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Abstract

Ribosome profiling is a recently developed high-throughput sequencing technique that captures

approximately 30 bp long ribosome-protected mRNA fragments during translation. Because of

alternative splicing and repetitive sequences, a ribosome-protected read may map to many places in the

transcriptome, leading to discarded or arbitrary mappings when standard approaches are used. We

present a technique and software that addresses this problem by assigning reads to potential origins

proportional to estimated transcript abundance. This yields a more accurate estimate of ribosome

profiles compared with a naı̈ve mapping. Ribomap is available as open source at

http://www.cs.cmu.edu/∼ckingsf/software/ribomap.

1. Introduction

Ribosome profiling (ribo-seq) provides snapshots of the positions of translating ribosomes by sequencing

ribosome-protected fragments [14]. The distribution of ribo-seq footprints along a transcript, called the

ribosome profile, can be used to analyze translational regulation and discover alternative initiation [9],

alternative translation and frameshifting [21], and may eventually lead to a better understanding of the

regulation of cell growth, the progression of aging [18] and the development of diseases [12, 35]. Different
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Figure 1: Ribomap pipeline for estimating ribosome profiles.

environmental conditions such as stress or starvation alter the ribosome profile patterns [10, 14], indicating

possible changes in translational regulation.

In higher eukaryotes, alternative transcription initiation, pre-mRNA splicing, and 3’ end formation

result in the production of multiple isoforms for most genes. The resulting isoforms can have dramatically

different effects on mRNA stability [19] and translation regulation [33]. However, to date ribosome

profiling analyses have been conducted at the gene, rather than isoform, level using either a single

‘representative’ isoform (e.g. [11]) or exon union profiles (e.g. [25]). The lack of isoform-level analysis of

ribo-seq data is partially due to the absence of the necessary bioinformatic tools. Here, we present a

conceptual framework and software (Ribomap) to quantify isoform-level ribosome profiles. By accounting

for multi-mapping sequence reads using RNA-seq estimates of isoform abundance, Ribomap produces

accurate isoform-specific ribosome profiles.

The challenge in estimating isoform ribosome profiles is that a short ribo-seq read may map to many

different transcripts. Ambiguous mappings are not rare in ribo-seq data and can be caused by either

repetitive sequences along the genome or alternative splicing [13]. For example, in the human Hela cell

ribo-seq data (GSM546920, [11]), among all mapped reads (about 50% of all reads), only 14% can be

uniquely mapped to a single location of a single mRNA isoform, 22% can be mapped to multiple regions

on the reference genome due to repetitive sequences, and 64% can be mapped to multiple mRNAs due to

alternative splicing. Ribomap deals with both types of ambiguous mappings, and therefore does not discard

multi-mapped reads, resulting in more of the data being used. In this example, the mapping rate of

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2015. ; https://doi.org/10.1101/017509doi: bioRxiv preprint 

https://doi.org/10.1101/017509
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ribomap is 50% compared to 7% if only uniquely mapped reads are used.

Estimation of mRNA isoform abundance from RNA-seq has also had to deal with ambiguous

mappings [16, 23, 26]. However, unlike in RNA-seq, coverage in ribo-seq is highly non-uniform regardless

of sequencing bias since ribosomes move along mRNAs at non-uniform rates, and it is in fact the

non-uniformities that are of interest. Further, ambiguous mappings are much worse for ribo-seq data since

the read length cannot exceed the ribosome size (approximately 30bp), while paired-end and longer reads

can be generated from RNA-seq experiments to reduce the problem of ambiguous mappings. Methods

developed for transcript abundance are therefore not applicable to assigning ribo-seq reads.

By observing that ambiguous mappings are mainly caused by multiple isoforms (Supplementary

Figure 2), Ribomap assigns ribo-seq reads to locations using estimated transcript abundance of the

candidate locations. On simulated data, our approach yields a more precise estimation of ribosome profiles

compared with a pure mapping-based approach. Further, the ribosome abundance derived using our

method correlates better with the transcript abundance on real ribo-seq data.

2. Approach

Ribomap works in 3 stages (Figure 1; see also Supplementary Material):

I Transcript abundance estimation. Since RNA-seq experiments should always be performed in

parallel with ribo-seq, the abundance αt per base of each transcript t can be estimated from the

RNA-seq data using Sailfish [27], an ultra-fast mRNA isoform quantification package. Ribomap also

accepts transcript abundance estimations from cufflinks [36] and eXpress [29].

