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Abstract 

The central challenge in tumor sequencing studies is to identify driver genes and pathways, investigate their 

functional relationships and nominate drug targets. The efficiency of these analyses, particularly for 

infrequently mutated genes, is compromised when patients carry different combinations of driver mutations. 

Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets 

(MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a 

model selection procedure. Extensive simulations demonstrated that our method outperformed existing 

methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly 

imbalanced MEGS. Our method can be used for de novo discovery, pathway-guided searches or for 

expanding established small MEGS. We applied our method to the whole exome sequencing data for 

fourteen cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously 

unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a novel 

MEGS with five genes (FLT3, IDH2, NRAS, KIT and TP53) and a MEGS (NPM1, TP53 and RUX1) whose 

mutation status was strongly associated with survival (P=6.7×10-4). For breast cancer, we identified a 

significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23 and 

TBL1XR1), providing support for their role as cancer drivers.  
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Background 

Cancers, driven by somatic mutations, cause over eight million deaths worldwide each year. Recent technical 

advances in next generation sequencing and bioinformatic analyses have greatly advanced the 

characterization of tumor genomes. Large-scale cancer genomics projects, e.g. the Therapeutically 

Applicable Research to Generate Effective Treatments (TARGET) for childhood cancers, The Cancer 

Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) for adult cancers, have 

accumulated a large amount of multi-dimensional genomic data for dozens of cancers. The primary aim in 

analyzing these unprecedented “big” genomic data is to identify “driver” mutation events related with tumor 

initiation and progression. Typically, driver genes are nominated by examining whether the non-synonymous 

mutation rate exceeds the background silent mutation rate1,2.  However, identifying infrequently mutated 

driver genes requires a very large sample size to achieve statistical significance. A closely related challenge 

is to investigate relationships among mutated genes and to identify oncogenic pathways. Mutual exclusivity 

(ME) analysis is an effective computational approach that helps address both problems.  

ME analysis was initially proposed for pairs of genes and has produced important findings that have been 

consistently replicated, e.g. ME between EGFR and KRAS in lung adenocarcinoma3-5. Because cancer 

pathways typically involve multiple genes, recent methods6-11 have tried to extend pair wise analyses to 

search for mutually exclusive gene sets (MEGS), which also has much better power than pair wise analyses. 

Briefly, given a somatic mutation matrix for N patients and M genes, we aim to identify “optimal” gene 

subsets that are mutually exclusive.  

Multiple methods have been proposed for ME analysis. Dendrix7 and two other methods9,10 use a “weight” 

statistic as the criterion to search for MEGS. However, this statistic is inappropriate to compare gene sets and 

tends to identify large MEGS with many false positive genes, as we will show in simulations. MEMo6 uses 

external biological data to form “cliques” (fully connected gene networks) and searches for MEGS within 

each clique to increase power by reducing multiple testing. As we will demonstrate, MEMo results in 

incorrect false positive rates for each clique and tends to select MEGS with false positive genes. Szczurek 
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and Beerenwinkel8 proposed a non-standard likelihood ratio test but ended up with a severely misspecified 

null distribution. Mutex11 has improved existing methods and used permutations to control false positive 

rates; however, its overly simple statistic warrants further improvement. In summary, most of the existing 

methods fail to correctly control for false positive rates and lack a criterion for selecting “optimal” MEGS. 

Since some of these MEGS methods have been widely used in tumor sequencing projects, previous results 

may need to be interpreted with caution. 

Ideally, an analytic framework for identifying MEGS shall have the following components. First, given a 

subset of m (m ≤ M) genes, a statistically powerful test is required to examine whether mutations in these m 

genes show ME. Second, it is crucial to determine whether any subset of the M genes is statistically 

significant after adjusting for multiple testing. Third, a model selection criterion is required to compare 

nested gene sets to select the “optimal” MEGS. An inappropriate criterion may falsely include genes into 

MEGS or exclude true genes from MEGS.  

We developed a framework that fits all above requirements. We developed a likelihood ratio test (LRT) for 

testing ME and performed a multiple-path linear search together with permutations to test the global null 

hypothesis, i.e. the set of M genes does not contain MEGS of any size. When global null hypothesis was 

rejected, we proposed a model selection procedure based on permutations to identify “optimal” MEGS. All 

algorithms have been implemented in an R package called MEGSA (Mutually Exclusive Gene Set Analysis). 

Extensive simulations demonstrated that MEGSA outperformed existing methods for de novo discovery and 

dramatically improved the accuracy of recovering exact MEGS, particularly for imbalanced MEGS. MEGSA 

can either be used for de novo discovery or by incorporating existing biological datasets (e.g. KEGG 

pathways and protein-protein interactions) to improve statistical power by reducing multiple testing, in spirit 

similar to MEMo6 and Mutex11. We can also use MEGSA to expand well-established small MEGS with 

further improved power. 

We applied MEGSA to analyze the whole exome sequencing data of 14 cancer types from TCGA. We 

identified multiple significant non-pairwise MEGS for breast cancer, low grade glioma, uterine corpus 
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endometrial carcinoma skin cutaneous melanoma, head and neck squamous cell carcinoma and acute 

myeloid leukemia with important biological implications. Incorporating KEGG pathway data further 

identified 8 MEGS for breast cancer and 10 for low grade glioma. Although de novo discovery has lower 

power due to the high multiple testing burden, it has the potential to identify a more complete MEGS. 

