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Abstract 
Identification of altered pathways that are clinically relevant across human cancers is 

a key challenge in cancer genomics. We developed a network-based algorithm to 

integrate somatic mutation data with gene networks and pathways, in order to identify 

pathways altered by somatic mutations across cancers. We applied our approach to 

The Cancer Genome Atlas (TCGA) dataset of somatic mutations in 4,790 cancer 

patients with 19 different types of malignancies. Our analysis identified cancer-type-

specific altered pathways enriched with known cancer-relevant genes and drug 

targets. Consensus clustering using gene expression datasets that included 4,870 

patients from TCGA and multiple independent cohorts confirmed that the altered 

pathways could be used to stratify patients into subgroups with significantly different 

clinical outcomes. Of particular significance, certain patient subpopulations with poor 

prognosis were identified because they had specific altered pathways for which there 

are available targeted therapies. These findings could be used to tailor and intensify 

therapy in these patients, for whom current therapy is suboptimal.  

 

Background  
In the last few years, studies using high-throughput technologies have highlighted the 

fact that the development and progression of cancer hinges on somatic alterations. 

These somatic alterations may disrupt gene function, such as activating oncogenes or 

inactivating tumor suppressor genes, and thus, dysregulate critical pathways 

contributing to tumorigenesis. Therefore, precise identification and understanding of 

disrupted pathways may provide insights into therapeutic strategies and the 

development of novel agents. Many large-scale cancer genomics studies, such as The 

Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium 

(ICGC), have performed an integrated analysis to draft an overview of somatic 

alterations in the cancer genome1-4. Many of these studies have reported novel 
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candidate cancer genes mutated at high and intermediate frequencies in a specific 

cancer as well as across many cancer types4. However, it is a still challenge to 

translate somatic mutations in tumors into the pathway model to accurately predict 

patient clinical outcomes 5, 6. Recently, in order to improve the clinical relevance and 

utility of somatic mutation analyses, Hopfree et al7 proposed integrating somatic 

mutation data with molecular interaction networks for patient stratification. They 

demonstrated that inclusion of prior knowledge, captured in molecular interaction 

networks, could improve identification of patient subgroups with significantly 

different histological, pathological or clinical outcomes and discover novel cancer-

related pathways or subnetworks. In a similar manner, other network-based methods 

have demonstrated that incorporating molecular networks and/or biological pathways 

can improve accuracy in identifying cancer-related pathways8-11.  

One limitation of these network-based methods is that they are not designed to fully 

utilize large-scale somatic mutation data from multiple cancer types to determine 

which particular pathways are altered by somatic mutations across a range of human 

cancers. In addition, due to the incomplete knowledge of existing gene set and/or 

pathway database, these methods are limited to detect pathways based on a number of 

altered genes annotated in existing gene set and pathway databases. Alternatively, the 

methods that build pathways de novo without incorporating biological prior 

knowledge can be applicable to detect altered pathways, but these methods were not 

designed to detect cancer-type specific or commonly altered pathways either.  

To address these, we developed an algorithm named NTriPath (Network regularized 

non-negative TRI matrix factorization for PATHway identification) to integrate 

somatic mutation, gene-gene interaction networks and gene set or pathway databases 

to discover pathways altered by somatic mutations in 4,790 cancer patients with 19 
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different types of cancers. Incorporating existing gene set or pathway databases 

enables NTriPath to report a list of altered pathways across cancers, and make easy to 

determine/compare which particular pathways are altered in a particular cancer 

type(s). In particular, the use of large-scale genome-wide somatic mutations from 

4,790 cancer patients and gene-gene interaction networks enables NTriPath to classify 

genes, which were not annotated in existing gene set or pathway databases, as new 

member genes of the identified altered pathways based on modular structures of 

mutational data within a cancer type and/or across multiple cancer types (using matrix 

factorization) and connectivity in the gene-gene interaction networks. The questions 

that we investigate here are: first, whether large-scale integrative somatic mutation 

analysis can reliably identify cancer-type-specific or commonly altered pathways by 

somatic mutations across cancers; second, whether the identified pathways can be 

used as a prognostic biomarker for patient stratification - with the assumption that the 

altered pathways contribute to cancer development and progression and, thus, impact 

survival. 

In these experiments, we demonstrated that the cancer-type-specific and commonly 

altered pathways identified by NTriPath are biologically relevant to the corresponding 

cancer type and are associated with patient survival outcomes. We also showed that 

cancer-specific altered pathways are enriched with many known cancer-relevant 

genes and targets of available drugs including those already FDA-approved. These 

results imply that the cancer-specific altered pathways can guide therapeutic strategy 

to target the altered pathways that are pivotal in each cancer type. 
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Results  
NTriPath: An integrative somatic mutation analysis for discovering pathways 
altered by somatic mutations across multiple cancer types 
NTriPath integrates somatic mutations with gene-gene interaction networks and a 

pathway database to discover altered pathways across human cancers. We collected 

somatic mutation data from TCGA for 4,790 patients and 19 different cancer types 

(Table 1). A diagrammatic description of our algorithm is depicted in Figure 1. Four 

types of data were used as input for our algorithm. First, we generated a binary matrix 