II Mapping ribo-seq reads to the reference transcriptome. We obtain all the transcript-location pairs Lr

where the read sequence r matches the transcript sequence by aligning the entire set of ribo-seq

reads R to the transcriptome with STAR [6].

III Ribosome profile estimation. Let cr be the number of ribo-seq reads with sequence r. Ribomap sets

the number of footprints crti with sequence r that originate from a specific location i on transcript t

to be proportional to the transcript abundance αt of transcript t: crti = crαt/
∑

(t′,i′)∈Lr
αt′ , where

the denominator is the total transcript abundance with a sequence matching r. The total number of

reads cti that are assigned to transcript t, location i, is then cti =
∑

r∈R crti. The cti give the profiles
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Figure 2: Histogram of the Pearson correlation between the footprint assignments and the ground truth
profiles. Ribomap has a significant higher Pearson correlation (median: 0.83) than Star prime (median:
0.28). The spike at 0 of Star prime is due to STAR not assigning footprints to transcripts that are estimated
to be present.

for each transcript. The sum is needed here because there can exist multiple sequence patterns being

mapped to the same transcript location due to sequencing errors, so the final estimated ribosome

count for a transcript location should be the sum of the estimated count for all matched sequence

patterns.

3. Results and Discussion

To evaluate the performance of Ribomap, we generated simulated ribo-seq reads with known ground truth

profiles using transcript abundance of GSM546921 RNA-seq data [11] and a dynamic range of initiation

rates. Ribosome occupancy probabilities for locations on a given transcript were simulated using the

ribosome flow model [28]. Errors were added to the reads using a Poisson process with a rate of 0.5%,

which was estimated from the ribo-seq data GSM546920 [11]. For comparison, we also test a naı̈ve

approach, called “Star prime”, that maps each read to a single candidate location. More details are in

Supplementary material.

The Pearson correlation coefficients between Ribomap’s ribosome profiles and the ground truth is

significantly higher than that of Star prime (Figure 2): 81% of our profiles have a higher Pearson

correlation (Mann–Whitney U test p < 3× 10308) and 68% have a smaller root mean square error

(Mann–Whitney U test p = 3.3× 10221). This suggests that Ribomap more accurately recovers the
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ribosome profiles than the standard mapping procedure applied to isoforms.

The good correlation between the ground truth profile and the estimated profile also leads to a good

estimation of the total ribosome loads on a transcript. Ribomap’s ribosome loads estimation on

non-simulated ribo-seq data (GSM546920, [11]) correlates well with the estimated transcript

abundance (Pearson r = 0.71). We do not expect a perfect correlation due to isoform-specific translational

regulation. On the other hand, the pure mapping-based approach of Star prime does not correlate as

well (r = 0.28).

Through two lines of evidence, on real and simulated ribo-seq data, we show that Ribomap produces

useful, high-quality ribosome profiles along individual isoforms. It can serve as a useful first step for

downstream analysis of translational regulation from ribo-seq data.
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Supplementary Information

4. More details on the Ribomap pipeline

4.1 Background

Quantifying ribosome occupancy correctly is the first step of analyzing the ribo-seq data. Measurements of

protein translation efficiencies [11], ribosome loads [14], pileups and stalling [15] are all derived from

ribosome profiles. The challenges of generating such a profile includes deconvolving multi-mapped reads,

selecting the correct codon location that the P-site maps to, and bias correction [13]. While none of these

issues has a standard protocol, we describe Ribomap, an automatic pipeline that addresses the above

challenges and outputs isoform-level ribosome profiles and other ribo-seq analyses.

Current approaches to ribo-seq analysis either discard ambiguously mapped reads [11, 14, 24, 35] or

randomly assign them to one of the candidate regions [20, 30]. Such approaches can result in an inaccurate

estimation of the ribosome profiles. For example, regions without estimated ribosome footprints are

indistinguishable from read-free regions caused by discarded multi-mapping reads. Moreover, randomly

assigned reads might cause some regions to have a faulty peak in the profile, while leaving other regions

footprint-free (Supplementary Figure 3). Reads are therefore generally mapped to genes by choosing a

single isoform [11], or by using the union of all possible exons [5, 25, 34]. Although there is a pipeline

built to process ribo-seq reads for identifying protein sequences [3], a method proposed to resolve

multi-mapping problems caused by repetitive sequences [4] and software developed to align short reads to

splice junctions [22], none of these approaches so far handles multi-mapping problems caused by

alternative splicing, which, as is shown in the main text and is further shown here in Supplementary

Figure 4, is the major cause of ambiguous mappings. Without dealing with such source of multi-mappings,

the current approaches can only be used to estimate the overall ribosome abundance of a given gene, and

are incapable of estimating ribosome profile of different mRNA isoforms. These simplistic approaches can

also lead to incorrect gene-level estimates — see Supplementary Figure 5.

