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Abstract  

Though numerous polymorphisms have been associated with risk of developing 
lymphoma, how these variants function to promote tumorigenesis is poorly understood. Here, we 
report that lymphoma risk SNPs, especially in the non-Hodgkin’s lymphoma subtype chronic 
lymphocytic leukemia, are significantly enriched for co-localization with epigenetic marks of 
active gene regulation. These enrichments were seen in a lymphoid-specific manner for 
numerous ENCODE datasets, including DNase-hypersensitivity as well as multiple 
segmentation-defined enhancer regions.  Furthermore, we identify putatively functional SNPs 
that are both in regulatory elements in lymphocytes and are associated with gene expression 
changes in blood.  We developed an algorithm, UES, that uses a Monte Carlo simulation 
approach to calculate the enrichment of previously identified risk SNPs in various functional 
elements. This multiscale approach integrating multiple datasets helps disentangle the underlying 
biology of lymphoma, and more broadly, is generally applicable to GWAS results from other 
diseases as well.  
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Introduction 

Lymphoma, including the non-Hodgkin’s lymphoma subtype chronic lymphocytic 
leukemia, was responsible for more than 130,000 new cases of cancer and 44,000 deaths in 2014 
[1]. In an effort to understand the etiology of these diseases, numerous genome-wide association 
studies (GWAS) have been performed and have identified common genetic variants associated 
with the risk of developing lymphoma [2-14].   

However, as with GWAS of other diseases, neither the identified GWAS hit nor 
correlated variants in linkage disequilibrium (LD) alter the amino acid sequence of a protein.  
We have previously observed that single nucleotide polymorphisms (SNPs) found in 
evolutionary conserved regions and in regions epigenetically marked for transcriptional 
regulation are more likely to be under negative selection in humans, suggesting biological 
function [15].  Others have shown that risk variants are enriched in particular epigenomic marks 
of transcriptional regulatory regions[16, 17] and that trait-associated SNPs, including GWAS-
identified risk SNPs, are often found in expression quantitative trait loci (eQTL) that affect 
nearby gene expression[18].  Furthermore, recent studies have shown the etiologic nature of 
transcription factors themselves in some diseases[19]. Taken together, these data suggest the 
hypothesis that for many GWAS-identified risk lock, the functional variant may modulate 
disease risk through alteration of gene regulation rather than coding sequence. 

To test the hypothesis that lymphoma risk SNPs, or their LD partners, tend to alter 
regulatory elements, we interrogated the functional genomics data from ENCODE (Encyclopedia 
of DNA Elements) [20, 21].  The large amount of data available for the lymphoblastoid cell line 
GM12878 and other hematologically derived cells allows integrative analysis to give more 
accurate representation of the segments of the genome that are active regulatory elements[22, 
23].   To test our hypothesis, we developed a computational pipeline, UES (Uncovering 
Enrichment through Simulation), that uses a Monte Carlo approach to test whether a set of SNPs 
is significantly enriched for a particular functional genomic annotation of the genome, taking 
linkage disequilibrium patterns into account.  We demonstrate a significant enrichment of these 
lymphoma risk SNPs in regulatory marks specific for lymphoid tissue.  

Results 

Enrichment of CLL & Lymphoma Risk SNPs in GM12878 Regulatory Tracks 
We first asked if lymphoma risk SNPs are enriched in regions annotated as putatively 

regulatory in GM12878 using our novel method, UES (Fig. 1).  Using the NHGRI GWAS 
catalog [24], we identified 55 risk SNPs for lymphoma, including both the Hodgkin’s lymphoma 
(HD) and non-Hodgkin’s lymphoma (NHL) types.  Once the list was pruned to ensure the SNPs 
were independent and the HLA region was excluded, the resultant list contained 36 risk SNPs 
(S1 Table) [2-14].  We confirmed that the minor allele distribution of our random SNPs were 
similar to the original input (real MAF mean = 0.278; random SNPs mean = 0.260; p=0.203). 
We queried the ENCODE “unified DNase” track for GM12878, which identifies regions of open 
chromatin regardless of the particular factors that bind.  The lymphoma risk-SNPs were 
significantly enriched in GM12878 DNase hypersensitivity sites (p < 0.0001), with 16 distinct 
regions containing risk SNPs potentially explainable by a variant in a DNase hypersensitive site.  
The 10,000 control sets of randomly selected SNPs with similar characteristics only showed an 
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average of 4.5 regions potentially explainable by variants overlapping a DNase hypersensitive 
site (Fig. 2a & S2 Table).  