(!) of patients x genes, with ‘1’ indicating a mutation and ‘0’ no mutation. Second, 

we constructed gene-gene interaction networks (!). Third, we incorporated a pathway 

database (!! ) (e.g., conserved 4,620 subnetworks across species12). Fourth, we 

included clinical data on the patient's tumor type (!). NTriPath produces two matrices 

as output; 1) altered pathways by mutated genes (!) and 2) altered pathways by 

cancer type matrix (!). The use of both large-scale somatic mutation profiles and 

gene-gene interaction networks enabled NTriPath to identify cancer-related pathways 

containing known cancer genes mutated at different frequencies across cancers with 

newly added member genes according to high network connectivity (!) 8, 13. Finally 

we use the altered pathways by cancer type matrix (!) to identify altered pathways 

that are specific for each cancer type. For further details, please see the Materials and 

Methods section. Our method is also available at www.taehyunlab.org. 

NTriPath identifies cancer-type-specific altered pathways that are biologically 
and clinically relevant 

In each cancer type, we selected the top 3 ranked altered pathways by 

statistical significance from NTriPath with the 4,620 subnetwork modules to generate 

cancer-type-specific altered pathways (See Material and Method section and 

Supplementary Table 1).  Interestingly, NTriPath was able to find altered pathways 

containing not only genes that were frequently mutated but also genes that were 
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mutated in a small subset of patients in each cancer type (Supplementary Table 2 and 

Supplementary Figure 1). Gene set enrichment analysis using the genes from the top 3 

altered pathways showed that the altered pathways are significantly enriched with 

well-known cancer-related genes from COSMIC database 14 and known drug target 

genes  as well as cancer-relevant biological processes (Supplementary Table 3 and 4).  

Focusing on kidney renal clear cell carcinoma (KIRC) as a proof of concept, 

NTriPath identified the pathway consisting of VHL, USP33, DIO2, TCEB1 and 

TCEB2 as the top-ranked altered pathway in KIRC (Figure 2A). The VHL (von-

Hippel Lindau) gene is a well-known tumor suppressor associated with KIRC, and is 

frequently mutated in patients with KIRC15-18. VHL was the most frequently mutated 

gene in TCGA KIRC with 55.7% of patients harboring mutations in the gene. TCEB1 

is mutated at very low frequency in TCGA KIRC cohort. A recent study found that 

TCEB1 is mutated in about 3% of the KIRC patients without VHL inactivation, and 

found TCEB1 preventing the binding of Elongin C to VHL, which inactivates the VHL 

pathway16. The second highest ranked pathway contained EP300 and TP53. EP300 

and TP53 were mutated in 8.1% and 5.2% of patients, respectively. EP300 has been 

identified as a co-activator of hypoxia-inducible factor 1 alpha (HIF1α), whose 

activation is a hallmark of KIRC tumors. TP53 was previously found to be associated 

with poor outcome in TCGA KIRC19. The third highest ranked pathway contains 

LRP1 and matrix metalloproteinases (MMP1, MMP7, MMP9, MMP26). LRP1 is 

mutated in 10% of TCGA KIRC cohort, but matrix metalloproteinases (MMPs) were 

not mutated in TCGA KIRC cohort. Biological and clinical relevance of LRP1 

mutation in KIRC has not been previously reported. MMPs have been implicated in 

different types of cancer progression including the acquisition of invasive and 

metastatic properties in many cancer types. The aberrant expression of MMPs has 
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been associated with poor patient survival and prognosis in KIRC patients 8, 20. 

Interestingly, recent studies suggested that LRP1 induces the expression of matrix 

metalloproteinase (MMPs) and thus promotes cancer cell invasion and metastasis in 

many cancers including KIRC16,21-23. 

NTriPath identified many new member genes in the top ranked pathways 

including TCEB2, JUN, and SP1 as well as other tumor suppressors such as CREBBP, 

SMAD3, BRCA1 and RB1. These newly identified member genes by NTriPath were 

mutated at a very low frequency or not mutated at all in TCGA KIRC patients. 

Instead, these genes interacted with many frequently mutated genes in the networks 

and were often dysregulated at the mRNA and protein levels in many KIRC patients 

(Figure 2B). For example, TCEB2, SP1 and JUN were not mutated but yet their 

expression was dysregulated in 7%, 10% and 2% of TCGA KIRC patients, 

respectively. Previous studies have shown that dysregulation in TCEB2 is expected to 

disrupt the protein complex that ubiquitinates HIF1α, resulting in the same phenotype 

as VHL inactivation by mutation or promoter hypermethylation24-26. In addition, SP1 

and JUN were previously identified as major transcriptional regulators associated with 

signaling circuit to promote tumor growth and invasion in KIRC 18.  

Taken together, these results demonstrate that NTriPath is an effective tool to 

accurately identify cancer-specific altered pathways including known cancer genes 

mutated at a high or intermediate frequency in the patients, as well as genes mutated 

at a very low frequency or not mutated at all yet may be fundamental role in 

development and/or progression of KIRC.  

