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ABSTRACT 

Landscapes exhibiting multiple secondary structures arise in natural RNA molecules that modulate gene 

expression, protein synthesis, and viral infection, but it is unclear whether such rich landscapes are special 

features of biological sequences or whether they can arise without explicit selection. We report herein that 

high-throughput chemical experiments can isolate an RNA’s multiple alternative secondary structures as they 

are stabilized by systematic mutagenesis (mutate-and-map, M2) and that a computational algorithm, REEFFIT, 

enables unbiased reconstruction of these states’ structures and populations. In an in silico benchmark on non-

coding RNAs with complex landscapes, M2-REEFFIT recovers 95% of RNA helices present with at least 25% 

population while maintaining a low false discovery rate (10%) and conservative error estimates. In experimental 

benchmarks, M2-REEFFIT recovers the structure landscapes of a 35-nt MedLoop hairpin, a 110-nt 16S rRNA four-

way junction with an excited state, a 25-nt bistable hairpin, and a 112-nt three-state adenine riboswitch with its 

expression platform, molecules whose characterization previously required expert mutational analysis and 

specialized NMR or chemical mapping experiments. With this validation, M2-REEFFIT enabled tests of whether 

artificial RNA sequences might exhibit complex landscapes in the absence of explicit design. An artificial flavin 

mononucleotide riboswitch and a randomly generated RNA sequence are found to interconvert between three 

or more states, including structures for which there was no design, but that could be stabilized through 

mutations. These results highlight the likely pervasiveness of rich landscapes with multiple secondary structures 

in both natural and artificial RNAs and demonstrate an automated chemical/computational route for their 

empirical characterization. 
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INTRODUCTION 

 

RNAs are deeply involved in gene expression, gene regulation, and structural scaffolding and are forming the 

basis of novel approaches to control these processes.1–3 Several of RNA’s natural and engineered roles rely on its 

ability to fold into and interconvert between multiple functional structures. Ribozymes, riboswitches, and 

protein-complexed RNAs transition between several states to detect and respond to small molecules and other 

macromolecules; to proceed through numerous steps of RNA splicing reactions; to initiate, catalyze, and proof-

read protein translation; to activate logical circuits in cells; and to package, release, and replicate RNA viruses.4–9 

Rationally dissecting and re-engineering these ‘dynamic structure landscapes’ depends on knowledge of the 

alternative states of an RNA’s structural ensemble.10,11  

Empirical portraits of such landscapes are missing for the vast majority of natural and engineered RNAs and it 

is unclear whether a rich multi-state landscape is a property specially selected by evolution or an intrinsic 

feature of RNA that can arise without explicit design or selection. Watson-Crick RNA secondary structure 

landscapes have been computationally predicted using dynamic programming techniques for decades12,13 and 

many RNAs are predicted to form multiple structures at equilibrium, with ‘non-native’ helices reaching 

populations of 25% or greater.12–14 However, difficulties in treating non-canonical interactions render these 

predictions inaccurate. Indeed, some studies have suggested that conformational switches are special hallmarks 

of biological function rather than an intrinsic feature of generic RNA sequences.15–18 Unfortunately, the few 

experimental techniques that can validate or refute multi-state models are costly and difficult. For example, 

single molecule methods have been successful at revealing rarely populated RNA states but have not provided 

enough information to infer their structures.19 Powerful insights have come from advances in nuclear magnetic 

resonance (NMR) spectroscopy20 but require focused technical expertise, expensive infrastructure, and RNA 

targets with limited structural heterogeneity. In contrast, RNA chemical mapping, or footprinting, is a simple 

class of techniques that can achieve single-nucleotide resolution structural data for any RNA.21,22 For RNAs with 

multiple states, however, these chemical mapping data give ensemble averages over all states, leading to a 

dramatic loss of information compared to what would be needed to resolve the RNA’s dynamic structure 

landscape and to make testable predictions.17,23  

While developing experiments that couple systematic mutagenesis with chemical mapping (mutate-and-map, 

or M2), we have observed that single mutations can produce dramatic changes in chemical mapping data 

throughout an RNA sequence, with several mutations often giving the same alternative pattern.24,25 We 

hypothesized that these perturbed patterns correspond to the reweighting of the structural ensemble of the 

RNA so that alternative component states dominate the chemical mapping data. We have recently shown that 

such alternative structures can be inferred after expert inspection of M2 measurements and extensive 

compensatory rescue studies in an E. coli 16S ribosomal RNA domain.26 Reasoning that such landscape 

dissection might be fully automated through the use of blind source separation algorithms, we have now 

developed an analysis framework called the RNA Ensemble Extraction From Footprinting Insights Technique 

(REEFFIT; see Supporting Figure S1). 