The better assignment mechanism described here results in a more precise estimation of the

per-mRNA ribosome profiles. And a better estimation of the ribosome profiles can also lead to a better

estimation of the total ribosome loads. Even for the case of the mouse data from [15], where approximately
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Supplementary Figure 3: An example of isoform level ribosome profiles for gene RPL37A
(ENSG00000197756.5) produced by Ribomap and Star Prime on the Hela cell data (GSM546920)
from [11]. The isoforms are listed in order of their relative abundance (value shown next to the transcript
ID) estimated from Sailfish [27], and the isoform diagram is shown in between the Ribomap profile and
Star prime profile. While Ribomap maps the footprints to the more abundant transcripts, Star prime as-
signs footprint reads to a single candidate location at random, leaving two of the expressed transcripts
almost ribosome-free (A, C), two of the unexpressed transcripts with the highest ribosome loads (E, F), and
a surprisingly huge pile-up at the end of transcript ENST00000491306, inconsistent with its surrounding
ribosome pile-ups (D). Profile plot is shown in UCSC Genome Browser [17].

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2015. ; https://doi.org/10.1101/017509doi: bioRxiv preprint 

https://doi.org/10.1101/017509
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 5 10 15 20
number of mapped location

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

p
e
rc

e
n
ta

g
e
 o

f 
m

a
p
p
e
d
 r

e
a
d
s

(a) hela data from [11]
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(b) mouse data from [15]

Supplementary Figure 4: Histogram of the number of mappings for all mapped ribo-seq reads in two data
sets. Reads are mapped to the human and mouse transcriptome respectively. The proportion of uniquely
mapped reads are marked in red. More than 50% of the reads in both data sets are ambiguous mapped, and
ambiguous mapping are extremely common in Human reads. Even for the mouse data, where ambiguous
mappings is less prevalent, 68% of the multi-mappings are caused by alternative splicing.

Transcript 1 Transcript 2 Gene
exons

profiles

Supplementary Figure 5: An illustration of when estimating ribosome profile on a gene level will fail. One
such case is the pileup does not happen in all isoforms, where merging the isoform-level profile will result
in multiple peaks being present simultaneously. Another case is that the pileup in an exon location is not
significant in any isoforms, but accumulating them together might produce a faulty peak.

only 50% of the reads have multi-mappings, the estimated ribosome loads correlate better to the estimated

transcript abundance (Pearson r=0.56) than the naı̈ve Star prime approach (Pearson r=0.45). We believe a

better estimation of the isoform level ribosome profiles can lead to a better understanding of translational

regulation.

4.2 Rationale of the Ribomap footprint assignment scheme

For a ribosome footprint read to come from a transcript location two conditions must hold: first, the

transcript has to be present in the cell; second, a ribosome has to be translating the current codon.

Therefore, in order to quantify the observed ribosome pileup, we make the following two assumptions:

First, identical transcripts have identical translation dynamics; second, each codon location shares a unique

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2015. ; https://doi.org/10.1101/017509doi: bioRxiv preprint 

https://doi.org/10.1101/017509
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) read set with error rate = 1% (b) read set with error rate = 2%

Supplementary Figure 6: Histogram of the Pearson correlation between the footprint assignments and the
ground truth ribosome profiles on read sets with different error rates. Ribomap has a significantly higher
Pearson correlation than Star prime (Mann-Whitney-U p< 3× 10308 for both cases). For simulated set with
error rate 1%, the median Pearson correlation is 0.81 for Ribomap and 0.30 for Star prime; for simulated set
with error rate 2%, the median Pearson correlation is 0.78 for Ribomap and 0.31 for Star prime.

pileup behavior due to how fast the current codon can be elongated and the surrounding codon pileups.

This means the final observation of the number of ribosome footprints cmi from transcript m at location i is

proportional to both the chances of observing the specific transcript codon fragment in the cell αm

(transcript abundance per base) and the chances of a ribosome occupying such a codon location pmi given

that the ribosome is from this transcript: cmi ∝ αm × pmi.

