alternative reading frames,
but also when the CDS annotation is incorrect, or for the hypothetical case that a
micropeptide has multiple functional splice isoforms.

Finally, we specifically examined 3'UTR sORFs, for which mechanisms of translation are
unclear. A very small number of cases could be explained by read-through or alternative
exons, but we did not observe global biases. Depending on the experimental conditions,
3'UTR ribosome occupancy can be observed in Drosophila and human cells, but it has
not been linked to active translation3¢. However, some mechanisms for downstream
initiation have been proposedss89, ribosome profiling gives evidence for dORF
translation in zebrafish10, and some peptide products are found by mass-spectrometry7-
19,2223, Of course, the distinction between uORFs, main CDS, and dORFs becomes blurry
for polycistronic transcripts.

To assess putative functionality of the encoded peptides, we tested our candidates for

signatures of purifying selection; in addition to the expected depletion of

17


https://doi.org/10.1101/017772

bioRxiv preprint doi: https://doi.org/10.1101/017772; this version posted April 9, 2015. The copyright holder for this preprint (which was not

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

nonsynonymous mutations in the multiple alignment when comparing to conservation-
matched controls, we also found a weaker (but in many cases highly significant)
depletion of nonsynonymous SNPs. A closer look at conservation statistics of identified
sORFs revealed that many novel predictions are widely conserved between species (e.g.,
almost 350 in placental mammals and almost 40 in jawed vertebrates). By means of
homology clustering, we observed that some of these novel predictions are actually
homologous to known proteins, but we also found a sizable number of widely conserved
uORFs and dORFs. Based on sequence homology, we could identify 6 novel predictions
that are conserved between vertebrates and invertebrates. This small number is to be
expected, since only two of 105 known annotated small proteins similarly conserved are
shorter than 50 aa (0ST4, a subunit of the oligosaccharyltransferase complex, and
ribosomal protein L41), and only a minority of our predicted sORFs is longer than that
(about 40% for zebrafish and 20% for the other species). Based on recently discovered
functional and structural similarities between different SERCA-interacting
micropeptides3132, we expect that additional deep homologies between novel
micropeptides might emerge in the future.

We also performed a systematic comparison to 15 previously published catalogs of sORF
identifications, both computational and by means of high-throughput experiments.
While underlying hypotheses, methods, and search criteria varied between studies, they
shared the goal of extending genome annotations by identifying novel protein-coding
regions. After matching results of other studies to our set of analyzed ORFs, we found in
most cases quite limited overlap. However, we observed consistently better indicators
of purifying selection for the set of sORFs identified here but not previously versus
sORFs identified elsewhere but rejected here. This suggests that our conservative filters
result in a high-confidence set of putatively functional sORFs, while a broad consensus
about sORF characteristics has yet to emerge3’. Most importantly, there could be a
continuum between ORFs coding for micropeptides and those with regulatory functions
(e.g., uORFs): we previously observed?0 that several uORFs in Drosophila with regulatory
functions controlled by dedicated re-initiation factors®? are also predicted here to
encode putatively functional peptides, including the fly homolog of the uORF on the
vertebrate gene FAM13B. A similar dual role could be fulfilled by sORFs on lincRNAs,
whose translation could have the main or additional function of degrading the host
transcript via nonsense-mediated decay!2. Alternatively, such sORFs could represent
evolutionary intermediates of novel proteinss0.

Due to these and other ambiguities, a relatively limited overlap is not unexpected when

combining computational and experimental approaches?9: for instance, ribosome
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profiling provides a comprehensive snapshot of translated regions in the specific cell
type, tissue and/or developmental stage analyzed. This includes sORFs that are
translated for regulatory purposes or coding for fast-evolving or lineage-specific
peptides such as the small proteins with negative phyloCSF scores excluded from our
positive control set. A similar caveat applies to mass-spectrometry, which provides a
more direct test of protein expression but has lower sensitivity than sequencing-based
approaches, especially for low-molecular-weight peptides. The matching of measured
spectra to peptide sequences is also nontrivial. Especially in deep datasets, low-quality
PSMs can result from mismatched database hits if the database is incomplete or
frequent post-translational modifications have not been considereds+8s (B. Bogdanov,
H.Z. and M.S., under review).