As some physical regions of the genome harbor more than one independent risk SNP, we 
were concerned this could lead to oversampling of a given region and false positives.  To test 
this, we location pruned our input SNPs, ensuring that none of the SNPs tested were within one 
megabase of one another, reducing the input set from 36 initial SNPs down to 30 SNPs. We 
observed nearly identical results between the location pruned dataset and the original dataset (S2 
Table) and concluded that these 6 extra SNPs were not falsely inflating the observed statistical 
result. 

We next asked if enrichment could be observed in regulatory elements predicted by 
genome segmentation of integrated functional genomics data. Using the results from two 
different segmentation algorithms – ChromHMM[22] and Segway[23] – on GM12878, we asked 
if lymphoma risk SNPs are enriched in regions identified as active promoters or strong 
enhancers.  We observed a significant enrichment of the lymphoma SNPs in regulatory regions 
as defined by both ChromHMM and Segway with p=0.0002 and p<0.0001, respectively (Figs. 
2b-2c). Upon looking deeper at the ChromHMM data for GM12878, we observed the risk SNPs 
were enriched in each of the four classes of enhancers (2 strong enhancer classes and 2 weak 
enhancer classes) with p<=0.0002 when analyzed separately.  When combined into a separate 
strong enhancer set and a weak enhancer set, we saw a significant enrichment (p<0.0001) when 
compared to random controls for both (S3 Table). Interestingly, the “Active Promoter” state, by 
itself showed no significant enrichment (p=0.3845).  We observed similar results when 
performing the enrichment analysis for the Segway segmentation track of GM12878 (S3 Table): 
strong enhancers were the most enriched (p < 0.0001); weak enhancers and active promoters did 
not achieve significance at the Bonferoni threshold (p = 0.0031 and p=0.0419, respectively).  

We hypothesized that functional SNPs may be those localized at transcription factor 
binding sites (TFBS). Using the same SNPs, we interrogated the set of ENCODE ChIP-Seq data 
for GM12878 (January 2011 data freeze). We created a master dataset consisting of the union of 
75 GM12878 transcription factor ChIP-Seq data and observed a significant enrichment of the 
lymphoma SNPs in the peaks when compared to the random controls (p < 0.0001; S4 Table). We 
created additional sets containing the union of all of the transcription factor peaks with the 
Gm12878 DNase hypersensitivity and a union of all the LCL DNase hypersensitivity and 
observed similar enrichment in both (p < 0.0001, S4 Table). In order to identify specific 
transcription factors that bind near lymphoma risk SNPs, we ran the enrichment analysis pipeline 
for each factor in the ChIP-Seq dataset, 4 of which reached the significance threshold once 
corrected for multiple testing: NFIC, RUNX3, NF-kB, and TBLR1 (p< 0.0001; p<0.0001; 
p=0.0002; p=0.0005; S4 Table). 

To test the validity of our findings and verify our approach, we performed the same 
analysis with a set of breast cancer risk SNPs identified from the NHGRI GWAS catalogue as 
there were a similar number of SNPs in the database at the time (n=31).  Our hypothesis is that 
since the diseases do not share a tissue of origin, there should be no enrichment of the breast 
cancer SNPs in the GM12878 annotations. We did not observe statistical enrichment (random 
n=10,000) of the breast cancer risk loci in DNase hypersensitivity, ChromHMM enhancer, 
Segway enhancer data, or TF union data for GM12878 (S5 Table).  We expanded our scope to 
see whether or not these tissue-specific observations held true when we used a different disease, 
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prostate cancer, with roughly double the number of input SNPs (n=62). As seen with the breast 
cancer SNPs, there was no statistical enrichment of the prostate cancer SNPs in any of the 
datasets for GM12878 after correcting for multiple testing (S5 Table).  

Tissue Specificity of CLL & Lymphoma Risk SNPs 
We next asked if the observed enrichments were specific to cells of the lymphoid lineage. 