Here, we sought to use M2-REEFFIT to determine whether complex landscapes could arise in artificial RNAs 

without explicit natural selection or design. Prior techniques for detecting alternative structures, including 

covariation-based methods16 and the recent RING-MaP method 17, have not been benchmarked in cases with 

well-characterized landscapes and may be biased towards or against alternative structures. Therefore, we 

developed three tests for M2-REEFFIT landscape dissection. First, a benchmark on simulated M2 data for 20 

natural non-coding RNA sequences provided ‘gold standard’ reference results allowing unambiguous assessment 

of accuracy. Second, we applied M2-REEFFIT to four biological and artificial RNAs that had been previously 

characterized in detail by NMR or chemical mapping and recovered the landscapes defined through prior expert 

analysis. Third, we developed a validation approach based on stabilizing and experimentally testing predicted 

structures by multiple mutations. With these benchmarks and methodological developments, we used M2-

REEFFIT to demonstrate that an imperfectly designed riboswitch and a randomly generated RNA sequence each 

form at least three structures, including states that could not be predicted from computational modeling alone.  
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RESULTS 

 

Dissecting landscapes de novo with M2-REEFFIT 

We developed REEFFIT as a tool for simultaneously inferring multiple structures and their population fractions 

across the mutant RNAs in M2 measurements (see Supporting Methods for formal description, optimization 

schemes tested, bootstrapping, and cross-validation). To test its accuracy in a setting with unambiguous ground 

truth, we first applied M2-REEFFIT to infer structure landscapes for an in silico benchmark of 20 sequences drawn 

from the RFAM database of non-coding RNA molecules. We simulated M2 data by randomly choosing up to 200 

suboptimal structures in the ensembles of the wild type sequence and of all variants that mutate a single 

nucleotide to its complement, as are typically probed in M2 experiments. We then simulated these structures’ 

respective SHAPE reactivity profiles using known reactivity distributions.27 To mimic inaccuracies in available 

energetic models, we re-weighted the ensemble randomly by introducing Gaussian noise to the predicted free 

energies. Our simulated benchmark for landscape modeling included RNAs that folded into predominantly one 

structure, RNAs with excited states present at more than 10% population, and RNAs with complex landscapes in 

which various competing helices were present. Below we describe examples of each of these cases. 

Figures 1a-e show simulated data for the sequence RF01301, the small nucleolar RNA SNOR4A. The 

benchmark simulation of this RNA involved 25 suboptimal secondary structures, most of them related by 

register-shifts to either a 10 nucleotide hairpin, 1301-A, or a more complex structure 1301-B comprised of 5 

helices separated by internal loops (Figure 1e). The REEFFIT model provided an excellent fit to this RNA’s 

simulated M2 data (Figures 1a and 1b). Recovered features included the ‘diagonal’ feature corresponding to 

disruptions near the site of each mutation as well as more dramatic features due to stabilization of state 1301-B 

upon certain mutations, visible as ‘plaid’ patterns in the simulated data (see, e.g. U14A, A41U). The importance 

of using a full ensemble fit was tested by repeating REEFFIT with the constraint that only 1, 2, or 3 structures 

were used in describing the data; these fits did not adequately capture all features in the simulated M2 data 

(Supporting Figure S3). 

Beyond the quality of the fit, the actual details of the ensemble were recovered accurately, despite a 

substantial perturbation of states’ population fractions from their original RNAstructure values. The 

improvement can be visualized in the matrices of base pair probabilities from RNAstructure and from REEFFIT 

compared to the actual simulated matrix (Figure 1c and 1d). Quantitatively, the total weights for 1301-A and 

1301-B in the wild type sequence, simulated to be 58% and 42%, respectively, were recovered as helix fractions 

of 62±12% and 38±11%, respectively. Analogous accuracy was observed across all the simulated mutants (see 

Supporting Data). Having the full mutate-and-map data set was important for making these inferences; using the 

wild type data alone (as would be carried out in conventional ‘one-dimensional’ chemical mapping 23) returns a 

highly ambiguous fit with incorrect helix frequencies (see Supporting Figure S4). 

Figures 1f-o illustrate REEFFIT analyses for two other benchmark RNAs with qualitatively distinct ensembles. 