Cancer-type-specific altered pathways across cancer types correlate with 
patient survival outcomes 
We hypothesized that cancer-type-specific altered pathways reflect the molecular 

basis underlying the patient clinical outcomes. This would allow us to use member 
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genes in the altered pathways as gene signatures to stratify patients into subgroups 

with different clinical outcomes for each type of cancer. We first collected a dataset 

consisting of gene expression profiles from 3,656 patients with their survival 

information from TCGA cohorts. We then used member genes in the top 3 ranked 

cancer-type-specific altered pathways to perform consensus clustering for each cancer 

type (see Material and Method section). We generated Kaplan-Meier (KM) curves 

based on the groups produced by consensus clustering and found that patient survival 

was significantly different among the groups (Figure 3 and Supplementary Figure 2). 

In TCGA KIRC, we found three patient subgroups (A, B and C), with the Group C 

having the poorest survival. A log-rank test indicated that Groups A and C had 

significantly different survival outcomes (Log-rank test p-value = 1.840e-08, Hazard 

ratio = 2.94) with median survival times of 41.9 months for group A compared to 30.8 

months for group C (Figure 3A). Other examples are Bladder Urothelial Carcinoma 

(BLCA), Head and Neck squamous cell carcinoma (HNSC), and Skin Cutaneous 

Melanoma (SKCM) patient subgroups identified by NTriPath pathway signatures. 

While the molecular classification of clinically relevant subtypes of these cancers is 

still challenging, we found patient subgroups having significantly different survival in 

these cancers (Log-rank test p-value= 0.0086, 0.0010, and 0.0210, repectively) 

(Figure 3B, 3C and 3D).  

Experiments with other TCGA datasets, including those for Breast invasive 

carcinoma (BRCA), Glioblastoma Multiforme (GBM), Lung adenocarcinoma 

(LUAD), and Ovarian serous cystadenocarcinoma (OV) consistently showed that the 

use of member genes in cancer-type-specific altered pathways could serve as a 

prognostic biomarker for patient stratification (Supplementary Figure 2 and 3). For 

comparison, we also attempted to cluster patients using significant frequently mutated 
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genes previously identified by the TCGA Pan-Cancer study1. The results of consensus 

clustering using the NTriPath-derived pathway signatures and the TCGA Pan-Cancer-

derived mutated gene signatures showed that the results from NTriPath-derived 

pathway signatures had higher significance levels for BLAC, BRCA, and KIRC, and 

comparable results for the GBM, HNSC, and LUAD cancer types (Figure 4). These 

findings suggested that NTriPath-derived altered pathways could be used as 

prognostic biomarkers for better patient stratification. 

Independent cohorts for the validation of the cancer-type-specific altered 
pathways 
We performed multiple validations to evaluate the robustness and the reproducibility 

of NTriPath. First, we evaluated the robustness of the cancer-type-specific altered 

pathways identified in the TCGA cohort for prognostic stratification. We generated 

gene expression profiles of 102 HNSC patients from our institution and used the 

member genes of the top 3 HNSC cancer-type-specific altered pathways in the TCGA 

cohort for patient stratification.  In addition, we also used publically available gene 

expression data from two ovarian cancer datasets, one lung cancer dataset, two colon 

cancer datatsets for a total of 1,112 patients, and used the top 3 cancer-type specific 

altered pathways for corresponding cancer type for independent validation. In the 

HNSC cohorts, we found six patient subgroups (A through F), with the group F 

patients having the poorest survival times (Figure 5A). A log-rank test indicated that 

groups A and F had significantly different survival outcomes (p-value = 0.038, hazard 

ratio = 1.88) with median survival times of 78.1 months for group A and 26.7 months 

for group F. Similarly, we found patient subgroups having significantly different 

survival outcomes in lung cancer, ovarian cancer, and colorectal cancer (Figure 5B-D 

and Supplementary Figure 3). Secondly, we verified the reproducibility of NTriPath 

for the identification of the cancer-type-specific altered pathways. We collected the 
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level 2 somatic mutation data from 19 human cancer types those were updated after 

we collected initial dataset used in the original experiments from the TCGA data 

portal. We found that there are 1891 newly updated patients’ mutation data from 15 

cancer types (see Supplementary Table 5). We re-ran NTriPath to identify cancer-

type-specific pathways across 19 cancers using 6681 patients’ somatic mutation data 

including those of newly updated patients’ mutation data. Interestingly, we found that 

many top ranked pathways identified by NTriPath in the original experiments were 

consistently highly ranked in the new experiments (see Supplementary Table 6).  

These results reassure that NTriPath is a robust tool to detect the altered pathways 

across cancers, and the altered pathways identified by NTriPath can serve as robust 

prognostic signatures for identifying patient subgroups with different survival 

outcomes across multiple cancer types. 