First, we interrogated the other 124 unified DNase tracks from ENCODE with the same GWAS 
and random SNP sets used for the GM12878 analysis and observed enrichment of 8 additional 
cell lines that achieved sub-Bonferoni significance with p<0.0004.  Interestingly, all of the lines 
that showed enrichment at that level were of the lymphoid lineage (Figs. 3a-3e, 3j-3k, S2 Table). 
When we relax the stringency and expand the scope to any cell lines with p<0.01, we see that 15 
out of the 18 cell lines which surpassed that threshold were of the lymphoid lineage. All of the 
LCLs in the ENCODE database were below this threshold and had a p<=0.0065 (Figs. 3f-3i). 
There was only one cell line, HRE (renal epithelial cells), which was not from the lymphoid 
lineage that almost met the statistical threshold once corrected for multiple testing (p=0.0004). 
These data show that the previously reported lymphoma risk SNPs are enriched in DNase 
hypersensitivity regions in a tissue-specific manner (Fig. 3l).  

We next performed a similar analysis on the chromatin segmentation data.  We analyzed 
eight additional cell lines with ChromHMM segmentation data and five additional lines with 
Segway segmentation data for enhancer classes. For both the ChromHMM and Segway strong 
enhancer classifications, GM12878 was the only cell line that showed strong, significant 
enrichment with p=0.0002 and p<0.0001 for each dataset, respectively (S6 Table). When looking 
at the weak enhancer classifications, again, GM12878 was the only cell type to demonstrate any 
significance with p<0.0001 and p=0.0031 for the ChromHMM and Segway data, respectively 
(S6 Tables). 

Estimating enrichment by local annotation shifts 
It has been previously noted that, under some models in which the functional variants 

underlying GWAS are not regulatory, enrichment of GWAS-identified SNPs in regulatory 
regions could occur if proper controls are not used.  While our method controls for the major 
factors that need to be controlled for (LD patterns and distance from transcription start), we 
nevertheless asked if a similar enrichment could be observed with an alternative approach, 
GoShifter, that shifts annotations at the associated loci to test the significance of enrichment . 
This approach identified 5 cell lines that showed enrichment for the risk SNPs. Notably, 4 of 
these 5 lines that showed enrichment at p < 0.05– GM19238, Th0, Cd20, and GM06990 – are 
from the lymphoid lineage (S7 Table). 

Lymphoma & CLL SNPs as eQTLs 
Another prediction of our hypothesis that lymphoma risk SNPs alter regulatory regions is 

that these SNPs will be associated with expression changes in nearby genes.  To test this 
hypothesis, we asked how may of the published lymphoma risk SNPs are expression quantitative 
trait loci (eQTLs) using a recently published set of eQTLs in blood[25].  We observed that 21 of 
the original loci have at least 1 cis eQTL, (S8 Table). One example of the power of this overall 
approach is evidenced by rs7097.  This SNP was initially defined as a lymphoma risk SNP[8] but 
did not intersect with any LCL DNase hypersensitivity sites, nor with promoter or enhancer 
regions of chromatin segmentation data. However, one of the SNPs it tags, rs694609, was found 
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in a DNase hypersensitivity site of GM12878, which was categorized as falling in an “Active 
Promoter” by ChromHMM or a “Transcription Start Site” by Segway. Even as both the original 
SNP, rs7097, and the tag, rs694609, showed evidence of being cis-eQTLs for the same genes 
(POLR1D, LNX2, and GTF3A), our pipeline would suggest that the tagged SNP is the more 
likely candidate to be the functionally relevant SNP as it is found in open chromatin and in 
functional marks (S8 Table). 

Discussion 
We have shown significant enrichment of previously reported lymphoma and CLL risk 

SNPs in regulatory elements in lymphoblastoid cell lines, pointing to the tissue specific manner 
through which these genetic loci may confer increased risk for lymphomagenesis. Looking 
specifically at the analyses in GM12878, we saw this enrichment in DNase hypersensitivity loci 
as well as numerous enhancer sites; we did not observe enrichment when we looked at risk loci 
for other cancer types. We have also identified candidate functional SNPs that co-localize with 
these genomic marks and have also been shown to be eQTLs in published blood datasets. 

We were able to perform these analyses because there are significant amounts of 
functional genomic data available for the cell line GM12878.  Taking a deeper at those results, 
we note a similar number of loci for which a candidate functional SNP can be found in DNase 
regions, ChrommHMM-Strong Enhancers, and Segway-Strong Enhancers (n=16, 12, and 17, 
respectively).  While none of these 3 datasets were complete subsets of each other, there is 
significant overlap (S8 Table). However, as DNase hypersensitivity data can be obtained from a 
single assay as opposed to a combination of multiple assays for the segmentation data, in the 
case where data on relevant cell types do not yet exist, DNase data may be sufficient to identify 
putatively functional SNPs before investing the time and resources to generate all the assays 
needed for segmentation analysis.   