Tests on simulated data for the selenocysteine insertion sequence (SECIS, Rfam id  RF00031, Figs. 1f-j) supported 

the ability of M2-REEFFIT to model an RNA with a single dominant secondary structure (95% population, 

recovered as 91±15%) without giving false positives for alternative structures present at low population. For 

complex cases, such as RF01300, REEFFIT was able to detect the 190 helices present at more than 25% 

population in the multiple states of the simulated ensembles of the wild type and 58 mutants (Fig. 1k-o). In both 

of these examples, analysis of the data for the wild type sequence alone gave poor recovery of the simulated 

ensembles (see Supporting Figure S4), confirming the need for the full M2 measurements.  

Over the entire 20-RNA benchmark, REEFFIT was able to consistently detect the presence of dominant and 

alternative helices (Supporting Results and Supporting Figures S2-S4). We set a criterion for helix detection that 

the fitted population should be larger than the population error estimated from bootstrapping, i.e. the signal-to-

noise ratio should be greater than one. With this criterion, REEFFIT achieved 94.6% sensitivity over helices 

present with at least 3 base pairs and at least 25% population, corresponding to a false negative rate (FNR) of 

5.4%. The false discovery rate (FDR) was low as well, at 9.7% (see Table 1 and Supporting Table S1; full precision-

recall curves given in Supporting Figure S2). Without data, the error rates were substantially worse, by three-fold 

and two-fold, respectively (FNR of 18.0% and FDR of 23.3%).  Values for base-pair-level error rates were similar 

to helix-level error rates (Supporting Table S2). Error rates for wild type sequences alone (i.e., excluding single-

nucleotide mutants) were higher but also showed a strong improvement in REEFFIT ensembles compared to 
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ensembles modeled with no data (FNR of 15.2%, FDR of 15.2% for REEFFIT; FNR of 24.5% and FDR of 25.4% 

without data, see Supporting Table S3). Use of only wild type data and no mutants, as would be carried out in 

conventional chemical mapping measurements, gave high error rates similar to landscapes modeled without 

data (FNR of 22.7% and FDR of 25%, see Supporting Information Table S4 and an example in Supporting Results 

and Supporting Figure S4), confirming the necessity of M2 data for accurate landscape dissection. Further 

systematic checks and use of ViennaRNA 28 initial models and benchmark evaluation using helix-wise RMSD are 

given in the Supporting Results and Supporting Tables S5, S6, and S7.  

 

Experimental tests on RNAs previously characterized by M2 and expert analysis 

Success in the above in silico benchmark suggested that REEFFIT would accurately recover prior analyses of 

experimental M2 data sets, such as the MedLoop RNA (Figure 2a-d). This RNA was previously designed to exhibit 

a single, stable 10 base pair helix with a 15 nucleotide loop (MLP-A, Figure 2d).24 A few mutations were observed 

to give a clearly distinct chemical mapping pattern and predicted computationally to fold into an alternative 

structure (MLP-B in Figure 2a; see e.g. G4C in M2 data) but not expected to be strongly populated in the wild 

type sequence. Automated REEFFIT modeling of the MedLoop M2 data recovered both the dominant structure 

MLP-A and the alternative state MLP-B, and bootstrapped uncertainties gave bounds on the frequency of MLP-B 

in the wild-type sequence (4±4 %, see mutant-wise state fractions in Supporting Figures S6a-c). Thus, REEFFIT 

was able to explain rearrangements of mutants into an alternative state, but at the same time did not over-

predict its presence in the wild-type sequence (Figure 2c). 

As a more difficult test, we applied the algorithm to the 126-235 region of the E. coli 16S ribosomal RNA. In 

protein-bound ribosome crystals, this domain forms a four-way junction with helices P1a-c, P2a-b, P2*, P3, and 

P4a-b, but its solution state has been controversial26 (Fig. 2e-h). Conventional SHAPE-guided analysis suggested 

loss of P2a and P4, and formation of alternative helices alt-P1d and alt-P 29 (Fig. 2h, green structure). However, 

M2 and compensatory rescue experiments gave no evidence for the SHAPE-based model but instead recovered 

the dominant solution structure to be the holo-ribosome conformation, except for a register shift in P4a (called 

shift-P4a); the crystallographic P4 register was also detected as a 20±10% ‘excited state’.26 In agreement with 

this detailed analysis, automated REEFFIT analysis of the 126-235 RNA M2 data also returned helices P1a-c, P2*, 

P2b, and P3 with high population fractions (>80%, Fig. 2g). Importantly, REEFFIT recovered an admixture of P4 

(21±16%) and shift-P4 (60±23%) in a 3:1 ratio, in agreement with prior analysis (Fig 2g, magnification); 

RNAstructure calculations or use of wild type SHAPE data alone assigned negligible probability or highly 

uncertain population fractions to these helices, respectively (Fig. 2g). The population of alternative helices alt-

P1d and alt-P4 were found to have low populations and high errors (see Supporting Results). Further, a refined 

REEFFIT analysis including data for compensatory rescue double mutants recovered, with conservative error 

estimates, prior expert analysis (see Supporting Results and Supporting Figure S5), illustrating the automation of 

modeling of even a complex RNA structure landscape.  