NTriPath identified potential therapeutic targets in poor prognosis patient 
subgroups 
We further investigated whether we could identify potential targets or the therapy for 

the identified poor prognosis patient subgroups. Interestingly, we found that many 

known drug targets in the cancer-type specific altered pathways are often up-regulated 

in poor prognosis patient subgroups across cancers (see Method section and 

Supplementary 7). For example, in TCGA KIRC cohort, LRP1 and MMP9, targets of 

FDA-approved drugs Tenecteplase and Captopril, were significantly up-regulated in 

poor prognosis group compared to good prognosis group (FDR-adjusted p-value < 

0.05 with t-test). Tenecteplase binds to LRP1 and induces both LRP1 and MMP9 

expression, and Captoprilare inhibits MMP9 expression. Thus, combinatorial therapy 

of these drugs can be beneficial for the KIRC patients with high LRP1 and MMP9 

expression 27-44. Another notable example includes DNA Topoisomerase I (TOP1), a 

target of well-known FDA-approved anticancer drugs such as Irinotecan and 
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Topotecan, identified by NTriPath as a new member gene into the cancer-type-

specific altered pathways across many cancers including HNSC. Interestingly, we 

found that TOP1 was up-regulated in poor prognosis subgroups in HNSC from both 

TCGA and UTSW cohorts (Group  E and F in Figure 3C and 5A, respectively). In 

addition, we found that some patients with overexpression of TOP1 in TCGA HNSC 

poor prognosis subgroup have developed therapy resistance against single 

chemotherapeutic agent such as Cisplatin. Interestingly, there is an ongoing trial in 

advanced HNSC showing efficacy of TOP1 inhibitor Irinotecan with Cisplatin in a 

poor prognosis patient subgroup 45. These observations may suggest that TOP1 

inhibitors-based combinations might offer an effective treatment option for HNSC 

patients with overexpression of TOP1. Taken together, these findings suggested that 

the use of NTriPath-derived altered pathways containing available drug targets may 

allow for the development of more tailored therapeutics. 

Discussion  
Systematic understanding of how somatic mutations influence clinical outcomes is 

essential for the development and application of personalized therapies. Especially 

organizing alterations at the individual gene level and in the molecular pathways can 

correlate altered pathways and vulnerabilities with specific genetic lesions, and 

provide novel insights into cancer biology, biomarkers for patient stratification in 

clinical trials, and potential targeted drug development46. Here, we systematically 

identified biological and clinical relevant cancer-type-specific altered cross multiple 

cancer types. In particular, the integration of somatic mutation with biological prior 

knowledge led to the identification of altered pathways that contain recurrently 

mutated genes as a hallmark of specific cancer types. Interestingly, we found that 

several genes, while not frequently mutated or not mutated at all in patients, were part 
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of cancer-type-specific altered pathways that have been causally implicated in the 

development of corresponding cancer types, and expressions of those genes are 

significantly associated with clinical outcomes (Supplementary Figure 4). For 

example, no mutation of MMP7 has been reported, but high expression of MMP7  (p 

= 0.00191, HR=1.7 (95%CI,1.21−2.38)) is significantly associated with poor survival 

in TCGA KIRC patients. Other examples include CABLES1 (p = 0.00272, HR=0.486 

(95%CI,0.301−0.787)) in TCGA HNSC and LUAD, and GCH1 (p = 0.0000528, 

HR=0.52 (95%CI,0.367−0.763)) in TCGA SKCM are not frequently or not mutated 

but low or high expression of those genes are significantly associated with poor 

survival. In addition, we found that known drug targets are not frequently mutated but 

often up-regulated in poor prognosis patient subgroups across many cancers. These 

results further corroborate that the integrative analysis of somatic mutations with 

additional biological prior knowledge may elucidate potential candidate genes 

associated with clinical outcomes and could be potentially used to design targeted 

therapy, which cannot be readily identified by somatic mutation analysis alone.  

In our analysis, we did not remove synonymous mutations or further select a shorter 

list of recurrent mutated genes in cohorts with stringent criteria either 3, 47.  However, 

Hopfree et al7 showed that  filtering synonymous mutations resulted in a decreased 

ability to detect patient subgroups with different survival outcomes. Another recent 

study also showed that synonymous mutations could affect functions of oncogene and 

tumor suppressors 48. In addition, our experimental results for patient stratification in 

comparison with recurrent mutated gene signatures identified by the TCGA Pan-

Cancer1 indicated that the use of NTriPath-derived pathways showed a comparable or 

better performance in discovering patient subgroups with different survival outcomes 

across cancers. To evaluate the impact of different network resources, we used 
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networks from the HPRD 49 and Rossin, E.J. et al50 and repeated experiments. We 

summarize the results of altered pathways and patient stratification using different 

network resources and provide on our supplement website. 

Lastly, NTriPath is a general computational algorithm and can be applied to other data 

types such as gene expression, copy number alteration, and methylation to identify 

altered pathways by different types of genomic aberrations. NTriPath can also be used 

to find altered pathways across associated with other cancer-related phenotypes (e.g., 

patient groups having therapy resistance vs. sensitivity, metastatic vs. non-metastatic).  

Conclusions  
We have described an integrative somatic mutation analysis for discovering altered 

pathways in human cancers. NTriPath integrates somatic mutation data and prior 

biological knowledge from the pathway database and molecular networks to identify 

significantly altered pathways and their associations with specific cancer types. 

