
Echo state networks with multiple readout modules

Abstract: We propose a new readout architecture for echo state networks where multiple linear readout
modules are activated at distinct time points to varying degrees by a separate controller module. The
controller module, like the reservoir of the echo state network, can be initialized randomly. All linear
readout modules are trained through simple linear regression, which is the only adaptive step in the
modified algorithm. The resulting architecture provides modest improvements on a variety of time
series processing tasks (between 5 to 50% in performance metric depending on the task studied). The
novel architecture is guaranteed to perform at least as accurately as a conventional linear readout. It can
be utilized as a general purpose readout method when augmentations to performance relative to the
standard method is needed.

Function approximation methods seek to learn mappings from the input feature space x to the output
feature space y. In parametric methods, a general mapping function is used which can approximate a
wide variety of different functions depending on the precise value of its parameters. The values of the
parameters are learned from example data. Perhaps the simplest parametric mapping function is linear
regression,  where  the  output  is  expressed  as  a  linear  combination  of  input  signals.  When  linear
regression fails  to  provide  adequate  precision,  a  common remedy involves  calculating  a  nonlinear
expansion f(x) of the input feature space and performing linear regression between f(x) and y [1]. For
time series analysis, echo state networks (ESNs) provide one such expansion function [2]. ESNs have
been successfully applied to a wide variety of time series processing problems such as chaotic time
series prediction, nonlinear system identification and classification.
In general, the precise conditions on the true mapping function from x to y for which a linear readout of
the nonlinear expansion is sufficient are not known for many expansion methods (but see 3). We first
present a heuristic argument that a single linear readout is expected to be insufficient for some classes
of  data  streams.  Then,  we  propose  an  elaboration  of  the  basic  ESN design  that  provides  greater
expressive power than a single linear readout while retaining the property that the only adaptive step in
the training process involves simple linear regression. 

Motivation

For concreteness, we consider the task of predicting the future behavior of an animal. For many simple
animals such as worms, flies and fish, a large fraction of their time is spent performing stereotypical
behavioral programs such as crawling, grooming, walking, eating etc [4]. Every class of stereotyped
behavior is conceptualized as motion along a low-dimensional  manifold (typically 1D in the intrinsic
coordinate  system).  Switching  between  programs  corresponds  to  a  switch  from  one  manifold  to
another.  The  behavior  of  the  animal  can  be  described  in  terms  of  the  magnitudes  of  its  intrinsic
coordinates  (muscle  activities)  or  some  more  easily  observed  proxies  such  as  joint  angles,  body
postures etc.  For motion along some one-dimensional  manifold,  any intrinsic  coordinate x evolves
according to x=x1(t),  where t  represents both time and the natural manifold coordinate.  Predicting
future behavior dt time steps ahead requires finding a mapping from x1(t) to x1(t+dt). Because t is a
function of x (t=x1-1(x)), we can express t as a Taylor series in x:  

t=∑ xn

n !
d n x1−1

(0)

dxn

where x1-1 is the inverse function from x to t. As x is also a Taylor series of t:

x (t)=∑ t n

n !
d n x1(0)

dtn

we can write x(t+dt) as a Taylor series of x:
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x (t+dt)=∑
((∑ xm

m!
d m x1−1

(0)

dxm
)+dt)

n

n !
d n x1(0)

dt n

Such a Taylor series corresponds to a linear readout of a polynomial expansion of x.
When motion of the animal switches from one manifold to another, the predictive linear readout of the
expansion generally changes, because the functional form of the derivatives (which are directly related
to  the  values  of  the  linear  readout  coefficients)  also  change.  Thus,  for  perfect  prediction  of  the
trajectories  of  an  object  whose  motion  switches  between  manifolds,  different  linear  readouts  at
different times are required.

The architecture

Extending the polynomial expansion analogy to Echo state networks, we might expect mappings of
complicated dynamical systems to be better approximated by a combination of linear readouts used to
different extents at different times. If the reservoir state at time t is row vector R(t), we can write the
predicted output yp(t) as a linear sum of the predictions of individual readout modules yp(t)=Σpi(t)ypi(t),
where pi(t) is the time dependent module weight which lies between 0 and 1 and ypi(t) represents the
prediction made by module i at time t. We restrict ourselves to a scalar output yp(t)  for notational
clarity, the generalization to a vector output is trivial.
Each ypi(t)=R(t)Wi, where Wi is the column vector of linear readout weights for module i. The weights
pi(t) are calculated by a separate softmax control module: pi(t)=exp(R(t)*wi)/Σ(exp(R(t)*wj). The lower
case wi denote the column vector of weights for the softmax of each module. For a suitable choice of
wi, each module i will dominate the the predicted output yp(t) for those time periods where pi(t) has a
high value. This allows the individual readout modules Wi to de facto specialize on predicting outputs
at certain epochs, while their possibly erroneous contributions will be ignored for other epochs where
their pi(t) acquires low values.
The overall aim of the architecture is to reduce the squared error between the desired y and predicted
output yp(t): C=Σ(yj-yj