Finally, we mined high-throughput RNA-seq, ribosome profiling and proteomics
datasets to assess transcription, translation and protein expression of our predicted
candidates. First, we used RNA-seq data to show that sORF-harboring lincRNAs are less
highly and widely expressed than mRNAs (this is even more the case for lincRNAs
without sORFs). In contrast, mRNAs with annotated sORFs are well and widely
expressed, and in fact probably often encode house-keeping genes. Unfortunately, RNA
expression is less useful as an expression proxy for the non-lincRNA categories due to an
unknown translational coupling between main ORF and uORFs or dORFs. Given these
findings, we expect that experiments for many different tissues, developmental time
points, and environmental perturbations, and with very deep coverage, would be
necessary to exhaustively profile sORF translation and expression. With currently
available data, we could confirm translation of more than 100 conserved sORFs in
several vertebrate ribosome profiling datasets using a stringent metric (ORFscore10),
which exploits that actively translated regions lead to a pronounced 3 nt periodicity in
the 5'ends of ribosome protected fragments. We also analyzed a number of published
and in-house mass spectrometry datasets, and found peptidomic evidence for more than
70 novel candidates.

In conclusion, we present a comprehensive catalog of conserved sORFs in the
transcriptomes of five animal species. In addition to recovering known small proteins,
we discovered many sORFs in non-coding transcriptome regions. Most of these novel
sORFs are very short and some are widely conserved between species. Based on the
observation that encoded micropeptides are often disordered and rich in protein
interaction motifs, we expect that they could function through protein-protein or

protein-nucleic acid interactions. Given robust and confident signatures of purifying
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selection, and experimental evidence for translation and protein expression, our

findings provide a confident starting point for functional analyses in vivo.

Methods

Transcriptome annotation and alignments

For all species, we used the transcript annotation from Ensembl (v74). Additionally, we
used published lincRNA catalogs for human5391, mouse92, zebrafish3893 and fruit fly%,
and added modENCODES5* transcripts for C. elegans.

We downloaded whole genome multiple species alignments from the UCSC genome
browser (human: alignment of 45 vertebrates to hg19, Oct 2009; mouse: alignment of 59
vertebrates to mm10, Apr 2014; zebrafish: alignment of seven vertebrates to dr7, May
2011; fruit fly: alignment of 14 insect species to dm3, Dec 2006; worm: alignment of five

nematodes to ce6, Jun 2008).

ORF definition and classification

Spliced sequences for each transcript were scanned for the longest open reading frame
starting with AUG and with a minimum length of at least 27 nucleotides. We scanned
4269 unstranded lincRNA transcripts from Young et al.%* on both strands. ORFs from
different transcripts but with identical genomic coordinates and amino acid sequence
were combined in groups and classified into different categories (using the first
matching category for each group): "annotated"” if an ORF was identical to the annotated
coding sequence of a protein-coding transcript (i.e., biotype "protein coding”, and a
coding sequence starting at the most upstream AUG, without selenocysteins, read-
through or frameshift events). We classified ORFs as "pseudogene" if a member of a
group came from a transcript or a gene locus annotated as pseudogene. We designated
as "ncRNA" ORFs (negative controls) those with biotypes miRNA, rRNA, tRNA, snRNA or
snoRNA. Next, "3'UTR" ORFs were classified as such if they resided within the 3'UTRs of
canonical protein-coding transcripts, and if they did not overlap with annotated CDS
(see below). Analogously, we assigned "5'UTR" ORFs. In the category "CDS overlap” we
first collected ORFs that partially overlapped with 3'UTR or 5'UTR of canonical coding
transcripts. ORFs in the "other" category were the remaining ones with gene biotype
"protein coding”, or non-coding RNAs with biotypes "sense overlapping”, "nonsense-
mediated decay"”, "retained intron" or other types except "lincRNA". Only those non-
coding RNAs with gene and transcript biotype "lincRNA" were designated "lincRNA". To

exclude the possibility that alternative reading frames could be translated on transcripts
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1 lacking the annotated CDS, we finally added those ORFs that were completely contained
2 inthe annotated CDS of canonical transcripts to the "CDS overlap" category if other