The transcript abundance can be estimated from the RNA-seq reads. However, there is no prior

knowledge of the per-codon-location specific pileup. We therefore assume the per-codon ribosome

abundance is uniformly unbiased. This leads to the assumption that the final ribosome abundance of a

transcript location is determined by the transcript abundance: cmi ∝ αm.

Intuitively, the transcript abundance is like the outline of the profile, and the location-specific

ribosome abundance is like the detail of the profile. Our method tries to grasp the outline of the profile first

and then let the read sequences themselves take care of the profile details.

4.3 Performance under various sequencing error rates

Supplementary Figure 6 gives the analog to Figure 1 in the manuscript, showing the distribution of Pearson

correlations under various rates of sequencing error. See Section 6.4 for how these errors were introduced.

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2015. ; https://doi.org/10.1101/017509doi: bioRxiv preprint 

https://doi.org/10.1101/017509
http://creativecommons.org/licenses/by-nc-nd/4.0/


Under reasonable error rates, the distributions are qualitatively the same.

4.4 Additional steps in Ribomap

The raw ribosome profiling reads and the RNA-seq reads are fed into the Ribomap analysis pipeline.

Reads are first preprocessed by discarding contaminated reads and trimming the 3’ adapter portion of the

reads. The remaining reads are then aligned to the transcriptome to find all possible candidate mapping

locations for all reads. The transcript abundances are also estimated from the RNA-seq reads. The last step

of ribomap takes in the transcript abundance estimation and the read mappings, and produces a vector of

read count per codon position for each transcript. The P-site location for each ribo-seq read are decided

dynamically based on the read length. The sequencing bias in the ribosome profiles are corrected by

normalizing a transcript’s ribosome profile with its mRNA profile (as done in [1] and [37]). A full

description about Ribomap’s output can be found in Section 5. The command to run Ribomap is:

run ribomap.sh --rnaseq fq rnaseq.fq.gz --riboseq fq riboseq.fq.gz

--contaminant fa contaminant.fa --transcript fa transcript.fa --cds range

cds range.txt

Ribomap uses state-of-the-art read-processing tools for several of its steps. We below list in detail

each step of the Ribomap pipeline and the command for executing them, in case the user wants to skip

some intermediate steps or make adjustments on individual steps.

4.4.1 Using STAR aligner to filter out contaminating reads

Reads that can be mapped to rRNA, tRNA, snoRNA, may not be representative of ribosome protection per

se and, in fact, may be contaminants merely associated with the ribosome. As such, they can be filtered out

by mapping the reads to the ribosome RNA sequences and transfer RNA sequences of your organism and

keeping only unmapped reads for downstream analysis. This is done via the STAR aligner [6].

The first step, which must be done only once per organism, is to create a STAR index for the

contaminant RNA sequences with the following command, assuming the sequences of the unwanted

molecules are in the file contamination.fa:

STAR --runThreadN nproc --runMode genomeGenerate
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--genomeDir rrna idx --genomeFastaFiles contamination.fa

--genomeSAindexNbases 5 --genomeChrBinNbits 11

nproc specifies the number of threads to run STAR. Since STAR treats every sequence entry in the

reference FASTA as a ‘genome’, the option --genomeSAindexNbases 5 forces STAR to build the

index properly for small molecule sequences. We include both tRNA and rRNA sequences as contaminants

in our analysis.

Once this index is created, it can be used to filter the contaminated reads as follows, assuming the

zipped FASTQ file of raw sequencing reads is in riboseq.fq.gz:

STAR --runThreadN nproc --genomeDir rrna idx --readFilesIn

riboseq.fq.gz

--readFilesCommand zcat --outFileNamePrefix riboaligned

--outStd SAM --outReadsUnmapped Fastx --outSAMmode NoQS

--clip3pAdapterSeq adapter --seedSearchLmax 10

--outFilterMultimapScoreRange 0 --outFilterMultimapNmax 255

--outFilterMismatchNmax nmismatch

--outFilterIntronMotifs RemoveNoncanonical > /dev/null

where adpater is the adapter sequence (TCGTATGCCGTCTTCTGCTTG for the Hela data set, and

CTGTAGG

CACCATCAATTCGTATGCCGTCTTCTGCTTGAA for the mouse data set), and nmismatch = 1 is the

number of allowed mismatches for the alignment. The option --outReadsUnmapped Fastx causes