p)2, where sum over index j runs over all the training data examples. The weights
wi and Wi can in principle be trained by joint gradient descent to reduce the cost function. However, a
simpler approach works just as well in practice wherein wi are initialised randomly and all the Wi are
trained jointly as a least squares problem.
If we fix the wi, minimizing the cost function can be converted to an ordinary least squares regression
problem. The column vector yp(t) can be expressed as a the matrix product Rp*W, where W is the
columnwise concatenation of the individual readout modules W=[W1' W2'...Wn']'. Row t of the matrix
Rp corresponds to a row-wise concatenation of vectors pi(t)R(t): Rp(t)=[p1(t)*R(t) p2(t)R(t) … pn(t)R(t)].
The pi needed to form the matrix Rp are calculated based on the fixed wi and reservoir neuron activities.
The softmax weights wi are initialized randomly from a uniform distribution between -1 and 1 and then
multiplied by a constant. A good choice of the constant is critical for effective results. For low values of
the constant, all weights pi(t) remain near the value 1/n during all time points, thus preventing the
readout modules from specializing. For very high values of the constant, the weights p i(t) jump rapidly
between  0  and 1,  creating  a  lack  of  smoothness.  For  a  suitable  initialization,  where  weights  p i(t)
smoothly vary over time between values of 0.1 to 0.9, the network performance is very close to the best
results achieved by gradient descent, while the time required to estimate the final Wi is dramatically
shortened. Finally, we note that the new network is guaranteed to work as well as a single module
readout. If all Wi are set to equal the single module readout Ws, then the prediction produced by the
new network is equivalent to the prediction produced by Ws, because the weights pi(t) sum to unity for
each time step.
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Results

We first tested the performance of the new architecture on a behavior prediction task. We created a
simulated  lamprey,  which  switches  between  different  behavior  modes  of  swimming,  digging  and
struggling.  The  lamprey  was  chosen  because  its  multisegment  body  shows  remarkably  reliable
behavior  well-described by simple  mathematical  equations  [5-7].  The  body of  the  model  lamprey
consisted of 20 segments. The equation describing swimming was written as ai=sin(2πi/l-2πt/T), where
i is segment number, ai the activity of segment i and l and 1/T are wavelength and frequency of the
wave respectively. Like in the real lamprey, the wavelength was kept fixed while the period T varied
between 20 and 200. The equation for digging was ai=sin(2πi/40)sin(2πft), where f varied between 0.05
and 0.0125 cycles/s. In the real lamprey, struggling consists of a periodic contortion of the body into
convoluted shape, but is less well understood mathematically. We chose to model struggling using the
equation ai=sin(2π(i-10)/(20+10sin(2πft)); see figure 1 for graphical summary of all modes. A small
amount of uniform random noise with amplitude 0.1 was added to each ai at all time steps.
Each behavioral mode had a duration of 300 time steps. After the completion of 300 time steps, the
lamprey  switched  between  the  modes  randomly.  For  each  300  step  epoch,  the  equation  control
parameters 1/T or f  remained fixed, but between epochs the parameters switched randomly. 
The task of the echo state network was to predict the body posture of the model lamprey 10 time steps
ahead of the present posture of the lamprey. For this task it was trained with a randomly initialized time
series of 10000 time steps and test error was measure on a differently initialized time series of equal
length and a linear model was fitted to relate R(t) (calculated at each time step using R(t-1) and all the
ai(t)) to each ai(t+10). For a reservoir with 100 neurons (which was augmented with a further set of 100
features found by calculating the square of each reservoir neuron activation at every time step [8]), the
echo state network achieved a normalized mean square prediction error 0.33, while a 2-module readout
give an improvement of 25% and a 3-module readout give an improvement of 33% compared to the
single module prediction.
A 3-module readout has 600*20 adjustable free parameters compared to the 200*20 free parameters of
a single module architecture. Another possible comparison can thus be made to a 300 neuron reservoir,
a model which also has 600*20 adjustable parameters. The mean test set nmse on 50 trials (both input
and reservoirs randomly reinitialized at each trial) gave a prediction improvement of  31% relative to
the  100  neuron  single-readout  reservoir-  a  result  statistically  indistinguishable  from  the  33%
improvement given by the 3-module readout with a 100 neuron reservoir. However, the 100 neuron
reservoir  with 3 readout  modules  has a  considerably smaller  run-time complexity.  To get  the next
reservoir  state,  300*300 multiplications must  be carried out at  run time for  300 neuron reservoir
compared to the 100*100 multiplications that must be carried out for use of the 100 neuron 3-module
method. 
All  three  methods  (feature  augmentation  with  polynomials  of  reservoir  activities,  increasing  the
reservoir  size or introducing multiple readout modules) give complementary improvements to each
other.  For  equivalent  number  of  introduced  adjustable  parameters,  they  provide  comparable
improvements  to  performance.  For  another  example,  a  100  neuron  reservoir  without  feature
augmentations gives a test-set nmse of 0.44, which is improved by quadratic feature augmentation to
0.36, while a 2-module readout (without quadratic augmentation) gives an nmse of 0.38 and a 200-
neuron reservoir with a single readout module and no quadratic augmentation gives an nmse of 0.33.
Conceptually, the three methods of improving ESN performance provide different benefits. While they
all increase the number of adjustable parameters, larger reservoirs provide a larger working memory
[9], while  multi-module readouts allow prediction modules to fine tune their predictions for distinct
phases  of  behavior.  Both  quadratic  augmentation  and multiple  readout  modules  provide  improved
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performance with only marginal increases in model run-time complexity, especially when  compared to
increases in reservoir size.
Next, we tested the new architecture on the standard Mackey-Glass (MG) chaotic time-series prediction
task  [10].  For  MG(17)  with  reservoir  size  1000,  no  significant  improvements  were  found  when
comparing a 2-module method with the standard single module method. When the reservoir size was
reduced to 500, the 2-module method gave significant improvements. We measure the performance of
the method by calculating the time when the difference between the predicted and actual continuation
became larger than 0.1, which we call the divergence time. The divergence time rose from 990 to 1500
when comparing the 1-module case with the 2-module system. Also,  the standard deviation of the
divergence time decreased significantly from 500 to 350 for the 2-module readout,  this  despite an
increase  of  the  divergence  time itself  for  the  2-module  case.  A re-implementation  of  Jaeger  2004
(where  ESN prediction  of  the  MG system was  first  reported)  with  1000 reservoir  neurons  found
divergence time of around 1640 with a standard deviation of 400. Thus, a 2-module readout method is
able to achieve performance that is only 10% inferior to a 1000 neuron reservoir but has a 4 times
lower run-time complexity.
On the Santa Fe time series prediction task D, the 2-module readout gave a modest 5% improvement
over the 1-module method for prediction delays between 2 to 5 time steps.
Finally, we tested the new architecture on a motor coordinate transformation task. Here, a model human
with two joints had to move his arm between randomly chosen points on the x,y plane (see figure 3 for
schematic). A sequence of 500 points were chosen randomly within a circular quadrant that was within
reach of the model arm. The task was to move the arm with uniform speed from one point to the next in
10 time steps, then hold the hand steady for 10 steps until moving forward to the next point. The input
positions were specified in normalized x,y coordinates normalized to the 0 to 1 range, whereas the
output was specified in radian joint angle coordinates from which 1.4 was subtracted to remove most of
the mean. Performance of a single module ESN with 500 neurons gave a small NMSE of 0.017. A 3-
module ESN improved performance by 50%. Note: in this task the inertia of the model arm was not
modeled, so the task could in principle have been solved by a feed forward, not a recurrent neural net.
It was studied primarily because its sequences of dynamics and stability might pose problems for an
echo state network whose neurons can show ongoing dynamics also during stable phases of the task.