3 group members did not fall into the "other" category. Transcripts not from Ensembl

+  were generally designated lincRNAs, except for C. elegans: in this case, we merged the

s modENCODE CDS annotation with Ensembl, and classified only the "RIT" transcripts as
¢  non-coding, while the ones that did not match the Ensembl CDS annotation were put in
7 the "other" category. We then added Swiss-Prot and TrEMBL identifiers from the

s UniProt database (Nov 18 2014) to our ORFs by matching protein sequences.

s Predicting conserved sORFs using a SVM

10 From the multiple alignments for each ORF, we extracted the species with at least 50%
11 sequence coverage and without frameshifting indels (using an insertion index prepared
12 before stitching alignment blocks), recording their number as one feature. Stitched

13 alignments for each putative SORF were then scored with PhyloCSF#49 in the omega mode
14+ (options --strategy=omega -f6 -allScores) and the phylogenetic trees available at UCSC
15 as additional input, yielding a second feature. Finally, we extracted phastCons

16 conservation scores® in 50 nt windows around start and stop codon (excluding introns
17 but extending into flanking genomic sequence if necessary) and used the Euclidean

18 distance of the phastCons profiles from the base-wise average over the positive set as

19 third and fourth feature.

20 Alinear support vector machine (LinearSVC implementation in the sklearn package in
21 Python) was built using the four (whitened) conservation features and trained on

22 positive and negative sets of sORFs. The positive set consisted of those sORFs in the

23 "annotated" category with encoded peptide sequence listed in Swiss-Prot, with at most
2« 100 aa (101 codons) length, some alignment coverage, and with positive phyloCSF

25 score. The negative set consisted of sORFs from the "ncRNA" category with alignment
26 coverage, but without overlap with annotated CDS.

27 We estimated the performance of the classifier by 100 re-sampling runs, where we

28 chose training data from positive and negative set with 50% probability and predicted
29 onthe rest. Prediction of pseudogene sORFs (inset of Fig. 1B) was done either with the
30 SVM, or based on the phyloCSF score alone, using a cutoff of 10 estimated from the

31 minimum average error point in the ROC curve.

2 Overlap filter

33 Refining our previous method, we designed an overlap filter as follows: in the first step,

s+ we only kept annotated sORFs or those that did not intersect with conserved coding
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exons. Here we took among the annotated coding exons in Ensembl (v74) or RefSeq (Sep
2 2014 for mouse, April 11 2014 for the other species) only those with conserved
reading frame, requiring that the number of species without frameshifting indels
reaches a threshold chosen from the minimum average error point in the ROC curves of
Fig. 1B and S1 (11 species for human, 10 for mouse, 4 for zebrafish, 7 for fruit fly, and 2
for worm). In a second step we also required that the remaining ORFs were not
contained in a longer ORF (choosing the longest one with the best phyloCSF score) that
itself was predicted by the SVM and did not overlap with conserved coding exons.

To exclude CDS overlap for the definition of 3'UTR and 5'UTR sORFs, and to design
negative controls, we used Ensembl transcripts together with RefSeq (Feb 6 2014), and
added FlyBase (Dec 12 2013) or modENCODE transcripts54 for fruit fly and worm,
respectively (using intersectBed and a minimum overlap of 1bp between the ORF and

CDS).

Conservation analysis

For the analysis in Figs. 2A and 3, we computed adjusted phyloCSF scores as z-scores
over the set of ORFs in the same percentile of the length distribution. Control ORFs were
chosen among the non-annotated ORFs without CDS overlap and with their phyloCSF
scores chosen among the 20% closest to zero and then sampled to obtain a statistically
indistinguishable distribution of averaged phastCons profiles over the ORF.