We believe that these enrichment studies can provide valuable insight into the potential 
etiology of the disease of interest. For example, looking at the enrichment of lymphoma SNPs in 
ChIP-Seq data, we see an enrichment of risk SNPs in RUNX3 binding sites(p<0.0001).   RUNX3 
is a gene which is highly expressed in LCLs [26] and has been shown, paradoxically, to act both 
in promoting and suppressing tumor growth [27]. We also observed enrichment of risk SNPs in 
binding sites for Nf-kB and TNF (p<0.0001); variation within these two pathways have also been 
shown to associate with non-Hodgkin’s lymphoma risk [28].  Lymphoma risk SNPs are also 
enriched at binding sites of TBLR1 (p=0.0005); disruptions at the TBLR1 locus in diffuse large 
B-cell lymphoma have been seen through a deletion of the locus [29] and the identification of a 
novel fusion between it and TP63, a paralogue of TP53 [30].  

We acknowledge that there are pipelines similar to our UES algorithm that are already 
deployed and perform in similar ways.  However, the UES pipeline makes improvements on 
those methods through the controlling for the input SNPs based on the initial SNP chip the study 
was done on, the distance a SNP is from a TSS, and the number of LD partners to compute an 
empirical p-value.  While RegulomeDB[31] and HaploReg[32] both work quickly, thoroughly, 
and robustly annotate the input SNPs with genomic regulatory data they do not provide a formal 
statistical test of enrichment. Though Maurano et al.[16] were able to show a distinct enrichment 
of GWAS SNPs in DNase hypersensitivity sites, by accounting for the particular genotyping 
platform used in a GWAS we reduce the risk of spurious enrichment signals due to a nonrandom 
distribution of SNPs from the GWAS platform with respect to genomic features. Trynka et 
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al.[17] also used a permutation approach to test for significance of enrichment, but their 
approach focuses on the question of tissue specificity rather than a general test of enrichment. 

More recently, Trynka et al. [33] discuss the pitfalls of a SNP-matching approach which 
lead to an over-inflation of the significance scores.  However, their study also demonstrates that 
a large amount of the over-inflation of results can be corrected when taking into account the LD 
structure of the input SNPs, which UES does. Both approaches agree with each other and show 
significant enrichment of the lymphoma SNPs in the DNase hypersensitivity sites for numerous 
LCLs. While acknowledging the strength of GoShifter, UES provides an improvement over the 
other SNP-matching algorithms in the field today and can provide useful insights that were not 
captured by GoShifter. 

Overall, the data presented support the hypothesis that regulatory variants that influence 
transcription in cells of the lymphoid lineage contribute to inherited risk of lymphoma and 
chronic lymphocytic leukemia. These results validate our computational approach that, moving 
forward, could provide novel insight into disease etiology when applied to other diseases.   

Methods 

Pipeline Construction and Workflow 
We developed a computational pipeline entitled “Uncovering Enrichment through 

Simulation” (UES) to test if GWAS-identified SNPs are enriched in particular functional 
annotations through use of Monte Carlo simulations.  The pipeline (Fig. 1) is written 
predominantly in Perl and accepts 3 parameters: a text file containing the input set of SNPs, the 
genotyping platform from which to choose the random sets, and the number of random sets to be 
constructed. SNPs that had been identified at the HLA region – defined as chr6:29570005-
33377658 (build 37) – were removed due to the high amount of variability and linkage 
disequilibrium at that region. Each of the initial SNPs is then categorized by its distance from the 
nearest transcription start site (TSS) and its number of LD partners. Quartiles for both the TSS 
distance and LD partner count are calculated separately, and the initial SNPs are binned 
accordingly. The number of each of the initial SNPs contained in each bin (characterized by 
distance from TSS and LD partner count) is recorded and used for subsequent random SNP set 
selection. Upon completion of this step, all of the SNPs from the appropriate genotyping 
platform are loaded (excluding the HLA region) and binned according to the initial SNP criteria. 
Since it has been shown that disease-associated SNPs have a higher MAF than expected by 
chance[34], we filter the platform SNPs and keep only those with a MAF >= 5% keeping in 
concert with the common filter steps when performing GWAS.  Random SNP sets are chosen, 
matching the original bin frequencies, and LD partners are retrieved (r2>0.8). All the data have 
been pre-calculated and are retrieved using Tabix[35]. The script executes an instance of 
BedTool’s intersectBed[36] in order to determine which SNPs fall directly in a given track . 
Those resultant SNPs are then collapsed into loci that co-localize with marks based on LD 
structure. Finally, the empirical p-value for a specific track is calculated by the following 
formula: 