Specifically, NTriPath effectively utilizes mutation patterns that exist in only a subset 

of samples (or specific cancer types), thus revealing pathways altered by complex 

mutation patterns across cancer types. Furthermore, the use of gene-gene interaction 

networks and the pathway database provides the potential to identify altered pathways 

enriched with genes harboring mutations at high/intermediate frequencies, as well as 

those not mutated per se but nevertheless playing critical roles in tumorigenesis in 

network and pathway contexts. Thus, NTriPath is uniquely suited to provide a global 

analysis of altered pathways by somatic mutation across cancer types. 

We applied NTriPath to somatic mutation data from 19 types of cancers, and 

discovered cancer-type-specific altered pathways based on these mutations in human 

cancers. Functional enrichment analysis of cancer-type-specific pathways 

demonstrated that the identified cancer-type-specific altered pathways are biologically 
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meaningful to each cancer type. It also provided unique pathway views of key 

biological processes underlying each cancer type. Of particular significance, we 

identified a patient subgroup with poor survival by cancer-type-specific altered 

pathway signatures from TCGA cohorts, which in independent cohorts. These results 

implied the potential utility of cancer-type-specific altered pathway signatures to 

serve as a guide to tailored treatment in a patient subgroup. 

 

Materials and Methods 

Somatic mutation, human gene-gene interaction networks, and pathway data 
The level 2 somatic mutation data from 19 human cancer types were collected from 

the TCGA data portal on May 19th 201351. We constructed a gene-gene interaction 

network by combining networks from Zhang, S. et al 52, the Human Protein Reference 

Database (Dec. 2013)53 and Rossin, E.J. et al50..Four sets of pathways were used in 

the analysis: 1) 4,620 conserved subnetworks from the human gene-gene interaction 

network12, 2) KEGG, 3) Biocarta, and 4) Reactome gene sets from MsigDB (Sept. 

2010)54.  

Algorithm 
The algorithm identifies pathways disrupted by mutated genes. Disrupted pathways 

are found based on the factorization results from the network regularized nonnegative 

tri-matrix factorization.  

1. Notations 

We construct a binary data matrix ! ∈ !!×!from the mutation data, where ! is the 

number of patients, ! is the number of genes and the (!, !)!!! element of the matrix !, 

[!]!", is ‘1’ if the !th patient has a mutation on the !th gene, ‘0’ otherwise. We derive 

the adjacency matrix from the human gene-gene interaction networks and denote it as 
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!, where [!]!"=‘1’ if the !th gene is interacting with the !th genes in the networks and 

‘0’ otherwise. We define the graph Laplacian matrix by ! = !− !, where each 

diagonal element in the diagonal matrix ! is given by [!]!! = [!]!"!" . We construct 

a binary matrix ! ∈ !!×!! denoting patient cluster, where !! indicates the number of 

cancer types and [!]!"=1 indicates the !th patient has !th cancer type. We construct a 

binary matrix !! ∈ !!×!!  from the specific pathway database denoting pathway 

information, where !! is the number of pathways and [!!]!"=1 if the !th gene is 

annotated in !th pathway as a member in the pathway database, otherwise 0. Since 

current pathway database annotation is still incomplete, we define a matrix 

! ∈ !!×!!  denoting newly updated pathway information including newly added 

member genes by NTriPath. We define a matrix ! ∈ !!!×!! denoting cancer type and 

pathway associations, where each element of [!]!" represents associations between !th 

cancer type with ! th pathway. Higher values of elements indicate stronger 

associations between cancer types and pathways. Since ! and ! are unknown, we 

need to learn about those matrices during optimization (see below section for details) 

2. Network regularized non-negative tri-matrix factorization 

The network regularized nonnegative tri-matrix factorization is an extension of 

Nonnegative Tri Matrix Factorization (NTMF); in this work, somatic mutation data ! 

is factorized as the products of three element-wise non-negative matrices !, !, and ! 

denoting patient’s cancer type, cancer-type and pathway associations, and cancer-

related pathways, respectively. We here consider a weighted loss function to deal with 

the sparseness of the data matrix ! (More than 98% of entries are zero). It enables us to 

focus on an approximation error at nonzero entries, which correspond to mutated 

genes. In addition, to incorporate the prior knowledge from human gene-gene 

interaction networks and pathway datasets into factorizations, we enforce constraints 
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on parameters, which involve the graph Laplaican ! and the pathway information !!. 

All these ideas are accomplished by minimizing the following objective function  

min
!,!!!

∥! ∘ ! − !"!! ∥!!+ !! ∥ ! ∥!!+ !! ∥ ! ∥!!+ !! ∥ ! − !! ∥!!+ !!!" !!!" , 

where ! ∈ !!×! is a weight matrix where [!]!" = 1 if [!]!" > 0 otherwise 0, and 

the operator ∘!represents the element-wise multiplication. Here, we are only interested 

in learning of ! and ! among three factor matrices, since factor !!can be obtained from 

the patient’s clinical information.   

To solve our minimization problem, we adapt the multiplicative update method for 

NTMF proposed in a recent study55, which contains a routine for avoiding 

‘inadmissible zeros problem’ where the solution of multiplicative update rules is stuck 

at zero when an entry in the factor becomes. 