SNPs were downloaded as gvf files from Ensembl (for human: v75, 1000 Genomes phase
1; for mouse, zebrafish and fly: v77); for C. elegans we took a list of polymorphisms
between the Bristol and Hawaii strains from Vergara et al.?¢ and used liftOver to convert
ce9 coordinates to ce6. We removed SNPs on the minus strand, SNPs falling into
genomic repeats (using the RepeatMasker track from the UCSC genome browser, March
2015), and (if applicable) rare SNPs with derived allele frequency <1%. We then
recorded for each ORF and its conceptual translation the number of synonymous and
nonsynonymous SNPs, and the number of synonymous and nonsynonymous sites. For a
set of sORFs, we aggregated these numbers and calculated the dN/dS ratio, where dN is
the number of nonsynonymous SNPs per nonsynonymous site, and dS the number of
synonymous SNPs per synonymous site, respectively. The control was chosen as before
but without matching for nucleotide level conservation.

Alignment conservation in Fig. 2C was scored by analyzing for each ORF the multiple
alignment with respect to the species where start and stop codons and (if applicable)

splice sites were conserved, and where premature stop codons or frameshifting indels

22


https://doi.org/10.1101/017772

bioRxiv preprint doi: https://doi.org/10.1101/017772; this version posted April 9, 2015. The copyright holder for this preprint (which was not

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

were absent. We then inferred the common ancestors of these species and plotted the
fraction of ORFs with common ancestors at a certain distance to the reference species.
For the homology graph in Fig. 2D we blasted sORF amino acid sequences from the
different reference species against themselves and each other (blastp with options "-
evalue 200000 -matrix PAM30 -word_size=2"). We then constructed a directed graph by
including hits between sORFs of similar size (at most 20% deviation) for E-value < 10
and an effective percent identity PIDe greater than a dynamically adjusted cutoff that
required more sequence identity between shorter matches than longer ones (PIDes =
(percent identity) x (alignment length) / (query length); after inspecting paralogs or
orthologs of known candidates such as tarsal-less and toddler we used the criterion
PID¢sr > 30+70 exp[- (query length + subject length)/20]). We then removed non-
reciprocal edges, and constructed an undirected homology graph by first obtaining
paralog clusters within species (connected components in the single-species subgraphs)
and then adding edges for different reference species only for reciprocal best hits
between paralog clusters. Finally, we removed singletons. For Fig. 2D, we combined
isomorphic subgraphs (regarding sORFs in the same species and of the same type as
equivalent), recorded their multiplicity, and plotted only the ones that contain sORFs
from at least two different reference species and at least one novel prediction.

For Fig. S1A we downloaded phastCons conserved elements from the UCSC genome
browser (using vertebrate conserved elements for human, mouse and zebrafish; Nov 11
2014 for human and Nov 27 for the other species) and intersected with our set of ORFs;

partial overlap means more than 50% but less than 99% on the nucleotide level.

Comparison to other studies

We obtained results from other studies in different formats (Supplementary Table 6).
Tryptic peptide sequences were mapped against the set of ORFs we analyzed (requiring
preceding lysine or arginine). Amino acid sequences were directly matched to our set of
ORFs, and ORF coordinates were matched to our coordinates (in some cases after
conversion between genome versions or the removal of duplicate entries). Since
different studies used different annotations and different length cutoffs, we then
excluded from the matched ORFs the ones not in the category under consideration, e.g.,
longer ORFs, or sORFs that have since then been annotated or with host transcripts

classified as pseudogenes. The remaining ones were compared to our set of predictions.
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Sequence analysis of encoded peptides

For Fig. 4A, we used blastp against the RefSeq database (Dec 2013) and collected among
the hits with E-value > 10-5, percent identity > 50 and query coverage > 80% the best hit
(based on percent identity) to entries of the same or larger length that were not flagged
as "PREDICTED", "hypothetical”, "unknown", "uncharacterized", or "putative".

For the disorder prediction in Fig. 4B, we used [UPred®3 in the "short" disorder mode
and averaged disorder values over the sequence. For the motif discovery in Fig. 4C, we
downloaded the file "elm_classes.tsv" from the ELM database website
(http://elm.eu.org/downloads.html; Jan 27 2015). We then searched translated ORF
sequences for sequences matches to any of the peptide motifs and kept those that fell
into regions with average disorder > 0.5. For the signal peptide prediction in Fig. 4D, we
used signalp v. 4.1¢7. Controls in Fig. 4B-D were chosen as in Fig. 2 but matched to the
length distribution of novel predicted sORFs.