Incorporating external information may identify significant but likely incomplete oncogenic pathways. Thus, 

MEGSA shall be applied using these complimentary search strategies. We expect MEGSA to be useful for 

identifying oncogenic pathways and driver genes that would have been missed by frequency-based methods. 

MEGSA is freely available at http://dceg.cancer.gov/tools/analysis/MEGSA. 

2. Results  

2.1 MEGSA: a framework for identifying mutually exclusive gene sets  

We consider a binary mutation matrix A with N rows (cancer patients) and M columns (genes), where each 

row represents the mutational status for one patient and each column for one gene (Fig. 1A). Let ika denote 

the mutation status with aik=1 if gene k is somatically mutated for patient i  and aik=0 otherwise. Here, a 

somatic mutation could be copy number alternations, non-synonymous point mutations or point mutations 

predicted to be deleterious. We consider non-synonymous point mutations in the manuscript. MEGSA has 

three components: (1) an efficient likelihood ratio test (LRT) for examining ME for a subset of genes; (2) a 

multiple-path linear search algorithm and a permutation framework to evaluate the global null hypothesis 

(GNH) and (3) a model selection procedure to identify the “optimal” MEGS. 

2.1.1 A likelihood ratio statistic for testing mutual exclusivity 

Given a subset of m (m ≤ M) genes and the binary mutation matrix (denoted as A0, a sub matrix of A), we 

describe a data generative model for MEGS. We assume that the m genes in the MEGS are completely 

mutually exclusive with coverage denoted as γ, defined as the proportion of samples covered by the MEGS. 

Within the MEGS, we assume ),,( 1 mpp L  as the relative mutation frequencies with 11 =++ mpp L . We 

assume that the observed mutation matrix A0 is generated in three steps (Fig. 1B): 
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(1) Given N patients and coverage γ, we randomly sample n patients coved by the MEGS according to 

the distribution Bionomial(N, γ).  

(2) For each sampled patient covered by the MEGS, we randomly choose a “mutated” gene according to 

).,,( 1 mpp L  

(3) Independent of the MEGS, we randomly simulate background mutations to each entry of matrix A0 

with gene-specific background mutation rates ),,( 1 mππ L=Π .  

Based on this data generative model and further assuming kkp π∝ , the log likelihood is given as  
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Here, 0=γ  corresponds to the null hypothesis that the m genes are randomly mutated. ),,( 1 mππ L=Π are 

nuisance parameters. LRT can be derived to test 0:   ..   0: 10 >= γγ HsvH . Asymptotically, LRT has a null 

distribution 2
1

2
0 5.05.0 χχ + , a mixture distribution with 0.5 probability at point mass zero and 0.5 

probability as 2
1χ . See Methods for details. 

2.1.2 Testing the global null hypothesis 

Given a mutation matrix A with all M genes, it is crucial to test GNH that all genes are mutated 

independently. Suppose that we are interested in MEGS with no more than K genes. We have ∑ = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛K

k k

M
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combinations of genes to be tested, which equals to 2.0×1011 if M=100 and K=8. The multiple testing burden 

increases with size exponentially when K < M/2. Importantly, the total multiple testing burden is dominated 

by the largest MEGS with K genes. When M=100 and K=8, the number of tests for MEGS with 8 genes 

account for 91.5% of total 2.0×1011 tests while such proportion is only 8.0×10-5% for MEGS of 3 genes. 

Intuitively, for the same nominal P-value of 10-6, a MEGS with 3 genes should be much more significant 

than the one with 8 genes. Thus, putative MEGS of different sizes must be differentially treated. Moreover, 

the statistic tests may be highly correlated; thus the Bonferroni correction is too conservative. We propose a 
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permutation-based procedure to address these problems (Fig. 1C). Note that permutations were performed by 

preserving the mutation frequency for each gene7,11. 

Briefly, we first perform multiple test correction separately for MEGS of each size. For a given k (k ≤ K), we 

search all gene sets of size k to test for ME using our LRT and denote the minimum P-value as Pk. The 

significance of Pk, (denoted as Qk) is estimated by permutations. Because we search for MEGS of different 

sizes, the overall statistic for testing GNH is θ=min(Q2,⋯, QK), with significance evaluated by permutations. 

Finding the minimum P-value Pk by exhaustive search is computationally challenging even for a moderate k. 

Thus, we implemented a multiple-path linear search algorithm to approximate Pk (Methods).  

2.1.3 Identifying optimal mutually exclusive gene sets using model selection 

When GNH is rejected, we can use the multiple-path linear search algorithm to identify all significant 

putative MEGS (Methods). These putative MEGS may be nested. Consider two significant putative MEGS: 

MEGS1 has two genes (G1, G2) with nominal P-value p1 and MEGS2 has three genes (G1, G2, G3) with 

nominal P-value p2 based on LRT. Intuitively, if p2<<p1, we choose MEGS2 with three genes. However, a 

simple criterion p2 < p1 is too liberal and tend to include G3 into MEGS even if G3 is independent of (G1, G2). 

This is because G3 is chosen from the M-2 genes (G3, ⋯, GM) to form the strongest MEGS with G1 and G2.  