 

Experimental tests on RNAs with NMR-characterized landscapes 

Encouraged by REEFFIT’s performance in previous test cases for chemical mapping, we sought tests involving 

fully independent experimental characterization by NMR. We first investigated a bistable RNA sequence whose 

landscape was dissected by Höbartner and colleagues by decomposing its NH...N 1H NMR spectrum into a 

weighted sum of two states forming different hairpins (here called BST-A and BST-B).30 As expected, M2 

measurements gave clear evidence for two distinct chemical mapping profiles, reflecting the bistable nature of 

this RNA (Figure 2i-l). One profile, consistent with BST-A appeared in variants with mutations in the 5´ end of the 

sequence, such as U4A. Another profile, consistent with BST-B, was revealed by mutations in the 3´ end such as 

C23G, which would destabilize the BST-A hairpin (Fig 2i). Both structures were recovered by REEFFIT analysis, 

with population weights of 73 ± 11 % and 26 ± 9 %, for BST-A and BST-B respectively, in agreement with the 

previously reported fractions measured by NMR (70 ± 5% and 30 ± 5 %, respectively) and correcting the 

erroneous weights predicted with no data (99% and <1%, respectively). 

We then challenged M2-REEFFIT with a more complex test case: a Vibrio vulnificus adenosine deaminase (add) 

mRNA riboswitch (Fig. 2m-p) that, in response to the ligand adenine, exposes start site segments (Shine 

Dalgarno sequence and/or AUG start codon) to promote mRNA translation. In a detailed NMR study, spectra in 
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ligand-free  conditions fit well to a model with two states, apoA (~30%, with helices P1, P2, P3, P4, and P5) and 

apoB (~70%, with P1B, P2B, P3, an extended P4 called P4B, and P5). Addition of adenine ligand resulted in 

spectra dominated by a state holo with P1, P2, P3, and P5 and perturbed chemical shifts consistent with adenine 

binding to the aptamer. 31 While three states gave the simplest model for the prior data, more complex multi-

state models were consistent as well and would be generally predicted from RNA secondary structure 

calculations.12,13 We focused on whether M2-REEFFIT could recover the base pairs of P1, P2, P1B, P2B, P3, P4, 

P4B, and P5, which were unambiguously determined through NOE spectroscopy and model construct 

comparisons. Even in the absence of adenine, our M2 measurements of the RNA suggested the presence of at 

least two distinct structures that protect or expose the mRNA start site (AUG at nts 120-122) and, in an 

anticorrelated manner, expose or protect segments in the aptamer region (e.g., nts 53-60 and 66-72), 

respectively (M2 data in Fig. 2m). In addition to observing these different states upon mutation, addition of 5 

mM adenine induced clear changes in the M2 data, including protections in the aptamer and consistent exposure 

of the AUG start codon in most mutants (M2 data in Fig. 2m, bottom; Shine-Dalgarno sequence discussed in Fig. 

2 caption).   

REEFFIT analysis gave excellent fits to these add riboswitch M2 data (Fig. 2n), automatically detecting the 

presence of P1 (14±10%), P2 (37±15%), P3 (86±18%), P4 without extension (69±10%), the extension P4B at 

lower population (36±6%), and P5 (94±18%) in the absence of adenine, in agreement with the apoA and apoB 

model from NMR (Fig. 2o-p); and recovering a holo state with P1, P2, P3, P4, and P5 dominating in 5 mM 

adenine (see Supporting Methods for treatment of ligand-bound structures). In ligand-free conditions, the 

REEFFIT analysis also gave several alternative helices in the P1/P2 region, including P1B and P2B (20±7%), 

consistent with the NMR-detected features in the apoB structure. The M2 data were critical in making these 

detections; RNAstructure calculations and use of wild type SHAPE data alone assigned negligible (<5%) 

probability to P1, P1B, P2B, and the possibility of P4B shortening to P4 (Fig. 2o-p). Coarse clustering of REEFFIT 

structures returned four states in which the NMR-modeled apoA was recovered as the cluster medioid of one 

state, ADD-A, and apoB was recovered as a medioid in another, ADD-B, albeit with an additional helix, P4B (Fig. 