For Fig. S4A, we counted amino acid usage (excluding start and stop) for all ORFs; amino
acids were sorted by their frequency in the positive control ("long ORFs"), which
consists of annotated protein-coding ORFs from Swiss-Prot, whereas the negative
control is the same as in Figs. 2 and 4 (not matched for conservation or length). We used
hierarchical clustering with the correlation metric and average linkage on the frequency
distribution for each group, and checked how often we obtained the same two clusters
in 100 re-sampling runs where we took a random sample of ORFs in each group with
50% probability. For Fig. S4B, we counted codon usage, normalized by the amino acid
usage, and then calculated a measure of codon bias for each amino acid using the
Kullback-Leibler divergence between the observed distribution of codons per amino
acid and a uniform one (in bits). We then performed clustering and bootstrapping as

before.

Analysis of 3'UTR sORFs

For all sORFs in the 3'UTR we obtained the annotated CDS of the respective transcript.
We then computed the step in the phastCons conservation score (average over 25 nt
inside minus average over 25 nt outside) at the stop codon of the annotated CDS and
compared protein-coding transcripts with dORFs that are predicted and pass the
overlap filter against other protein-coding transcripts. Similarly, we compared the step
around the start codons of dORFs. We also compared the distance between the
annotated stop and the start of the dORF, the distribution of the reading frame of the
dOREF start with respect to the annotated CDS, and the number of intervening stops in

the frame of the annotated CDS. We finally checked how many predicted dORFs before
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1 applying the overlap filter overlap with annotated coding sequence and compared

2 against the remaining dORFs.

3 We obtained read-through candidates from Supplementary Data 1 of Jungreis et al.68

+ and from Supplementary Tables 2 and 4 of Dunn et al.35 and matched the corresponding

s stop codons to stop codons in our set of 3'UTR sORFs.

« Expression analysis

7 For the expression analysis of sORF-containing transcripts we used RNA-seq data for 16
s human tissues (Illumina Body Map), for 19 mouse tissues?’, for 8 developmental stages
s of zebrafish93, 24 developmental stages for fruit fly from modENCODE and 8

10 developmental stages in C. elegans8? as shown in Supplementary Table 7. Reads were

11 mapped to the reference genome using bowtie2 (with options --very-sensitive) except
1z for human where we downloaded bam files from Ensembl; replicates were merged and
13 then quantified using cufflinks and the Ensembl (v74) transcript annotation file together
14+ with the corresponding lincRNA catalogs. We ignored transcripts with all FPKM values
15 below 10-4 and converted to TPM (transcripts per million%8) as TPM= 10¢ FPKM / (sum
16 of all FPKM). Mean expression values were calculated by directly averaging TPM values
17 of transcripts with nonzero TPM values over samples. Tissue or stage specificity was

18 calculated as information content (IC) over the normalized distribution of log-

log, (TPM¢+1)

19 transformed expression values r; = S log, (TPMot 1)
S 2 N

across tissues or stages, respectively,

1
log, N

20 using the formula IC = 2.¢ 1 log, 1N, where N is the number of tissues or stages.

21 Analysis of published ribosome profiling data

22 We obtained published ribosome profiling data as summarized in Supplementary Table
23 8.Sequencing reads were stripped from the adapter sequences with the Fastqgx toolkit.
24+ The trimmed reads aligning to rRNA sequences were filtered out using bowtie. The

25 remaining reads were aligned to the genome using STAR, allowing a maximum of 5

26  mismatches and ignoring reads that mapped to more than 10 different genomic

27 locations. To reduce the effects of multi-mapping, alignments flagged as secondary

28 alignments were filtered out. We then analyzed read phasing by aggregating 5' read

29 ends over 100 nt windows around start and stop of annotated coding sequences from
30 Ensembl to assess dataset quality and obtain read lengths and 5' offsets for use in