We addressed the problem in a statistical testing framework (Fig. 1D). The null hypothesis is that none of the 

M-2 genes (G3, ⋯, GM) is mutually exclusive of (G1, G2). We reject the null hypothesis (and thus choose 

MEGS2) if p2<p0 with p0 chosen to control false positive rate <5% based on permutations. Note that we keep 

the relationship between G1 and G2 unchanged and permute mutations only in (G3, ⋯, GM). If (G3, ⋯, GM) are 

independent of (G1, G2), using p0 as threshold will correctly choose MEGS1 with probability 95%.  

2.1.4 Identifying mutually exclusive gene sets using three search strategies 

We propose three complimentary strategies for searching MEGS using MEGSA, as illustrated in Fig. 2. The 

first strategy is de novo discovery by directly applying MEGSA to all M genes (Fig. 2A). The advantage of 
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de novo discovery is that it does not rely on any prior information and has the potential to identify a complete 

MEGS. However, de novo analyses may have low power because of heavy multiple testing burden.  

MEGSA can also be applied by incorporating existing biological data, in spirit similar to MEMo6 and 

Mutex11. MEMo searches for fully-connected sub graphs (called “cliques”) using existing pathway and 

functional information (e.g. protein-protein interaction and gene coexpressoin) and analyzes each clique. 

Mutex restricts search space so that genes in MEGS have a common downstream signaling target. Although 

MEGSA can be modified to perform similar search, we exemplify this approach by using the KEGG 

pathway database (Fig. 2B). Briefly, we compare M genes with KEGG pathways and identify subsets (called 

modules) with more than 2 genes. We analyze each module using MEGSA and produce an overall P-value. 

We choose significant modules by controlling FDR at 5%.  

The third strategy is to search MEGS starting with a well-established small MEGS (e.g. EGFR and KRAS in 

lung cancer). We use our model selection procedure (Fig. 1D) to “grow” the MEGS until no gene can be 

included (Fig. 2C).   

2.2 Evaluation on simulated cancer mutation data 

2.2.1 Type-I error rate and power behavior of LRT 

Since the LRT is the foundation for our algorithm, we first evaluated its type-I error rate and the power 

behavior for a fixed set of m genes. Under H0, LRT ~ 2
1

2
0 5.05.0 χχ +  asymptotically. Results based on 100,000 

simulations verified that the P-values calculated based on the asymptotic distribution agreed well with the 

simulation-based P-values (Supplemental Table 1) for different combinations of parameters, including 

background mutation rate, sample size and the size of gene sets. The power of LRT increases with sample 

size and coverage and reduces with background mutation rates (Supplemental Fig. S1).  

2.2.2 Comparison with other methods that detect mutually exclusive gene mutations 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2015. ; https://doi.org/10.1101/017731doi: bioRxiv preprint 

https://doi.org/10.1101/017731
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

We compared the performance of MEGSA with the performances of existing methods including RME12, 

MEMo6, Dendrix7, LRT-SB8 and Mutex11. MDPFinder9 uses the same “weight” statistic as Dendrix but a 

more efficient computational method for searching MEGS; thus the comparative study does not include 

MDPFinder. A systematic comparison is very difficult for following reasons. Dendrix, RME and LRT-SB 

perform de novo analyses; MEMo uses existing biological data to reduce the search space; while MEGSA 

and Mutex can perform both analyses. In addition, for RME, Dendrix and LRT-SB, it is unclear how 

multiple testing was corrected. Mutex11 compared the performances using receiver operating characteristic 

(ROC) analysis; however, it is unclear how false positives and false negatives were calculated. A more 

detailed summary and critique of these methods can be found in the Supplemental Note.  

We empirically evaluated the null distribution of LRT-SB8. Simulation results show that the empirical 

distribution of LRT-SB deviates dramatically from the claimed null distribution N(0,1) (Supplemental Fig. 

S2). See also the theoretical explanation in Supplemental note. MEMo derives a P-value for each “clique” 

and selects significant cliques by controlling FDR using these P-values. Controlling FDR requires P-values 

for null statistics to follow a uniform distribution U[0,1]13. However, our simulation results (under H0) show 

that the P-values dramatically deviate from U[0,1] (Supplemental Fig. S3), suggesting that MEMo has 

incorrect false positive rates. In addition, MEMo does not select “optimal” MEGS sets appropriately and 

typically includes many false positives (Supplemental Fig. S4 and Supplemental Note). Thus, we excluded 

LRT-SB and MEMo from the comparison. 

We simulated a mutation matrix for 54 genes in 500 samples. Among the 54 genes, mutations in 50 genes 

were randomly distributed. The 50 genes were classified into five groups; each group had 10 genes with 

mutation frequencies 1%, 5%, 10%, 20% or 30%. The simulated MEGS had 4 genes. The background 

mutation rates for these 4 genes were set as 1%. We simulated two types of MEGS (Fig. 3A). One had 

balanced mutation frequencies, i.e. all 4 genes in MEGS were mutated with the same frequency. The other 

had imbalanced mutation frequencies with ratio 3:1:1:1. Comparison was based on de novo analyses. The 

maximum size of MEGS was set as 8. The simulation results for MEGS with 3 genes are reported in 

Supplemental Fig. S5.  
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We first compared the performance of these methods as a “scoring” method without considering the 

statistical significance. Thus, we calculated the probability of choosing the true MEGS identified as the top 

candidate for each method. Simulation results show that MEGSA performs the best for all simulations and 

greatly improves existing methods particularly for imbalanced MEGS (Fig. 3B). Of note, the performances 

are heavily impacted by the coverage of the MEGS for all methods. Dendrix has the worst performance and 

cannot identify the true MEGS even when the coverage is high. RME performs poorly for low coverage 

MEGS but reasonably well when coverage increases to 60% for balanced MEGS. Mutex outperforms RME 

and Dendrix.  