2p). Structures with alternative helices to P1, P2, P1B, and P2B in the 5´ region clustered into states ADD-C and 

ADD-D. The population fractions of these helices, as well as a set of P6 and P7 helices not detected in NMR 

experiments, were low; these features were appropriately flagged as uncertain from bootstrapping analysis 

(e.g., 21±15% for the most populated helix of this kind, P6). Overall, the M2-REEFFIT results successfully 

recovered NMR-detected helices for this adenine riboswitch sequence, including heterogeneous structure in the 

5´ region, dynamics in the P4 region, and rearrangements on adenine addition.  

 

Assessing if artificial sequences exhibit complex RNA landscapes   

After validation of M2-REEFFIT on diverse computational and experimental test cases, we used the method to 

estimate whether complex landscapes might arise in artificial RNA sequences without explicit design or 

selection. First, we analyzed the folding landscape of an imperfect RNA switch, ‘Tebowned’, that was designed to 

convert between two states upon flavin mononucleotide (FMN) binding (Figure 3) in early rounds of a riboswitch 

design puzzle in the EteRNA massive open laboratory.32 While the chemical mapping pattern of this RNA 

changed upon binding FMN, the measurements for the unbound state did not match the desired unbound 

structure, particularly near nucleotide A30 (red arrows in Fig. 3a); this region should have been paired but 

instead was measured to be reactive. A priori, we could not distinguish whether this discrepancy was due to an 

incorrect balance of the two target bound and unbound structures or if there were other unexpected structures 

involved. To elucidate the discrepancy, we acquired M2 data for the Tebowned RNA. We first used REEFFIT to fit 

the M2 data using only the two desired structures, but this fit did not capture several features, such as the 

exposure at A30 (Supporting Figure S7). In contrast, a global ensemble fit adequately captured these features 

(Figure 3a-b, and Fig. S7b). REEFFIT automatically clustered the modeled ensemble into three states: TBWN-A 

(58 ± 12%) and TBWN-B (20 ± 11%), matching the desired switch structures, and a third structure TBWN-C 

present at 22 ± 13% fraction (red arrows in Fig. 3c and Supporting Figures S8a-c). The unexpected state TBWN-C 

exhibits an apical loop around nucleotide A30, explaining the observed discrepancies in this region for the wild 

type RNA, and harbors a purine-rich symmetric loop that may be significantly stabilized compared to the energy 

assumed in current nearest-neighbor models.33 Other helices were discovered to be populated with up to 10% 
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frequency in the analysis, but were deemed uncertain (signal-to-noise ratios less than 1) from bootstrapping 

analysis.  

The REEFFIT-inferred populations of TBWN-C and TBWN-C were low (<25%). Therefore, to further test the 

presence of at least three states, we sought to compare their modeled REEFFIT reactivity profiles to actually 

measured reactivities for these states. To achieve this comparison, we designed mutants that specifically 

stabilized helices in each of the TBWN-A, TBWN-B, and TBWN-C structures (Fig. 3d-f). For each state, the 

reactivities of these state-isolating mutants agreed with each other within experimental error and were 

approximated well by REEFFIT’s predicted profile, providing independent confirmation of the modeled 

ensemble, including the unanticipated third state TBWN-C. Additional evidence for the accuracy of REEFFIT’s 

predictions was revealed by each of the stabilizing mutants’ FMN binding affinities: the TBWN-B and TBWN-

A/TBWN-C mutants enhanced and worsened ligand binding, respectively, as expected (Figure 3g, and Supporting 

Results and Supporting Figure S9). We emphasize that the TBWN-C state would have been difficult to propose 

and then validate without automated REEFFIT analysis, given its negligible predicted population in secondary 

structure prediction calculations without M2 data (Fig. 3c). 