31 scoring. From the datasets in Supplementary Table 8 we calculated the ORFscore as

32 described previously?9, pooling the reads from all samples if possible.
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Analysis of in-house and published mass spectrometry datasets

We used three in-house generated mass spectrometry datasets that will be published
elsewhere: one in a mixture of HEK293, HeLa and K562 cells, one in a mixture of HepG2,
MCF-10A, MDA-DB and MCF?7 cells, and one in mouse C2C12 myoblasts and myotubes.
Further, we mined published datasets in HEK293 cells from Eravci et al.’5 11 human cell
lines from Geiger et al.”¢, in mouse NIH3T3 cells from Schwanhdusser et al. 77, in mouse
liver from Azimifar et al. 78, in zebrafish from Kelkar et al.”9, in flies from Sury et al.8! and
Xing et al.80 and in C. elegans from Griin et al.82. All datasets (Supplementary Table 9)
were searched individually with MaxQuant v1.4.1.283 against a database containing the
entire UniProt reference for that species (Swiss-Prot and TrEMBL; Nov 18 2014)
merged with a database of common contaminant proteins and the set of predicted
(annotated and novel) sORFs (after overlap filter). For fly datasets, an additional E. coli
database was used. MaxQuant's proteinFDR filter was disabled, while the peptide FDR
remained at 1%. All other parameters were left at default values. To be conservative, we
then remapped the identified peptide sequences against the combined database
(treating Leucin and Isoleucin as identical and allowing for up to four ambiguous amino
acids and one mismatch) with OpenMS9 and used only those peptides that uniquely
mapped to our predictions. Features of PSMs (length, intensity, Andromeda score,
intensity coverage and peak coverage) were extracted from MaxQuant's msms.txt files.
When re-mapping two human datasets (HEK29375 and 5 cell lines) against the 3-frame
translation of the transcriptome, we created a custom database from all sequences
longer than 7 aa between successive stop codons on transcripts from Ensembl v74 or
published lincRNAs3391, For the re-analysis of the HEK293 dataset’s, we allowed
deamidation (NQ) and methylation/methylester (KRCHKNQRIL) as additional variable

modifications®s.
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Figure 1: [dentification of conserved sORFs in 5 animals. A) Overview of the pipeline. 1)
Annotated transcripts are searched for ORFs and specific conservation features are
extracted from the multiple species alignment (2). 3) A SVM classifier is used to predict
coding sORFs (<100 aa) with high specificity and sensitivity (B). 4) sORFs overlapping
with larger predicted sORFs or with conserved annotated coding exons are removed (C).
D) distribution of predicted sORFs in different regions of the transcriptome. E) length
distribution of predicted sORFs.
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2 Figure 2: Predicted sORFs are under purifying selection and often widely conserved. A)
3 Adjusted phyloCSF scores for predicted sORFs are higher than those from control sORFs
+  matched by their nucleotide conservation level (phastCons). B) The dN/dS ratio of SNPs
s for novel predicted sORFs is smaller than for control ORFs in non-coding regions of the
¢  transcriptome, but larger than for annotated sORFs. C) Percentage of sORFs conserved

7 inancestral species as inferred from the multiple species alignment. Numbers for

s  informative ancestors are indicated (e.g., the ancestors of primates, placental mammals
s and jawed vertebrates for H. sapiens). Symbols mark different reference species as in D).
10 D) homology clustering of predicted sORFs in different species; only clusters with at

11 least one non-annotated member and members from more than one species are shown,
12 with multiplicity indicated. *** p < 0.001; ** p < 0.01; * p < 0.05; Mann-Whitney tests in

13 A, reciprocal X2tests in B.
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2 Figure 3: Predicted sORFs are under stronger selection than those found in other

3 studies. Previous results obtained by ribosome profiling (A and B), mass spectrometry
4+ (C-E) or computationally (F-N) are compared with respect to their adjusted phyloCSF

s scores and the dN/dS ratio as indicated in the scheme (top left). For each publication
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2 Figure 4: Properties of encoded peptide sequences. A) Only a small fraction of novel