Among Dendrix, RME, Mutex and MEGSA, only Mutex and MEGSA performed permutations to accurately 

evaluate overall significance (either family-wise error rate or FDR). Thus, we compared the performance of 

these two methods for statistically significant findings. For MEGSA, a significant finding was identified if its 

multiple testing corrected P-value < 0.05. For Mutex, a significant finding was identified if FDR<0.05. A 

simulation was considered successful if the detected top MEGS involved any pair of the 4 genes in the 

simulated MEGS. The power is calculated as the proportion of “successful” simulations (Fig. 3C). A much 

more rigorous criterion required that the top MEGS was statistically significant and identical to the simulated 

MEGS (Fig. 3D). We also calculated the average number of correctly identified genes (out of 4) and number 

of falsely identified genes (Supplemental Fig. S6). MEGSA outperforms Mutex in all comparisons. 

Importantly, the performance of MEGSA is superior to that of Mutex for imbalanced MEGS, which are 

much more frequent than balanced MEGS in real data.  

Although the three methods, RME, Mutex and MEGSA, have different performances, the probability of 

choosing the exact MEGS increases to one when sample sizes increase to infinity, an important statistical 

property called “consistency”. However, the widely used Dendrix algorithm does not have this property and 

tends to include many false positive genes (See Supplemental Note for explanation). Here, we report more 

detailed simulation results for Dendrix, investigating the false positives in the selected top candidate. Fig. 3E 

reports the probability of choosing each gene based on 1000 simulations assuming coverage γ=40% (top) and 

γ=60% (bottom). Fig. 3F reports the distribution of the number of selected false positive genes. For example, 
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when coverage γ=40%, in about 30% simulations, Dendrix’s top candidate includes four false positive genes. 

For low coverage MEGS with γ=40%, Dendrix chooses too many false positives, mostly in highly mutated 

genes (frequency π=30%) and lowly mutated genes (frequency π=1%). When coverage increases to 60%, 

Dendrix identified almost all genes in MEGS but still included many false positive genes. These simulation 

results suggest that, a high coverage MEGS identified by Dendrix may include multiple false positive genes. 

Thus, MEGS identified by Dendrix may need to be interpreted with caution. Encouragingly, MEGSA has 

consistently high sensitivity and low false positive rates.  

Finally, we investigated the power performance of MEGSA when input genes can be partitioned into L 

modules of equal sizes by incorporating pathway information. MEGSA was applied separately to each 

module to generate a module-wise P-value. A module was statistically significant if its P-value < 0.05/L 

based on the Bonferroni correction. Under the assumption that the true MEGS is completely contained in one 

of the modules, the power of detecting MEGS can be substantially improved compared to de novo analysis 

that simultaneously analyzes all genes (Supplemental Fig. S7).  

2.3 Analysis of The Cancer Genome Atlas (TCGA) mutation data 

We analyzed non-synonymous point somatic mutations identified by whole exome sequencing for 14 cancers 

in TCGA with data downloaded from the data portal (https://tcga-data.nci.nih.gov/tcga/). For cancer types 

included in the TumorPortal website (http://cancergenome.broadinstitute.org), we included candidate driver 

genes reported by the website14 using MutsigCV1. Brain low grade glioma (LGG) is not reported in the 

TumorPortal website. Thus we identified candidate driver genes using MutsigCV1 and included these genes 

into analysis. Sample sizes, numbers of selected genes and mutational frequencies are summarized in 

Supplemental Tables S2 and S3. For each cancer type, we performed de novo analysis followed by the 

secondary analysis incorporating KEGG pathways. For de novo analysis, gene sets were considered 

statistically significant if P<0.05 after multiple testing based on 10,000 permutations. For KEGG-guided 

analysis, we derived a module-wise P-value for each module and declared significance by controlling 
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FDR<0.05. Note that MEGS from pathway-guided analyses were discarded if they were a subset of any 

MEGS identified in de novo analyses. 

De novo analyses identified non-pairwise MEGS for acute myeloid leukemia (LAML), LGG, breast invasive 

carcinoma (BRCA), skin cutaneous melanoma (SKCM), head and neck squamous cell carcinoma (HNSC) 

and uterine corpus endometrial carcinoma (UCEC). For other cancer types, de novo analysis only identified 

pair wise MEGS. Here, we report detailed results for BRCA and LAML. The complete results are 

summarized in Supplemental Table S4. 

2.3.1 Analysis results for BRCA 

De novo analyses identified 10 significant but overlapping MEGS for BRCA with 989 patients. These MEGS 

involved 11 genes with TP53 involved in all MEGS (Fig. 4A). We identified five MEGS with P<10-4 (Fig. 

4B). These MEGS were not reported by the BRCA article15 using MEMo6 that relies on functional data, 

emphasizing the necessity of de novo search.  