Step 1: Initialization 

Initialize the factor matrices ! = ! and ! = !!, where ! ∈ !!!×!! is a matrix whose 

elements are all one. Set the regularization parameters !! =!! = !! = 1 and !!=0.1. Set 

the user specified parameters for avoiding the inadmissible zeros problem, !!"# = 10!!", 

!!! = 10!! and  ! = 10!!". 

Step 2: Iteration 

Iterate until it converges or reaches the maximum number of iterations:  

[!]!" ← ([!]!" + !!"! )!!"!  

[!]!" ← ([!]!" + !!"! )!!"!  

where!!!"! is set to ! if [!]!" ≥ !!"# !"#!!!"! > 1, otherwise 0, and 

!!"! =
[!!!"]!"

[!! ! ∘ !"!! !]!" + !! ∥ ! ∥!+ !
,! 

!!"! =
[!!!"+ !!!"+ !!!!]!"

[(! ∘ (!"!!))!!"+ !!!+ !!!"]!" + !! ∥ ! ∥!+ !
.! 
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Empirically, the algorithm converges fast within 50 iterations in the experiments. 

3. Identification of cancer-type-specific altered pathways 
Once the above optimization problem is solved, we used ! matrix to identify cancer-

type-specific altered pathways across cancers. Specifically, we ranked pathways 

based on values of elements of the ! matrix for each cancer type (e.g., rank pathways 

based on all values of !th row which indicate association scores between ith cancer 

type and all pathways). In addition, to measure statistical significance of cancer-type 

and pathway associations, we performed a permutation test (e.g., we randomly 

permuted somatic mutation data and repeated experiments 5,000 times to calculate 

empirical p-values) and defined cancer-type-specific altered pathways based on the 

following strict criteria: 1) Pathways must be ranked within the top !th compared to 

other pathways in each cancer type based on their association scores in matrix !. 2) 

Pathways must have significant BH-adjusted p-values (Benjamini-Hochberg adjusted 

p-values using a false discovery rate cutoff of 0.1) (See Supplementary X). In this 

work, we selected the top 3 ranked pathways having significant BH- adjusted p-values 

per each cancer type.  Top ranked pathways for KICH, KIRP, and THCA were 

excluded for further analysis, due to the insignificant BH-adjusted p-values. 

Gene expression data and clustering 
We collected RNA-seq data for TCGA BLCA, BRCA,  HNSC, KIRC, LAML, 

LUAD, SKCM, STAD, UCEC from cBioPortal56-58 using CGDS MATLAB toolbox 

with RNA Seq V2 RSEM option. We collected microarray gene expession profiles for 

TCGA GBM from the TCGA dataportal51  and TCGA OV and two others from 

Zhang, W. et al. 59.  We collected colon cancer data from GSE39582 and lung cancer 

data from Shedden, K. et al. 60. RNA-seq data were z-transformed while other 

expression data were quantile normalized, log transformed, and expression values 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2015. ; https://doi.org/10.1101/017582doi: bioRxiv preprint 

https://doi.org/10.1101/017582


 - 19 - 

were median centered. To perform consensus clustering, we used Matlab K-means 

clustering and used two-way hierarchical clustering. 
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Figures 

 

Figure 1. Overview of NTriPath 

This figure describes steps to discover altered pathways across multiple cancer types. 

The aim of the approach is to integrate the somatic mutation data with gene-gene 

interaction networks and a pathway database for discovering altered pathways across 

cancers. 

 

Figure 2. KIRC-specific altered pathways 

(A) Diagrams of the top three ranked altered pathways in patients with KIRC. Red 

color indicates genes that are frequently mutated. A circular-shaped node represents 

the original member genes annotated in the pathway database, and a diamond-shaped 

node represents newly identified members genes of the pathways by NTriPath (B) 

Protein and mRNA expression and mutation status for all genes identified in the top 

three KIRC altered pathways. Each row represents a member gene in the TCGA 
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KIRC-specific altered pathway, and each column represents a patient sample in 

TCGA KIRC cohort.  

 

 

Figure 3. Cancer-type-specific altered pathways across cancers correlate with survival 

outcomes 

Kaplan-Meier survival plots based on patient subgroups defined by consensus 

clustering using genes from the top 3 altered pathways for (a) kidney renal cell 

carcinoma (KIRC), (b) bladder urothelial carcinoma (BLCA), (c) head and neck 

squamous carcinoma (HNSC), and (d) skin cutaneous melanoma (SKCM).  

 

Figure 4. Comparing NTriPath-derived signatures with mutation-frequency-based 

signatures 

This figure describes comparisons of patient stratification using signatures derived 

from NTriPath and mutation frequency reported in Kandoth, C. et al. 1.  

 

Figure 5. Validation in independent cohort  

This figure describes Kaplan-Meier survival plots for patient subgroups from (a) 

UTSW HNSC (b) Lung adenocarcinoma (c) Colon cancer, (d) Ovarian cancer.  