3 peptides has significant homology to known longer proteins. B) Novel predicted

4+  peptides are more disordered than annotated short proteins or conceptual products

s from length-matched control ORFs in non-coding regions, and they also have a higher

¢  density of linear peptide motifs (C). D) Some novel sORFs are predicted to encode signal
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s expected. *** p <0.001; ** p < 0.01; * p < 0.05, Mann-Whitney tests in B and C, binomial

9 testin D.
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2 Figure 5: dORFs (sORFs in 3'UTRs) are not explained by stop-codon read-through or

3 alternative terminal exons. Results are shown for H. sapiens. A) the step in the phastCons
+  conservation track near the stop codon of the upstream CDS is only slightly less

s pronounced than for CDS without downstream conserved sORF. B) the dORFs are closer
6  tothe CDS than control sORFs, but they are not more often in the same frame (C), and

7 they have a similarly high number of intervening in-frame stop codons (D). E) the step in
s the phastCons conservation track near start of predicted dORFs start is more

9 pronounced than in other dORFs. F) Even before applying the overlap filter, very few
10 predicted dORFs overlap with annotated coding exons. *** p < 0.001; **p < 0.01; *p <
11 0.05; n.s. not significant. Mann-Whitney tests in A, D and E, Kolmogorov-Smirnov test in

12 B, X2test in C, Binomial test in F.
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2 Figure 6: Experimental evidence supports translation of predicted sORFs and protein

3 expression. A) Translation is detected using the ORFscore method on published

+  ribosome profiling data. The Kolmogorov-Smirnov D-statistic is used to assess the

s performance of the dataset by comparing annotated sORFs to the negative control (dark
6  gray). Length-matched sORFs from non-coding transcriptome regions are included as

7 additional control (light gray). *** p < 0.001; ** p < 0.01; * p < 0.05 (Mann-Whitney test).
s B) Peptide expression of many predicted sORFs is confirmed by mining in house and

9 published mass spectrometry datasets from cell lines and model organisms.
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2 Figure S1: Overview of the pipeline (relating to Fig. 1). A) many sORFs from the positive
3 control and from the negative control overlap fully or partially with phastCons

+  conserved elements. B) The four conservation features all permit to separate positive

s from negative control (bottom panels); however, the phyloCSF score contributes most

¢  strongly to the SVM classifier. C) fraction of sORFs predicted as conserved (pre-overlap
7 filter) for each category. D) fraction of sORFs retained after overlap filter in each

8 category.
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2 Figure S4: Sequence features of novel peptides (relating to Fig. 4). A) amino acid

s frequencies in long annotated ORFs, ORFs from noncoding control regions, predicted

+ annotated sORFs and novel predicted sORFs are compared (shown for H. sapiens), and a
s hierarchical clustering is performed. Percentage values indicate how often the same

¢  clusters are obtained in a re-sampling analysis. Hydrophobic, acidic, basic and hydroxyl
7 residues are colored red, blue, magenta and green, respectively. B) Codon bias is

s  evaluated from the Kullback-Leibler divergence (Methods). Clustering done as in A.
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2 Figure S5: Properties of 3'UTR sORFs (same as Fig. 5 for the other species).
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2 Figure S6: Expression analysis (relating to Fig. 6). A) violin and box plots of mean TPM

3 values for mRNAs hosting predicted annotated sORFs, other mRNAs, lincRNAs hosting

4+ predicted novel sORFs and other lincRNAs, for 16 and 19 tissues in human and mouse,

s and 8, 24 and 8 developmental stages in zebrafish, fruit fly and C. elegans, respectively.

¢  B)violin and box plots of tissue or stage specificity for these transcripts. C) intensity for
7 PSMs supporting annotated sORFs and peptides supporting novel predicted sORFs,

s  aggregated over all datasets after log-transformation and normalization (z-score)

9 relative to PSMs mapping to UniProt proteins. D) PSM length, E) Andromeda score, F)

10 peak intensity coverage and G) peak coverage for PSMs as in C. *** p < 0.001; ** p < 0.01;
1 *p<0.05(Mann-Whitney tests)
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