The most significant MEGS has four genes (TP53, CDH1, GATA3 and MAP3K1) and covers 59.6% of 

patients. E-cadherin, encoded by CDH1, is important in epithelial-mesenchymal transition (EMT). Morever, 

GATA3, p53 and MAP3K1 are related to the expression of CDH1. Loss of p53 represses E-cadherin 

expression in vitro as a result of CDH1 promoter methylation16; GATA3 expression is correlated with E-

cadherin levels in breast cancer cells17; and E-cadherin expression can be repressed by Snail/Slug following 

activation by the MAPK/ERK pathway18. 

 

The largest MEGS has five genes TP53, AKT1, ARID1A, MED23 and TBL1XR1 (P=0.022) covering 40.4% 

of patients (Fig.s 4C and 4D). Of note, this MEGS is extremely imbalanced: all genes except TP53 are 

infrequently mutated with frequency 1-2% and could not be identified by other methods, consistent with the 

results of simulations. TBL1XR1 belongs to and regulates the core transcription repressor complexes 

NCoR/SMRT19, and p53 gene targets may be regulated by the SMRT in vitro in response to DNA damage20. 

ARID1A encodes BAF250a, a component of the SWI/SNF chromatin-remodeling complex that directly 
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interacts with p5321-24. Therefore, loss of ARID1A may have a similar effect as p53 deficiency. The mutual 

exclusivity between MED23 and other genes have not been reported previously. MED23 is a subunit of the 

mediator complex, a key regulator of gene expression and is required for Sp1 and ELK1-dependent 

transcriptional activation in response to activated Ras signaling25-28. MED1 and MED17 directly interact with 

p5328, suggesting a possible connection between p53 and MED23 via the mediator complex. Also, MED23 

interacts directly with the transcription factor ESX/ELF328, which is downstream of AKT1 in the PI3K 

pathway. ESX-dependent transcription following activation by AKT is key for cell proliferation and survival. 

In summary, these genes have key roles in chromatin remodeling (TBL1XR1 and ARID1A), gene expression 

regulation (MED23 and TP53), and signaling (AKT1), and likely regulate common set of gene targets 

downstream of the p53, PI3K and MAPK/ERK signaling pathways that are important for cell cycle control, 

survival and proliferation.   

Importantly, these infrequently mutated genes are unlikely to achieve high statistical significance using 

frequency-based driver gene test, e.g. MutSigCV1. In fact, in the BRCA article15, MED23 and ARID1A were 

not reported as significantly mutated while FOXA1 and CTCF were reported only as “near significance”. 

Because MutSigCV is highly sensitive to the choice of “Bagle” gene set for estimating the silent mutation 

rate, a very large sample size is required to replicate these findings. Given that TP53 is a well-established 

driver gene, the observed mutual exclusivity provides strong and independent evidence for establishing these 

genes’ role as drivers.     

Pathway-guided analysis identified 8 MEGS that were not detected by de novo analyses. Interestingly, we 

found that CBFB was mutually exclusive of ARID1A, MED23 and TP53. As described above, p53 can 

interact with ARID1A in the SWI/SNF chromatin remodeling complex via BRG1 (see Fig. 4D for SWI/SNF 

complex). The transcriptional coactivator CBFB is known to interact with the tumor suppressor RUNX1, the 

predominant RUNX family member in breast epithelial cells29. RUNX1 interacts with SWI/SNF via BRG130, 

and act as transcriptional coactivator for p53 in response to DNA damage31. Thus, we propose that the loss of 

either one of these genes would be sufficient to lead to abnormal SWI/SNF complexes and dysregulation of 

chromatin-related epigenetics and gene expression leading to inhibition of apoptosis. 
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Breast cancer is highly heterogeneous with only two genes (TP53 and PIK3CA) with mutation frequencies 

greater than 15% (Supplemental Table S3). The majority of genes have mutation frequencies around 1-2%, 

making it difficult to identify MEGS. We successfully identified 10 significant MEGS based on de novo 

analyses and additional 8 guided by KEGG pathways. Other biological databases, e.g. functional data and 

Human Reference Network in MEMo6 or the common downstream target database in Mutex11, could be used 

in the future to guide the search of MEGS. 

2.3.2 Analysis results for LAML 

Compared with other cancer types, AML genomes have the lowest somatic mutation rates1, with only 13 

mutations in coding regions in average. Such a low overall (and also background) mutation rate suggests a 

good statistical power even with a small sample size according to our simulations (Supplemental Fig. S2). 

In fact, de novo analyses identified 5 distinct but overlapping significant MEGS. These significant MEGS 

involve 9 genes with TP53 and FLT3 shared by 4 MEGS (Fig. 5A). The pathway-guided search did not 

detect additional MEGS.  

The most significant MEGS (Fig. 5B) has three genes NPM1, RUNX1 and TP53 (P<10-4), which is a subset 

of the top MEGS (four genes and four fusions) reported by the TCGA LAML article32. We further tested the 

association of the mutations in these three genes and their combinations with survival, adjusting for age, 

stage and gender. Strikingly, the strongest association was detected for the MEGS (P=6.7×10-4
, Fig. 5C) but 

not any subset (PTP53=0.002, PNPM1=0.13, PRUNX1=0.24, PTP53/NPM1=0.0034, PTP53/RUNX1= 0.0032 and 

PRUNX1/NPM1=0.042), suggesting the usefulness of the MEGS for predicting clinical outcomes. Note that in the 