STAR to output the unmapped reads to a FASTA file called riboalignedUnmapped.out.mate1;

--seedSearchLmax 10 increases the sensitivity of STAR for aligning short reads;

--outFilterMultimapScoreRange 0 guarantees that only the alignments with the best scores are

reported; --outFilterMultimapNmax 255 filters out reads that can be mapped to more than 255

locations. STAR by default clips off read ends if a better local alignment score can be achieved. Such a

procedure, called ‘soft clipping’, is very useful for handling ribo-seq reads since the first couple of bases in

the 5’ end are likely to be contaminated, and an adapter sequence is usually attached to the 3’ end.
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4.4.2 Map the remaining reads to the transcriptome

After removing reads that may have been the result of contamination we are now ready to align the

remaining reads to the transcriptome. This step is also accomplished by STAR. Assuming the

transcriptome sequences are in transcript.fa, the command to generate the transcriptome index is:

STAR --runThreadN nproc --runMode genomeGenerate

--genomeDir transcript idx --genomeFastaFiles transcript.fa

--genomeSAindexNbases 11 --genomeChrBinNbits 12

Again, --genomeSAindexNbases 11 insures that the index is built properly for shorter

molecules (compared to chromosome), and --genomeChrBinNbits 12 reduces the memory

consumption when there are many reference sequences provided.

The command to align the reads to the transcriptome is:

STAR --runThreadN nproc --genomeDir transcript idx

--readFilesIn riboalignedUnmapped.out.mate1

--outFileNamePrefix riboaligned transcript

--clip3pAdapterSeq adapter --seedSearchLmax 10

--outFilterMultimapScoreRange 0 --outFilterMultimapNmax 255

--outFilterMismatchNmax nmismatch

--outFilterIntronMotifs RemoveNoncanonical

--outSAMtype BAM Unsorted --outSAMmode NoQS

--outSAMattributes NH NM

The aligned reads will be stored in riboaligned transcriptAligned.out.bam. It includes two SAM

attributes for each alignment record: NH is the number of reported alignments for the read, and NM is the

number of mismatches in the current alignment.

4.4.3 Transcript abundance calculation using Sailfish [27]

The transcript abundance estimation is used to guide the isoform-level ribosome profile estimation. We are

currently using the latest version of Sailfish (called Salmon) that supports the read alignment results as the

input. Assuming that the read alignments of the RNA-seq data are in
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rnaaligned transcriptAligned.out.bam, the command to perform the transcript abundance

estimation is:

salmon quant -t transcript.fa -l SF -a

rnaaligned transcriptAligned.out.bam

-o sm quant -p nproc --bias correct

The flag --bias correct allows Salmon to correct for sequencing biases in the RNA-seq reads. The

transcript abundance estimation is in sm quant/quant bias corrected.sf.

4.4.4 Isoform-level ribosome profile estimation

This is the last step of the Ribomap analysis pipeline, and it is automatically handled by an executable

(developed by us) called riboprof. It takes in the transcriptome fasta file, a CDS range file, the ribo-seq

and RNA-seq alignment bam files (produced above), the transcript abundance estimation file (produced as

above; or it also supports abundance estimations from eXpress [29] or Cufflinks [36] if those estimates are

preferred and available). The CDS range file (assume its name is cds range.txt) gives the coding

region for each transcript. The command to perform an isoform-level ribosome profile estimation is:

riboprof --fasta transcript.fa --cds range cds range.txt

--mrnabam rnaaligned transcriptAligned.out.bam

--ribobam riboaligned transcriptAligned.out.bam

--min fplen min fplen --max fplen max fplen --offset offset.txt

--sf sm quant/quant bias corrected.sf --tabd cutoff tabd cutoff

--out ribomap out

Only reads with size (after ‘soft clipping’) between min fplen=25 and max fplen=36 are kept for

estimating the ribosome profiles. Alignments with RC flag set (reads are reverse complemented and then

aligned to the transcriptome) are discarded due to the single strandedness of the ribosome profile protocol.

offset.txt provides the P-site offset of a read given the read length. Following [15], we assign the P-site of

reads with length < 30 to be 12, with length between 31 and 33 to be 13, and with length > 33 to be 14.

Only transcripts with abundance greater than tabd cutoff =0 are considered to be expressed and are

included for ribosome profile estimation.
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There are three iterations in the footprint assignment procedure: First, only candidate locations with a

frame-0 P-site mapping are considered; second, the remaining reads are assigned to frame 1 and 2

locations; third, the rest of the mapped reads – reads that cannot be mapped to any CDS regions, are

mapped to UTR regions. For all three iterations, reads are mapped to candidate locations proportional to

the transcript abundance if multiple locations are presented for one read.