 Cancer Type  Number of Patients 

1 Acute Myeloid Leukemia (LAML) 75 

2 Bladder Urothelial Carcinoma (BLCA) 136 

3 Brain Lower Grade Glioma (LGG), 217 

4 Breast Invasive Carcinoma (BRCA) 772 

5 Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) 41 

6 Colon Adenocarcinoma (COAD) 270 

7 Glioblastoma Multiforme (GBM) 290 

8 Head and Neck Squamous Cell Carcinoma (HNSC) 323 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2015. ; https://doi.org/10.1101/017582doi: bioRxiv preprint 

https://doi.org/10.1101/017582


 - 21 - 

9 Kidney Chromophobe Renal Cell Carcinoma (KICH) 65 

10 Kidney Renal Clear Cell Carcinoma (KIRC) 210 

11 Kidney Renal Papillary Cell Carcinoma (KIRP) 111 

12 Lung Adenocarcinoma (LUAD) 380 

13 Ovarian Serous Cystadenocarcinoma (OV) 463 

14 Prostate Adenocarcinoma (PRAD) 171 

15 Rectum Adenocarcinoma (READ) 116 

16 Skin Cutaneous Melanoma (SKCM) 269 

17 Stomach Adenocarcinoma (STAD) 264 

18 Thyroid Carcinoma (THCA) 369 

19 Uterine Corpus Endometrioid Carcinoma  248 

 

Table 1. A list of cancer types used in the analysis. 
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Copy  number  alterations  are  putative.

Sanger  Cancer  Gene  Census  Information:
9  of  your  query  genes  are  known  cancer  genes,  as  cataloged  by  the  Sanger  Cancer  Gene  Census:

Gene Tumor  Types  (Somatic) Tumor  Types  (Germline) Tissue  Types Mutation  Types

VHL renal,  hemangioma,  pheochromocytoma renal,  hemangioma,
pheochromocytoma

epithelial,
mesenchymal,  other

large  deletion,
missense,  nonsense,
frameshift,  

TP53 breast,  colorectal,  lung,  sarcoma,  adrenocortical,
glioma,  multiple  other  tumour  types

breast,  sarcoma,  adrenocortical
carcinoma,  glioma,  multiple
other  tumour  types

leukaemia/lymphoma,
epithelial,
mesenchymal,  other

missense,  nonsense,
frameshift

RB1 retinoblastoma,  sarcoma,  breast,  small  cell  lung retinoblastoma,  sarcoma,
breast,  small  cell  lung

leukaemia/lymphoma,
epithelial,
mesenchymal,  other

large  deletion,
missense,  nonsense,
frameshift,  

WT1 Wilms,  desmoplastic  small  round  cell  tumor Wilms other large  deletion,
missense,  nonsense,
frameshift,  

EP300 colorectal,  breast,  pancreatic,  acute
myelogenous  leukemia,  acute  lymphocytic
leukemia,  diffuse  large  B-cell  lymphoma

leukaemia/lymphoma,
epithelial

translocation,
nonsense,  frameshift,
missense,  other

BRCA1 ovarian breast,  ovarian epithelial large  deletion,
missense,  nonsense,
frameshift,  

CREBBP acute  lymphocytic  leukemia,  acute  myelogenous
leukemia,  diffuse  large  B-cell  lymphoma,  B-cell
Non-Hodgkin  Lymphoma

leukaemia/lymphoma translocation,
nonsense,  frameshift,
missense,  other

JUN sarcoma mesenchymal amplification

MDM4 GBM,  bladder,  retinoblastoma mesenchymal amplification

Mutation mRNA  Upregulation mRNA  Downregulation RPPA  Upregulation RPPA  Downregulation

cBioPortal  |  MSKCC  |  TCGA  
Questions  and  feedback:  cbioportal@googlegroups.com  |  User  discussion  group

WT16%

          

Copy  number  alterations  are  putative.

Sanger  Cancer  Gene  Census  Information:
9  of  your  query  genes  are  known  cancer  genes,  as  cataloged  by  the  Sanger  Cancer  Gene  Census:

GeneTumor  Types  (Somatic)Tumor  Types  (Germline)Tissue  TypesMutation  Types

VHLrenal,  hemangioma,  pheochromocytomarenal,  hemangioma,
pheochromocytoma

epithelial,
mesenchymal,  other

large  deletion,
missense,  nonsense,
frameshift,  

TP53breast,  colorectal,  lung,  sarcoma,  adrenocortical,
glioma,  multiple  other  tumour  types

breast,  sarcoma,  adrenocortical
carcinoma,  glioma,  multiple
other  tumour  types

leukaemia/lymphoma,
epithelial,
mesenchymal,  other

missense,  nonsense,
frameshift

RB1retinoblastoma,  sarcoma,  breast,  small  cell  lungretinoblastoma,  sarcoma,
breast,  small  cell  lung

leukaemia/lymphoma,
epithelial,
mesenchymal,  other

large  deletion,
missense,  nonsense,
frameshift,  

WT1Wilms,  desmoplastic  small  round  cell  tumorWilmsotherlarge  deletion,
missense,  nonsense,
frameshift,  