LAML article, the top MEGS included CEBPA, which had three (out of 13) mutations co-occurring with the 

triplet. In fact, including CEBPA into the triplet lowered the LRT statistic from 25.1 to 22.7. Thus, our model 

selection procedure excluded CEBPA. Moreover, including CEBPA did not significantly improve the 

prediction of survival (P=5.9×10-4 with CEBPA v.s. P=6.7×10-4 without CEBPA). These results suggest that 

the mutual exclusivity between CEBPA and other genes is at least suspicious and requires independent 

replication.   
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The largest MEGS (Fig. 5D) has five genes FLT3, IDH2, KIT, NRAS and TP53 (P=0.0099), covering 55.1% 

of patients. This MEGS was not reported by the LAML article32. Fig. 5E describes important connections 

between function/pathways for the five gene products suggesting biological plausibility. FLT3 and KIT 

encode receptor tyrosine kinases upstream of the PI3K and MAPK/ERK signaling pathways, and NRAS is 

also part of MAPK/ERK. Mutations activating theses pathways or inactivating TP53 are common 

mechanisms that cancer cells use to proliferate and escape apoptosis33.  

Interestingly, we discovered that IDH2 belongs to this MEGS. IDH2 encodes a mitochondrial enzyme, that 

converts isocitrate to α-ketoglutarate (αKG) in the tricarboxylic acid cycle and in this process produces the 

antioxidant nicotinamide adenine dinucleotide phosphate (NADPH), which is necessary to combat oxidative 

damage/stress34,35. Mutant IDH2 is predicted to result in: depletion of α-KG; a decrease in NADPH; 

production of 2-hydroxyglutarate (2-HG); and may elevate cytosolic reactive oxygen species (ROS)36. 

Mutant IDH2 can result in epigenetic effects on gene transcription (including DNA hypermethylation and 

histone demethylation); while loss of p53 function can result in increased expression of DNA 

methyltransferase 1 (DNMT1)16,37. Thus, a reasonable explanation for the observed mutual exclusivity 

between TP53 and IDH2 is that the loss of either protein activity may result in similar aberrant gene 

methylation patterns across the genome and dysregulated gene expression. We also suggest a further novel 

hypothesis. Depleted α-KG levels in IDH2 mutant cells may be replenished by the conversion of glutamate 

to α-KG in the mitochondria38. The provision of glutamate in the mitochrondria is regulated by p53 via 

expression of the enzyme glutaminase (GLS),  which also regulates antioxidant defense function in cells by 

increasing reduced glutathione (GSH) levels39. Thus, IDH2 and TP53 mutations are mutually exclusive 

because loss of both genes (or gene activity) would not be conducive to tumorgenesis or survival as a result 

of further depletion of αKG levels in the mitochondria and DNA damage caused by high levels of ROS. The 

mutual exclusivity between IDH2 mutation and FLT3, KIT and NRAS is also biologically plausible. Mutant 

IDH2 may also be linked to the activation of RAS/ERK and the PI3K pathways via ROSs, which can act as 

potent mitogens when apoptosis is inhibited40. Elevated ROS levels can activate ERKs, JNKs, or p38 and 
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reversibly inactivated PTEN41,42. Thus IDH2 mutation may be sufficient to exclusively deregulate cell 

proliferation and survival processes important for AML development.  

 3. Discussion 

We developed a powerful and flexible framework, MEGSA, for identifying mutually exclusive gene sets 

(MEGS). MEGSA outperforms existing methods for de novo analyses and greatly improves the capability of 

recovering the exact MEGS, particularly for highly imbalanced MEGS. The key components of MEGSA are 

a likelihood ratio test and a model selection procedure. Because likelihood ratio test is asymptotically most 

powerful, MEGSA is expected to be nearly optimal for de novo search. Our algorithms can be easily adapted 

to other methods that integrate with external information, e.g. MEMo and Mutex, to improve performance. 

As an important contribution, we carefully examined the performance of existing methods. We concluded 

that many methods had incorrect false positive rates and poor performance for selecting optimal MEGS. 

Importantly, mutual exclusivity analysis may help identify infrequently mutated driver genes, as we 

demonstrated in the TCGA BRCA data.   

MEGSA can be further improved in several ways. First, MEGSA does not consider the extremely variable 

somatic mutation rates across patients. Including patients with very high mutation rate may increase the 

background mutation rate and thus decrease the statistical power. We are currently extending MEGSA by 

modeling patient-specific background mutation rates. Second, MEGSA uses a multiple-path search algorithm 

for computational consideration and may miss findings. The Markov Chain Monte Carlo (MCMC) or the 

genetic algorithm may address the issue.  

In the current manuscript, we analyzed TCGA non-synonymous point mutations for the purpose of testing 

the MEGSA algorithm. We plan to extend the analysis to include somatic copy number aberrations (SCNAs), 

recurrent gene fusions32 and epigenetic alternations. Moreover, it would be extremely interesting to restrict 

analysis to clonal point mutations carried by all cancer cells. Clonal mutations happen before the most recent 

common ancestor and are located early in the evolution tree of the tumor43; thus clonal mutations are likely 

relevant for tumorigenesis. Focusing the analysis on clonal mutations, although technically challenging44-46, 
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can substantially reduce the background mutation rates and consequently improve statistical power. More 

importantly, this refined analysis may better reveal oncogenic pathways related with tumorigenesis.   