The estimated ribosome profiles and other analysis will be written to the directory ribomap out.

More information about the options and input file formats for Ribomap can be found in the README

file in Ribomap’s Github page (https://github.com/Kingsford-Group/ribomap/blob/master/README.md).

4.5 Settings of Star prime

By default, STAR only marks one alignment for multi-mapping reads as primary (FLAG 0x100

unset), such an alignment “is randomly selected from the alignments of equal quality.” And this primary

alignment is used to estimate ribosome profiles in Star prime. In addition, no prior transcript abundance

knowledge is used in Star prime, and therefore all transcripts in the transcriptome are taken into account.

All other settings (i.e. contaminated read filtering, adapter clipping, read size selection, dynamic P-site

assignment) are kept the same as the Ribomap pipeline described above.

4.6 Running time and memory usage of Ribomap

Ribomap runs for about 15 minutes on the ribo-seq data GSM546920 with 18 million reads on 15 threads.

The running time includes the time to build the STAR index for both the contaminated sequences and the

transcriptome, filtering the contaminated reads and aligning the remaining reads to the transcriptome for

both RNA-seq and ribo-seq data, transcript abundance estimation, and estimating isoform level ribosome

profiles. Memory usage is about 8.6G.

5. Output file format

In addition to estimated footprint count per codon position for each transcript isoforms, Ribomap also

outputs sub-codon resolution, nucleotide-level ribosome profiles including the UTR regions. Furthermore,

Ribomap reports ribosome loads, translation efficiency, and the relative abundance for each transcript.
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Lastly, Ribomap reports transcripts in order of the rank difference between the relative transcript

abundance and ribosome load, to help identify isoforms with different translation efficiency.

Ribomap outputs five files:

File 1: XXX.base gives the sub-codon resolution, nucleotide-level ribosome profiles including the UTR

regions. Only transcripts with a non-zero total ribosome count are reported. Each entry of a specific

transcript looks like this:

refID: 0

tid: YAL001C

ribo profile: 0 0 0 74 68 ...

mRNA profile: 31 35 50 73 87 96 104 ...

normalized ribo profile: 0 0 0 1.0137 0.781609 0.0208333 0.125 ...

where:

refID is the transcript fai index in transcript.fa.

tid is the transcript header name in transcript.fa.

ribo profile nucleotide level ribosome profile including the UTR regions.

mRNA profile RNA-seq read coverage profile.

normalized ribo profile is the ribosome profile after bias correction. Each number in the vector is the

ratio between the ribo profile count and the mRNA profile count.

File 2: XXX.codon gives the in-frame ribosome profiles for each transcript within the CDS region. The

file format is the same as the XXX.base file.

File 3: XXX.stats is the summarized statistics for each transcript. Each entry of a specific transcript

looks like this:

refID: 0

tid: YAL001C

rabd: 3959
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tabd: 0.000209384

te: 1.89078e+07

where:

rabd is the total ribosome loads, which is the sum of the ribo profile vector in XXX.base.

tabd is the relative transcript abundance from Sailfish’s result.

te is the relative translational efficiency, which is the ratio between rabd and tabd.

File 4: XXX abundant.list gives a list of transcripts whose total ribosome abundance is more than

expected given the transcript abundance. Such a list explores the difference between the ribosome

abundance ranking and the transcript abundance ranking. A higher rank of total ribosome footprint count

compared to the transcript abundance might indicate that the transcript is more highly packed with

ribosomes and this might suggest that there is a translational amplification regulation for this transcript.

Each line in the file looks like this:

ENST00000340756.2 2.81302e-09 1046.59 0 96 -96

It is the transcript header name followed by several statistics, in order:

1. relative transcript abundance,

2. total ribosome footprint count,

3. the percentile ranking of the transcript abundance,

4. the percentile ranking of the total ribosome loads (transcripts with zero total ribosome loads are

excluded from the analysis),

5. difference between the transcript abundance rank and the total ribosome footprint count rank.

The list of entries in this file is ordered by the ranking difference between the transcript abundance and the

ribosome abundance. Only transcripts with ranking differences greater than 10 are listed.