� �
�����

�
 

where ����� = the number of instances when the frequency of co-localization of the random SNP 
sets with the feature >= the number of loci that co-localize with the feature for the initial input 
set of SNPs, and � = the number of random-SNP sets chosen. The current pipeline and 
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subsequent versions are available for download from the Klein lab’s website 
http://research.mssm.edu/kleinlab/software/ues. Algorithm development can be found at  

CLL & Lymphoma Risk SNPs 
We manually queried the NHGRI GWAS Catalog and selected a master list of 

CLL/lymphoma SNPs that had been reported as having a significant association. To ensure 
independence, for any SNPs that were correlated (r2 > 0.8), the SNP with the lower reported p-
value was kept. Initially, 56 CLL & lymphoma SNPs were entered into the pipeline, and once the 
HLA region was excluded, there were 36 SNPs used for the remainder of the analysis (S1 Table). 
Next the LD partners were found, resulting in 591 SNPs used for analysis of the original 
lymphoma and CLL data. The enrichment pipeline produced 10,000 sets consisting of 36 
matched random SNPs.  Once LD partners were included, the sets used for analysis range in size 
from 331 to 4028 SNPs.  

Location Pruning of CLL & Lymphoma Risk SNPs 
In order to ensure that the observed signal was not due to oversampling of a region, we 

pruned SNPs from the input set so that SNPs were separated by at least a megabase.  For those 
SNPs in close proximity, we retained the SNP that had the lowest reported p-value, resulting in a 
set of 30 input SNPs.  

Pipeline Run Parameters 
Since our analysis was run on a collection of SNPs from multiple studies, we provided 

the parameter that chose the matched-random SNPs from a union set of both Illumina and 
Affymetrix genotyping chips. The pipeline outputted 10,000 sets of feature-matched random 
SNPs. 

Regulatory Track Data 
The ENCODE datasets were obtained directly from the ENCODE Consortium’s website. 

The DNase hypersensitivity analysis was performed using the ENCODE Consortium’s “unified 
DNase hypersensitivity” tracks (http://hgdownload-
test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgDnaseUniform/). The 
ChromHMM track was also downloaded from ENCODE (http://hgdownload-
test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgSegmentation/), after which a Perl 
script was used to extract the active promoter, strong enhancer, and weak enhancer regions, or 
combine the active promoter and strong enhancer regions into a combination track. The Segway 
segmentation was downloaded directly from the Noble lab’s website and was modified in the 
same way as described for the ChromHMM data (http://noble.gs.washington.edu/proj/segway/). 

Peak-Shifting (GoShifter) 
We also used the new software GoShifter to test for enrichment.  Using European 

samples from the 1000 Genomes dataset we first iterated over each locus to identify all the 
variants in tight LD (r2>0.8). Locus boundaries were defined by the most downstream and 
upstream LD SNP and extended by two times the median size of a tested annotation. We then 
circularized the locus and allowed annotations to randomly shift in 10,000 iterations. For each of 
the shifting iterations we quantified the number of loci at which a variant overlapped with an 
annotation. The reported p-value corresponds to the number of iterations where enrichment 
exceeded the observed value[33].  
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Figures 

 

Fig. 1. UES algorithm visualization. This represents the generalized workflow to determine the 
SNP enrichment in an ENCODE track. A full description and details of the algorithm can be 
found in the Materials and Methods. 
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Fig. 2. Overlap of lymphoma risk SNPs with regulatory regions in GM12878. The 
histograms represent the distribution of how many random loci overlap a specific annotation.  
The blue represents the mean of the empirical null distribution while the red line represents the 
real number of loci from the lymphoma and CLL GWAS that overlap the specific regulatory 
annotation.  A, Overlap of SNPs with DNase hypersensitivity regions in GM12878. B, Overlap 
of SNPs with active promoters and strong enhancers as annotated by ChromHMM in GM12878. 
C, Overlap of SNPs with active promoters and strong enhancers as annotated by Segway in 
GM12878. 
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Fig. 3. Enrichment of lymphoma and CLL risk SNPs in DNase-hypersensitive sites of 
lymphoblastoid cell lines.  (A-I) These histograms represent the distribution of how many 
random loci overlap a specific annotation.  The blue represents the mean of the empirical null 
distribution while the red line represents the real number of loci from the lymphoma and CLL 
GWAS that overlap the DNase hypersensitive site in the specified cell line: (A) GM19238  (B) 
GM19240 (C) GM12864 (D) GM12865 (E) GM06990 (F) GM19239 (G) GM18507 (H) 
GM12892 (I) GM12891.  (J) Th0 (K) CD20+ (L) Summary of distribution of tissue of origin for 
cell lines in which lymphoma and CLL risk SNPs are either enriched sub-Bonferoni (p<0.0004) 
in DNase hypersensitive sites or not enriched. 
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Supporting Information 