 

4. Methods 

4.1 A likelihood ratio statistic for testing mutual exclusivity 

Suppose that a MEGS has m genes with mutation matrix denoted as A0. We assume that the m genes are 

completely mutually exclusive. A MEGS is characterized by two parameters: the coverage γ, defined as the 

proportion of samples covered by the MEGS, and the relative mutation frequencies ),,( 1 mppP L= . 

Background mutations are mutually independent and also independent of the MEGS mutations. We allow 

different background mutation rates ),,( 1 mππ L=Π  for different genes. See Fig. 2B. 

For patient i , let ),,( 1 imi aa L  be the observed binary mutation vector for m genes. Let iC  be a discrete 

binary variable. If the patient is not covered by the MEGS, .0=iC  If the patient has a mutation in gene k in 

the MEGS, then .kCi = The likelihood of observing ),,( 1 imi aa L  is given by                        
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The last equation holds because mutations are independent across genes.  By the definition of coverage,  

                                           γ=> )0( iCP  and γ−== 1)0( iCP                                                               (2) 

Also, 

                                                    kii pCkCP =>= )0|( .                                                                           (3) 

If the patient is not covered by the MEGS, 

                                                    kiik CaP π=== )0|1( .                                                                           (4) 

Furthermore,  
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We test 0:0 =γH  v.s. .0:1 >γH  ),,( 1 mppP L=  and ),,( 1 mππ L=Π  are nuisance parameters. While 

both parameters can be estimated under 1H , ),,( 1 mppP L=  is not involved in the likelihood under 0H , 

which causes problems in deriving asymptotic null distribution for the likelihood ratio test (LRT). To 

overcome this problem, we further assume that the MEGS mutation frequencies are proportional to the 

background mutation frequencies, i.e. kkp π∝ . Under this assumption, (6) reduces to  
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Let 1Π̂ and 1̂γ  be the estimate under H1 and 0Π̂ be the estimate under H0.The LRT is calculated as 

));ˆ,0(log);ˆ,ˆ((log2 0
0

0
11 ALALS Π−Π= γ . Asymptotically, LRT has a null distribution 2

1
2
0 5.05.0 χχ + , a 

mixture distribution with 0.5 probability at point mass zero and 0.5 probability as 2
1χ . 

We have two comments. First, the assumption kkp π∝ does not affect the null distribution of LRT because 

kp is not involved in the data generation process under H0. However, violation of this assumption may cause 

power loss, which warrants further investigation. Second, the LRT in the LRT-SB method was derived based 

on a different data generative model, which incorrectly and unnecessarily assumed that background 

mutations could happen only for patients covered by the MEGS. Under this model, their likelihood function 

degraded as the coverage ,0→γ  preventing them from using the standard statistical theory to derive the 
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null distribution. To overcome this problem, they used Vuong’s47 method (but incorrectly) to derive an 

incorrect asymptotic null distribution. More details are in Supplemental Note.    

4.2 Testing the global null hypothesis 

Our algorithm for testing the global null hypothesis (GNH) has the following steps. (1) For k (k≤K), we 

search all gene sets of size k from M genes to test for ME using LRT and denote the minimum P-value as Pk. 

(2) We run T permutations, calculate the minimum LRT P-value Pk(t) for permutation t and estimate the 

significance (denoted as Qk) of the observed Pk as the proportion of simulations with Pk(t) smaller than the 

observed Pk. Intuitively, Qk measures the significance when searching only for MEGS of size k. (3) Because 

we search for MEGS of different sizes, the overall statistic for testing GNH is defined as θ=min(Q2,⋯, QK), 

with overall significance evaluated by permutations again. 

Although conceptually straightforward, it is computationally infeasible. Finding the minimum P-value Pk 

even for a moderate k (e.g. k=6) is computationally very challenging and not feasible for thousands of 

permutations. We propose a multiple-path search algorithm to address the problem. Briefly, we calculate the 

P-values for all M(M-1)/2 pairs of genes and choose the top L (e.g. L=10) pairs to start linear search. For the 

thl  pair (assuming G1 and G2), let )(2 lq be the LRT P-value. Next, we calculate the LRT P-values for M-2 

triplets (G1,G2,G3), ⋯, (G1,G2,GM) and choose the gene (assuming G3) with the smallest P-value, denoted as 

)(3 lq . We repeat until )(lqK . For each k, we approximate Pk by )(min lqkLl≤ , instead of exhaustive search.  

4.3 Identify statistically significant MEGS 

Remember that we use θ=min(Q2,⋯,QK) as the overall statistic for testing GNH. Once GNH is rejected at 

level α=0.05, we need to identify all combinations of genes that reach significance. First of all, based on 

permutations, we can identify a cut-off θ1-α. In the multiple-path search algorithm described above, for each 

combination of k genes, we transform its nominal LRT P-value to Q based on permutations and declare this 

gene set as significant if Q<θ1-α. This procedure may identify significant but nested putative MEGS. We 

designed a model selection procedure described in Fig. 1D to make a choice between nested models.  
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Figure legend. 

Figure 1.  Overview of the algorithms implemented in MEGSA for searching mutually exclusive gene 

sets. (A) Observed somatic mutation matrix. Each row is for one sample and each column for one gene. Red 

entries represent MEGS mutations while gray entries represent background mutations. (B) A data generative 

model for MEGS. The left panel shows an MEGS with four genes showing complete mutual exclusivity. The 

right panel shows MEGS mutations and background mutations. γ is the coverage of the MEGS, defined as 

the proportion of samples covered by the MEGS. ),,( 1 mpp L  are the relative mutation frequencies 

normalized to have 11 =++ mpp L . (C) Overall statistic for testing global null hypothesis and its 

significance. pij is the P-value of our LRT for a gene pair ),( ji .  pijk is the P-value a gene triplet ),,( kji .  