File 5: XXX scarce.list gives a list of transcripts whose total ribosome abundance is less than

expected given the transcript abundance. Analogous to the abundant list, this list include transcripts that

might have a translational buffering regulation. The file format is the same as XXX_abundant.list.
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6. Generating simulated footprints

To evaluate the performance of the ribosome footprint read assignment, we generated simulated footprint

data with known ribosome profiles. Let N be the total number of transcripts, αm be the per-base relative

abundance of a transcript m, and pmi be the ribosome occupancy probability of a location i on transcript

m. The number of simulated footprints from location i on transcript m is set to be N × αm × pmi, where

N is set so that a total of 20,000,000 footprints from all locations of all transcripts are generated. How αm

and pmi are set is described below.

6.1 Transcript abundance

The transcript abundance is estimated from the RNA-seq data paired with the ribosome profiling

experiments (GSM546921) via Sailfish [27]. Only transcripts with TPM value (transcripts per million)

greater than 1 are included, which results in a total of 39,414 transcripts. The relative transcript abundance

per base αm is computed as follows: Let tm be the transcript abundance estimated from Sailfish for

transcript m, let lm be the transcript length, let T be the transcriptome, αm = tm/
∑

m′∈T tm′ × lm′ .

The rationale of using transcript abundance per base for assigning the reads is that each transcript

codon location can be seen as a type of ball with a unique color, and the probability of observing such a

transcript codon fragment in the cell can be compared as randomly picking a ball of a specific color from a

pool of balls. We assume codon locations on the same transcript have equal visibilities. For the extreme

case where there is only one type of transcript in the cell with lm bases, the probability of seeing any

codons is 1/lm. For the case where there are more than one type of transcript, if there are tm transcripts

with type m, then there will be tm copies of each codon positions, and the probability of seeing a specific

codon position on transcript m over all possible codon positions is: tm/
∑

m′∈T tm′ × lm′ .

6.2 Ribosome occupancy probability

We model the movement of ribosomes on a given transcript with a ribosome flow model based on a total

asymmetric exclusion process (TASEP) [28]. In this process, each mRNA is modeled as a sequence of

codons, with ribosomes moving along it with codon-specific elongation rates. The model is “asymmetric”

because the ribosome can only move from the 5′ end to the 3′ end of the mRNA. The model has

“exclusion” because a location can only be occupied by one ribosome at a time; a ribosome can only move
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from location i to the next one when it is currently at location i and the next location is not occupied by

another ribosome.

For a mRNA m of length n, the entire translation process is modeled in three steps: First, the

ribosome binds to the the start codon of the mRNA with initiation rate λm0. Second, the ribosome moves

along the mRNA from codon ci to ci+1 with a elongation rate λmi (i = 1 . . . n− 1). Third, the ribosome

terminates when it reaches the the stop codon cn with a termination rate λmn, and the whole peptide chain

of the protein will be formed. The λ vector thus describes the transition rates of the ribosome moving from

one location to another.

The model states, when given a transcript m, that the change of the probability of observing a

ribosome on location i (pmi) is the difference between the incoming and the outgoing flow of the ribosome,

modeled using the differential equations:

dpm1(t)

dt
= λm0[1− pm1(t)]− λm1pm1[1− pm2(t)] (1)

dpmi(t)

dt
= λm,i−1pm,i−1(t)[1− pmi(t)]− λmipmi(t)[1− pm,i+1(t)] 1 < i < n, (2)

dpmn(t)

dt
= λm,n−1pm,n−1(t)[1− pm,n(t)]− λmnpmn(t) (3)

Equation (1) and (3) describe the boundary case of the process, and equation (2) describes the intermediate

case.

The ribosome profile under this model is the ribosome occupancy probability distribution when the

steady state of the model is reached, during which the probability of observing a ribosome at any location

will not change over time. This stationary distribution probability can be solved by setting the left hand

side of the equations above to zero.

To generate simulated profiles, we solve the above equations to find the steady state for all 39,414

transcripts. This profiles the probabilities pmi that a read is drawn from location i on one copy of transcript

m. Selection of the elongation rates (λmi) and initiation rates (λm0) is described below.