As a second test case with a previously unknown structural ensemble, we tested whether randomly generated 

or scrambled RNA sequences tend to fold into multiple disparate structures at equilibrium – a long-standing 

hypothesis fundamental to understanding RNA evolution, put forth by several in silico studies34,35 and an 

experimental study that could not deconvolve the structures.36 We carried out M2-REEFFIT for a randomly 

generated sequence, called here the M-stable RNA (Figure 4). Based on simulations, the structural ensemble of 

the construct was expected to consist mainly of a simple hairpin (P1 in MST-A in Figure 4d, see top triangle of the 

Fig. 4c) but with at least two other structures becoming more stable than MST-A upon single mutations. The 

experimental M2 measurements were complex, with different mutants giving disparate protection patterns even 

in segments that appeared highly reactive in the wild type RNA. As a first check on the number of states, REEFFIT 

fits assuming only 2 or 3 states missed many features observed in the data, including extended segments of 

changed chemical reactivity in several mutants (Supporting Figure S10). However, the REEFFIT global ensemble fit 

successfully modeled the M-stable data and suggested an ensemble with many more weakly populated helices 

than RNAstructure’s estimate (compare bottom and top halves of Figure 4c). For visualization, we clustered these 

heterogeneous component structures into three states, MST-A, MST-B, and MST-C (see Fig. 4d-f and Supporting 

Figures S8d-f). Analogous to the case of the Tebowned switch, we tested the REEFFIT prediction of these 

alternative states by designing mutations to stabilize the medioid structures of each cluster (Figure 4d-f). These 

mutants gave reactivities in agreement with predictions for MST-A and MST-C, supporting the inference of those 

structures. For MST-B, the state-stabilizing mutants gave reactivity profiles that did not exactly match each other, 

suggesting residual heterogeneity of structure; the profiles were nevertheless closer to the REEFFIT-predicted 

MST-B profile than wild type reactivities. These results corroborate the M2-REEFFIT model that the M-stable 

random RNA has a complex landscape with at least three structures, and likely significantly more heterogeneity, 

detectable upon unbiased nucleotide mutation. 

 

DISCUSSION 

 

The structure landscapes of natural and newly designed RNA molecules underlie their biological behaviors, but 

these landscapes’ complexities are largely uncharacterized.11 Current experimental techniques used to probe 

these ensembles at nucleotide resolution require significant infrastructure investment and expert intuition. We 

have presented M2-REEFFIT, an unbiased strategy based on readily acquired chemical mapping measurements 

that detects dominant and alternative states of RNA structure landscapes in the ensemble perturbations 

induced by single-nucleotide mutations, with conservative estimates based on bootstrapping.  

Due to the challenges inherent to estimating a full ensemble of secondary structures rather than a single best-

fit model, we have invested significant effort into benchmarking M2-REEFFIT and its uncertainty estimates. We 

confirmed the accuracy of REEFFIT and its uncertainty estimates in M2 simulation data with available ‘ground 

truth’ landscapes and in experimental data of RNAs whose landscapes were previously studied by chemical 

mapping or NMR experiments. We then applied REEFFIT to investigate if artificial sequences could present 
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complex landscapes of alternative structures without specific design in two model systems whose ensemble 

behaviors were refractory to prior tools. We first traced a structural discrepancy in an artificial flavin-

mononucleotide-binding switch to a significant population of an unexpected state. We then tested in silico 

predictions for the complex structural landscape of random sequences by obtaining the first experimentally 

derived landscape model of a randomly generated sequence, the M-stable RNA. For all test cases, we tested 

REEFFIT’s predictions through independent experiments, including comparison to independent experimental 

methods and effects of stabilizing mutations and ligand binding. 

Currently, uncertainties in the reactivities and energies of RNA motifs lead to RMSD errors in M2-REEFFIT state 

population fractions on the order of 10%, rendering the detection of states with lower population fractions 

difficult; these uncertainties may become poorer for longer RNA domains. Nevertheless, we expect that rapidly 

growing databases of rigorously standardized reactivity data27,37 and of energetic parameters38 for diverse RNA 

motifs will reduce these uncertainties. Through the presented and related chemical mapping technologies, we 

therefore expect to have more routine visualization of the rich structural landscapes that appear to be pervasive 

in both functional RNAs and the generic sequences from which they evolve.  

 

METHODS 

 

M2 measurements 

 

The MedLoop RNA mutate-and-map data were obtained as part of the experimental pipeline of the EteRNA 

massively parallel open laboratory32 and were analyzed with the MAP-seeker software.39 The Bistable RNA and 

its complementary single-nucleotide mutants were constructed using PCR assembly, in vitro transcription, and 

probed with 1M7 as described previously.40 Briefly, an assembly consisting of at most 60-nucleotide primers was 

designed to synthesize an in vitro transcription sample by PCR. DNA was purified with AMPure XP beads 

(Agencourt, Beckman Coulter) and in vitro transcribed for 3 hours. The resulting RNA was purified with AMPure 