Discussion and summary

Many simple tricks have been proposed to augment the performance of ESNs. These include increasing
non-linearity by augmenting the non-linear expansion with polynomial functions of reservoir activities
[8],  increasing  the  reservoir  size[10],  averaging  predictions  from many reservoirs[10],  introducing
delay lines into the read out system [11], providing neurons with a diversity of time constants [11] and
having the reservoir adapt to input statistics via intrinsic plasticity [12]. The new multi-module readout
architecture proposed is in its simplest form equivalent to introducing an additional layer of fixed non-
linearity into the readout layer for improved performance. However, in principle, the new layer of non-
linearity is trainable and it might still be the case that for certain tasks, gradient descent of the softmax
weights wi produces far superior results to the random initialization. In its randomly initialized form, it
is most likely useful as an out-of-the-box non-linearity which can be tried when the traditional tricks
run short of providing the required performance. It is guaranteed to work as well as a single readout
module or better with very little additional training cost. We have demonstrated its modest usefulness
on a variety of data series processing tasks.
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Figure 1: illustration of the three modes of worm behavior- swimming (a translating sinusoid), digging
(a vibrating string) and struggling (a contracting deformation of the body). The delay between the blue
and red and the red and black traces is seven time steps. In the prediction task, the time delay was 10
time steps.
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Figure 2: example performance on the MG time series  prediction (blue signals)  for a  500 neuron
reservoir with 2 and 1 readout modules respectively. The 2-module readout system clearly tracks the
correct continuation (red signals) for a longer duration. The zero time point marks the end of training
and the beginning of the prediction phase. 

Figure 3: Left panel- illustration of the task. The system must learn to convert the x-y coordinates of
the red dot into the joint  angles a  and b.  The quarter  circle  marks  the area within which the x-y
coordinates of the successive targets  were randomly chosen during the task.  Right  panel-  network
prediction (blue) versus actual signal shown for test data for a 3-module readout system.
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