S1 Table. Lymphoma SNPs identified from the NHGRI GWAS catalog. The number of 
SNPs was reduced to 36 from 55 once those SNPs at the HLA region were identified and 
removed. 

S2 Table. Enrichment of lymphoma SNPs in ENCODE Unified DNase tracks. Enrichment 
analysis using the UES pipeline were performed for each of the 125 DNase hypersensitivity 
tracks in the ENCODE database. Cell line information (Tissue, Blood cell classification, and 
karyotype) were obtained directed from ENCODE’s description of the cells used. The 
“OrigLoci” column gives the number of loci (once the SNPs are collapsed into loci based on LD 
partners) for the input lymphoma & CLL SNPs that overlapped with the specific mark. The 
“Rand>=Orig” column is the number of times a random SNP file had greater than or equal to the 
number of loci co-localizing with the particular mark. The “Random_Avg” column is the 
average of the 10,000 random generated SNP sets and the loci that overlap with the mark. The 
“pValue“ is calculated by taking the number of random SNP sets that were greater than or equal 
to the input SNPs divided by n, in this case, 10,000. The “location pruned pValue” is the 
reported p-value for the rerun of the analysis using the input data where SNPs were removed 
within one megabase of one another. (See Methods.) 

S3. Table. Enrichment of lymphoma risk SNPs in GM12878 segmentation data. We ran the 
UES pipeline for each of the segmentation tracks, both ChromHMM and Segway, for GM12878. 
These data are calculated and represented in the same way as Supplementary Table S2. 

S4. Table. Enrichment of lymphoma risk SNPs in GM12878 Chip-Seq data. The UES 
pipeline was run to calculate the enrichment of the lymphoma risk SNPs with with transcription 
factor binding data in GM12878.  The “Gm12878 ChipSeq” Union track was created by merging 
all of the ChipSeq tracks for GM12878. That track was subsequently merged with the DNase 
hypersensitivity track of GM12878 to create the “Gm12878 DNase & Gm12878 ChipSeq 
Union”.  The “All LCL Union” track was constructed in a similar manner by merging all of the 
DNase hypersensitivity tracks for the 10 LCLs in the ENCODE database. The “All LCL Union 
& Gm12878 ChipSeq Union” track was created by merging both of those union tracks. These 
data are calculated and represented in the same way as Supplemental Table S2. This table also 
reports the p-values for the analysis of the individual transcription factor data for GM12878. The 
column descriptions are the same as in Supplementary Table S2. 

S5. Table. Enrichment analysis of breast cancer and prostate cancer risk loci in GM12878 
segmentation data. These data are calculated and represented in the same way as 
Supplementary Table S2. 

S6 Table. Enrichment of lymphoma risk SNPs in “Active Promoter & Strong Enhancer,” 
“Strong Enhancer,” and “Weak Enhancer” segmentation datasets for both ChromHMM 
and Segway. “Strong Enhancer” tracks (combination tracks made of strong enhancer states 4 & 
5) for all the ChromHMM cell types. These data are calculated and represented in the same way 
as Supplementary Table S2. 

S7 Table. GoShifter enrichment of lymphoma risk SNPs in DNase hypersensitivity data.  
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S8 Table. Summary of lymphoma risk SNPs. Summary of all original lymphoma & CLL 
SNPs and their LD partners, along with information on whether or not any of these SNPs were 
found to be in DNase hypersensitivity sites, active promoters (for both ChromHMM and 
Segway), or strong enhancers (ChromHMM and Segway). All of the tracks are for GM12878. 
The final column describes the eQTL status of the as seen in Westra et al. 
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