EP300colorectal,  breast,  pancreatic,  acute
myelogenous  leukemia,  acute  lymphocytic
leukemia,  diffuse  large  B-cell  lymphoma

leukaemia/lymphoma,
epithelial

translocation,
nonsense,  frameshift,
missense,  other

BRCA1ovarianbreast,  ovarianepitheliallarge  deletion,
missense,  nonsense,
frameshift,  

CREBBPacute  lymphocytic  leukemia,  acute  myelogenous
leukemia,  diffuse  large  B-cell  lymphoma,  B-cell
Non-Hodgkin  Lymphoma

leukaemia/lymphomatranslocation,
nonsense,  frameshift,
missense,  other

JUNsarcomamesenchymalamplification

MDM4GBM,  bladder,  retinoblastomamesenchymalamplification

MutationmRNA  UpregulationmRNA  DownregulationRPPA  UpregulationRPPA  Downregulation

RPPA 
Upregulation

RPPA 
Downregulation

ACTA2 3%

APP 5%

BEST1 6%

BRCA1 5%

CREBBP 5%

CTSG 3%

DIO2 6%

EP300 6%

ESR1 6%

GNL3 2%

HIPK2 8%

JUN 3%

LRP1 10%

MDM4 4%

MMP1 0%

MMP26 4%

MMP7 5%

MMP9 3%

PPP1R13B 17%

PPP2R5A 9%

PRSS2 0%

PRSS3 3%

RB1 8%

SERPINA1 6%

SERPINA3 7%

SMAD3 9%

SP1 9%

TCEB1 11%

TCEB2 2%

TFPI 5%

THBS1 4%

TP53 13%

TP63 6%

USP33 6%

VHL 44%

WT1 6%

78.5% altered in 
patient samples

Cancer gene
Drug target
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Fig. 5
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Supplementary Figure 1
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Supplementary Figure 2

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●●●●●●●●●●
●●
●
●●●●●●●●●●●

●●●●
●●●●●●
●●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●

●● ● ● ●●●

● ●

●●● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●
●●

●●●●●●●●●
●

●
●●●●●

●●

●●

●

● ●

●

● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●●
●●●●●
● ●●●●●●●●●●

●●●●●●●●●●● ●●

●

● ●●●

●

● ● ●

●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●●

●●
●●●
●●●●
●●

●
●●●●●●●●●●●●

●●
●●●●

●●●●●●

●●

●

●

●●

●

● ● ●● ●

n = 794, p = 0.00107
 HR1=1.21 (95%CI,0.621−2.37)
 HR2=1.23 (95%CI,0.587−2.58)
 HR3=2.44 (95%CI,1.23−4.86)

TCGA BRCA

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●

●●
●
●
●

●●●●
●●●●

●
●
●●●●●
●
●

●
●

●●
●
●●
●
●

●

●

●

●●●

●

●

●●
●●
●●
●●●
●●●●●
●●●●●
●●●●

●

●
●

●

● ●

●
●

●

●

●

●
●
●
●

●●
●
●●●●

●

●●●
●

●

●●

●
●●

● ●●

●●

●●

●

●

●

● ●

n = 544, p = 0.0399
 HR1=1.28 (95%CI,0.991−1.66)
 HR2=1.06 (95%CI,0.814−1.38)
 HR3=1.13 (95%CI,0.807−1.57)

TCGA GBM

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●●●
●●●●●
●●●●●●●●●●●●●

●●●●●●●●

●●●
●●●●●●

●●

●

●● ●●●●

● ●

●● ●

●

●●●●●●●●●

●

●●●●

●●

●●

●

●

●●●

●

●●

●

●●●●●●●
●●

●●

●

●

●

●

●

●●

● ●

●

●

● ●

n = 213, p = 0.0457
 HR1=1.51 (95%CI,0.811−2.8)
 HR2=1.78 (95%CI,0.99−3.21)

TCGA LUAD

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●●
●●●

●●

●●●

●●

●

●

●●
●
●

●
●

●●

●●●●●●

●

●

● ● ●

●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●
●●

●●●
●●●●

●●●●●●●●●●●●
●

●

●
●

●●

●●●

●
●

●

●●●

●●
●●●

●

●

● ●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●

●●
●●
●
●
●●●
●●

●●●

●

●
●● ●

●
●

●
●●

● ●

●

●●

●● ●

● ●

●

●

●●

●●

●

●●●●●●●●●●
●●●●●

●●

●●●

●
●●●

●●●

●
●

●
●●

●
●●●

●

●

●

●●●
●

● ●

n = 504, p = 0.00742
 HR1=1.57 (95%CI,1.05−2.36)
 HR2=1.5 (95%CI,0.994−2.26)
 HR3=1.91 (95%CI,1.08−3.36)
 HR4=1.6 (95%CI,1.07−2.41)

TCGA OV
Months Months

Months Months

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2015. ; https://doi.org/10.1101/017582doi: bioRxiv preprint 

https://doi.org/10.1101/017582


Supplementary Figure 3
KM plots
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Supplementary Figure 4
Independent dataset
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Supplementary Figure 5
Single gene analysis
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