XP beads, heated for 3 minutes at 90 °C, cooled at room temperature for 15 minutes, and folded in 150 mM NaCl 

at room temperature for 1 hour. Because we wanted to probe the ensemble of the RNA with minimal 

interference from the 3´ unpaired sequence that we use as the primer binding site, we folded the RNA in the 

presence of the fluorescent primer attached to the oligo(dT) beads (Ambion) that we regularly use for 

purification. Folding in this condition sequesters any additional single stranded regions that may interfere with 

our sequence of interest.. The RNA was then subjected to 1M7 mapping (5 mM final concentration), purified 

with the oligo(dT) beads, and reverse transcribed for 30 minutes at 42°C. Unmodified RNA controls were also 

included in the experiment. RNA was then degraded using alkaline hydrolysis and cDNA was purified, eluted in 

Hi-Di Formamide spiked with a fragment analysis ladder (ROX 350 standard, Applied Biosystems), and 

electrophoresed in an ABI 3150 capillary electrophoresis sequencer. The add adenine riboswitch M2 data was 

obtained similarly but folded under different conditions, in the NMR buffer of the previous study (50 mM KCl 

and 25 mM K3PO4, pH 6.5) with or without 5 mM adenine for bound and unbound conditions – these conditions 

also included 10 mM MgCl2.31 For NMR folding conditions, we adjusted the 1M7 incubation time to 15 minutes 

instead of 3 minutes to account for the low pH. The Tebowned RNA M2 data was obtained using the same 

protocol, but with a different folding condition, 50 mM Na-HEPES, pH 8.0 and 10 mM MgCl2, in the absence and 

presence of 2 mM FMN. For the Tebowned FMN titrations, dimethyl sulfate (DMS) was used in lieu of 1M7 since 

it yields a readily seen signal change across FMN concentrations.32 The M2 data of the M-stable RNA was 

obtained in a similar manner, folding the RNA by heating and cooling in 50 mM Na-HEPES, pH 8.0 and letting it 

fold in 10 mM MgCl2. (see also Supporting Table S9 for a list of folding conditions). 

Electrophoretic traces were aligned, baseline subtracted, and normalized with the HiTRACE MATLAB toolkit.41 

1M7 modification traces were quantified, background subtracted, and corrected for attenuation using 10X 

dilutions, the unmodified controls, and the pentaloop hairpins added at the ends of the constructs as 

reference.42 For the Tebowned RNA, no pentaloop hairpins were added and we relied instead on the HiTRACE 

background subtraction routine overmod _and_background_correct_logL using unmodified controls. The lifft 

function from the LIFFT package43 in HiTRACE was used to calculate the FMN binding dissociation constants for 
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REEFFIT comparisons. Mutants with low signal were flagged as low quality and were not taken into account for 

the analysis. 

 

The RNA Ensemble Extraction From Footprinting Insights Technique (REEFFIT) 

 

For a given mutate-and-map data set, REEFFIT infers the expected reactivity profile of each structure, the 

combination of structure population fractions (also denoted here as structure weights), and sequence-position-

wise noise levels that best fit the data (see Supporting Figure S1) using prior information on known chemical 

reactivity distributions, a prior based on an approximate secondary structure energetic model, and a well-

defined likelihood function. We present the basic idea behind the model below. Detailed description of the 

priors and parameters used for each variable, their incorporation into the model, and inferential steps used to fit 

the model to the data are given in the Supporting Methods of the Supporting Information. 

In a broad sense, for m chemical mapping measurements of n-nucleotide sequences, REEFFIT models the data, 

denoted as mobs nD ×∈ ℜ ,  with a set of r secondary structures. The data are modeled as linear combinations of 

the structures’ reactivity profiles, denoted as a matrix r nD ×∈ ℜ , with a weight matrix m rW ×∈ ℜ plus 

Gaussian noise. Then, for each measurement j we have:  
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The rows of the weight matrix W correspond to the population fractions of the structures in each 

measurement. Therefore, the corresponding weights for each measurement define a probability distribution and 

are non-negative and add up to one: 
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The model including these variables and parameters was fitted by REEFFIT using a maximum a posteriori 

(MAP) approximation. 
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TABLES 

Table 1: Performance results for M2-REEFFIT landscape dissection on a 20 RNA benchmark from the RFAM 

database  

 

  No dataa 

M2 

REEFFITa 

Rfam ID 

No. 