For each k, let Pk as the minimum P-value of all sets of k genes and evaluate its significance (denoted as Qk) 

using permutations preserving mutational frequencies. The overall statistic is defined as θ=min(Q2,⋯, QK) 

and its significance is assessed by permutations. (D) Model selection based on permutations. Two nested 

MEGS (G1,G2) and (G1,G2,G3) have nominal P-value p1 and p2 based on LRT. We permute mutations in (G3, 

⋯, GM) by keeping the mutual exclusivity of (G1, G2) unchanged. Ĝk represents permuted mutations. For each 

permutation, we calculate the minimum P-value for all M-2 triplets (G1,G2,Gk). Threshold p0 is chosen at 

level 5%.  

Figure 2.  Three strategies for searching mutually exclusive gene sets using MEGSA. (A) de novo 

analyses for all M genes. (B) Search MEGS by incorporating KEGG pathways. For each pathway, we derive 

the subset (called a module) of M genes (with mutation data) in the pathway. We eliminate duplicate 

modules or modules with less than 3 genes, and analyze each module using MEGSA to derive module-wise 

P-values. We control FDR<0.05 using these module-wise P-values to choose significant modules and 

identify optimal MEGS. (C) Expanding established small MEGS (G1, G2) by the model selection procedure 

described in Fig. 1D.  

Figure 3.  Performance comparison of methods for detecting mutually exclusive gene sets on simulated 

datasets. In all simulations, we have 54 genes with 50 being randomly simulated with specific mutation 
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frequencies and 4 genes as MEGS. (A) Balanced and imbalanced MEGS with four genes. In imbalanced 

MEGS, the mutational frequencies have a ratio 3:1:1:1. (B) Probability of ranking the exact MEGS as the top 

candidate. The X-coordinate is the coverage (γ) of simulated MEGS. (C) Power of detecting MEGS using 

MEGSA and Mutex. (D) Probability that the identified top MEGS is statistically significant and identical to 

the true MEGS. Coverage (γ) of MEGS ranges from 0.3 to 0.4. (E) Probability of choosing each gene in the 

identified top MEGS by MEGSA and Dendrix. The top figure is based on an MEGS with coverage γ=0.4 and 

the bottom figure based on coverage γ=0.6. π is the mutation frequencies for the 50 non-MEGS genes. The 

first four are MEGS genes and the rest are non-MEGS genes. (F) The distribution of the number of falsely 

detected genes for the top MEGS identified by in MEGSA and Dendrix. MEGSA had few false positive 

genes while Dendrix detected many false positive genes. 

Figure 4.  Analysis results for TCGA breast cancer whole exome sequencing data. P-values were 

adjusted for multiple testing for all reported MEGS. (A) A network constructed based on the 10 significant 

MEGS. Thickness of the edges and sizes of the gene labels are proportional to the times in the detected 

MEGS. (B) Five significant MEGS with P<10-4. (C) A significant MEGS with five genes. (D) Illustration 

showing MEGS pattern including protein products (colored blue) of AKT1, TP53, ARID1A, MED23 and 

TBL1XR1 in their relevant biological pathways. Connections including activation and interaction as well as 

effects on gene expression and biological processes are indicated. Components in the NCoR/SMRT and 

SWI/SNF complexes and the potential interaction of MED23 with p53 via the overall mediator complex are 

not illustrated. Connections including activation (lines with arrow) and inhibition (bar-headed lines) as well 

as end biological effects between the gene products are illustrated. Abbreviations: RTK, receptor tyrosine 

kinases; GFR, growth factor receptor.   

Figure 5.  Analysis results for TCGA acute myeloid leukemia whole exome sequencing data. P-values 

were adjusted for multiple testing for all reported MEGS. (A) A network constructed based on the 5 

significant MEGS. Thickness of the edges and sizes of the gene labels are proportional to the times in the 

detected MEGS. (B) The most significant MEGS with three genes NPM1, RUNX1 and TP53.  (C)  The 

mutation status of the triplet (NPM1, RUNX1 and TP53) is strongly associated with survival. (D) A 
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significant MEGS with five genes. (E) Illustration showing MEGS pattern including protein products 

(colored blue) of FLT3, IDH2, KIT, NRAS and TP53 in their relevant biological pathways. Connections 

including activation (lines with arrow) and inhibition (bar-headed lines) as well as end biological effects 

between the gene products are indicated. IDH2 which locates to the mitochondria is shown outside (or in-

part) of the illustrated organelle for clarity and only the relevant components of glutamine (GLN) and 

glutathione (GSH) metabolism and TCA cycle are indicated. PI3K pathway (receptor tyrosine kinases 

(RTK), FLIT3 and KIT), MAPK/ERK pathway (NRAS). Abbreviations: ROS, reactive oxygen species, 

αKG, alpha-ketoglutarate; 2HG, 2-hydroxyglutarate; TCA, tricarboxylic acid cycle; GLN, glutamine; GLU, 

glutamate; and GLS, glutaminase 2; GSH (glutathione). 
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