Helicesa TP FP TP FP 

RF00031 SECIS 3.02 2.48 1.47 2.88 0.09 

RF00051 mir-17 5.35 4.98 0.18 5.31 0.42 

RF00014 DsrA 4.44 3.88 0.56 4.32 0.93 

RF01092 GP_knot2 3.40 2.60 1.47 3.26 0.56 

RF00066 U7 3.31 1.77 2.31 2.71 1.26 

RF01300 snoU49 3.56 2.88 1.46 3.49 0.76 

RF01139 sR2 2.61 2.29 2.34 2.50 1.34 

RF01274 sR45 2.34 1.96 1.02 2.13 0.82 

RF01297 sR40 3.42 2.26 2.95 3.29 2.21 

RF00555 L13_leader 2.96 2.91 0.51 2.93 0.28 

RF00775 mir-432 4.98 4.35 1.35 4.78 1.78 

RF00173 Hairpin 2.64 2.28 0.96 2.47 0.79 

RF00108 SNORD116 2.03 1.32 1.95 1.86 1.51 

RF00570 SNORD64 3.69 2.80 0.66 3.39 0.59 

RF01301 snoR4a 2.67 2.20 2.35 2.56 1.28 

RF01125 sR4 2.63 2.05 0.36 2.47 0.20 

RF00436 UnaL2 1.79 1.79 0.21 1.79 0.18 

RF01151 snoU82P 1.90 1.24 1.30 1.76 1.06 

RF00027 let-7 3.45 3.27 1.69 3.30 1.88 

RF00042 CopA 6.22 5.93 0.32 6.19 0.30 

 FDR 23.3%  9.7%  

 FNR 18%  5.4%  

aValues are averaged across all variants probed (wild type RNA and single mutants). 
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FIGURES 

Figure 1: Three example cases of evaluating REEFFIT with simulated data. (a) Simulated M2 data for the RF01301 

snoR4a test case (b) Bootstrapped REEFFIt fits. (c) Base pair probability matrix comparisons between the simulated 

(true) base pair probabilities (upper half) and the unperturbed RNAstructure values; (d) analogous base pair 

probability comparison to M2-REEFFIT estimates. (e) Cluster medioids of structures used for generating the M2 

simulated data. (f—j) Evaluation results for the RF00031 SECIS RNA simulated mapping data. (k—o) Evaluation 

results for the RF00014 DrsA RNA. 
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Figure 2: Landscape dissection of four diverse RNA systems from experimental mutate-and-map (M2) data. (a) M2 

measurements for the MedLoop artificial sequence (given to REEFFIT as input); (b) REEFFIT bootstrapped fits; (c) 

base pair probability matrices of the structures in the wild type landscape (upper triangle: base pair probability 

values using no data, lower triangle: REEFFIT calculated base pair probabilities); and (d) structure medioids found 

de novo by REEFFIT. M2-REEFFIT analysis are also presented for (e-h) a four-way junction domain of the 16S rRNA, 

(i-l) an artificial bistable hairpin, (m-p) and a segment of the V. Vulnificus add adenine riboswitch in 0 and 5 mM 

adenine. In (d), The Shine-Dalgarno (SD) ribosome-binding sequence was observed to be SHAPE-reactive even in 

the absence of adenine; while consistent with this region’s unpaired status without and with ligand in prior NMR 

studies, our studies indicate a more dramatic switch in this region for more complete add riboswitch constructs 

and will be reported elsewhere. See Supporting Tables S8-9 for RNA sequences and fit summaries.  
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Figure 3: Landscape dissection of a designed FMN riboswitch with a structural discrepancy, the Tebowned RNA. 

(a) M2 data, (b) REEFFIT fit, and (c) inference of the Tebowned structural landscape, which is predicted by REEFFIT 

to fold into three prevalent structures given in (d) TBWN-A, (e) TBWN-B, and (f) TBWN-C (marked with red arrows 

in (c)). Comparison between reactivities predicted by REEFFIT and mutants designed to stabilize the TBWN-A, 

TBWN-B, TBWN-C structures are given below each state (arrows in the structures mark mutations). (g) 

Determining FMN dissociation constants for stabilizing mutants of the TBWN-A, TBWN-B, and TBWN-C structures 

of the Tebowned FMN switch using the LIFFT HiTRACE toolkit (showing data for residue 15, see Supporting Figure 

S9) are shown below the mutants. 
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 Figure 4: Landscape dissection of a random RNA sequence, the M-stable RNA. (a) M2 data, (b) REEFFIT fit, and (c) 

inference of the M-stable structural landscape, showing one helix, P1, present at almost 50% as well as numerous 

other helices (P2, P3, and P4) present at non-negligible fractions. (d-f) State medioids for (d) MST-A, (e) MST-B, 

and (f) MST-C, and comparison between reactivities predicted by REEFFIT and mutants designed to stabilize each 

state medioids. 
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