6.2.1 Elongation rate

Following Reuveni et al. [28], we assume the elongation rate is codon-specific and is proportional to the

tRNA abundance of a given codon. We use tRNA gene copy number as an approximation to the tRNA
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abundance in the cell, and we set the elongation rate to be the absolute adaptiveness value (Wi) of a given

codon i:

Wi =

ni∑
j=1

(1− Sij)tCGNij . (4)

Here ni is the number of tRNA isoacceptors recognizing codon i. tCGNij is the gene copy number of the

jth tRNA that recognizes the ith codon, and Sij is the selective constraint on the efficiency of the

codon-anticodon coupling by considering the wobble paring [7]. The absolute adaptiveness of a given

codon gives an estimate for the total amount of tRNAs that can match to a specific codon. The larger the

adaptiveness value is, the more efficient a codon can be translated, and thus the faster the elongation rate

will be. The elongation rates range between 3.5 and 33 time steps from this calculation.

6.2.2 Initiation rate

The initiation rate is thought to be the rate limiting step during the translation process [14]. We set the

initiation rate range to be approximately 100 times smaller than the elongation rate as in [31], and the rates

are uniformly sampled for each transcript between 0.03 and 0.3 timesteps.

6.3 Ribosome footprint generation

We calculate αm and pmi for every transcript as described above and then sample reads by selecting a

random transcript with probability proportional to its αm and then selecting ribosome position i

proportional to pmi. We then extract a 30-bp read with the 12th position set to the ribosome P-site.

6.4 Introducing sequencing errors in the read set

We estimate the frequency of sequencing errors from ribosome profiling data (GSM546920 [11]) to be the

total number of mismatches of read assignments in the data over the total number of aligned bases (total

number of aligned reads × read length). The error rate estimated on the ribosome profiling data

GSM546920 is 0.5%.

To add simulated sequencing errors to our simulated reads, we apply a Poisson process to choose the

bases to mutate in the simulated footprint read set with the rate parameter set to the error rate. We also tried

different error rates (0.5%, 1%, 2%), which all produce similar results in the footprint assignments

(Supplementary Figure 6). The histogram in the paper is generated from the data with error rate 0.5%.
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6.5 RNA-seq data generation

We generated simulated RNA-seq reads with the following procedure: The transcript abundance

estimation from Section 6.1 is used as a prior to generate 20,000,000 simulated RNA-seq fragments with

default parameters using rlsim [32]. Consistent with the ribosome footprint generation settings, only

transcripts with TPM value (transcripts per million) greater than 1 are included. We then truncate the

fragments into 36bp-long single-end reads.

When applying Ribomap, we re-estimate the transcript abundance as usual from the simulated

RNA-seq reads via Sailfish [27] without looking at the original estimates from the true data.

The analysis shown in Figure 2 in the main text and in Supplementary Figure 6 only uses transcripts

with non-zero total ribosome counts, which results in 26,297 transcripts included.

7. Data used in the experiments reported here

• Hela ribosome footprint data: Human Hela cell ribo-seq mock 32hr runs1-2 in [11] (GSM546920).

• Hela RNA-seq data: Human Hela cell RNA-seq mock 32hr runs1-3 in [11] (GSM546921).

• Human Transcriptome reference fasta file: The human protein-coding transcriptome fasta file is

downloaded from the Gencode website:

(ftp://ftp.sanger.ac.uk/pub/gencode/Gencode human/release 18/gencode.v18.pc transcripts.fa.gz).

The CDS region information used in our analysis is obtained from the headers of the fasta sequence

entries.

• Human Transcriptome gene annotation gtf file: The human gene annotation gtf is also

downloaded from the Gencode website:

(ftp://ftp.sanger.ac.uk/pub/gencode/Gencode human/release 18/gencode.v18.annotation.gtf.gz). This

file is used to obtain the frame information of the CDS regions of the transcripts.

• Mouse Ribosome footprint data: ES cell feeder-free, w/ LIF 60 s CYH (100 ug/ml)

ribo mesc yeslif Illumina GAII in [15] (GSM765301).
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• Mouse RNA-seq data: ES cell feeder-free, w/ LIF 60 s CYH (100 ug/ml) mrna mesc yeslif

Illumina GAII in [15] (GSM765289).

• Mouse Transcriptome reference fasta file: The mouse protein-coding transcriptome fasta file is

downloaded from the Gencode website:

(ftp://ftp.sanger.ac.uk/pub/gencode/Gencode mouse/release M4/gencode.vM4.pc transcripts.fa.gz).

The CDS region information used in our analysis is obtained from the headers of the fasta sequence

entries.

• Mouse Transcriptome gene annotation gtf file: The mouse gene annotation gtf is also downloaded

from the Gencode website:

(ftp://ftp.sanger.ac.uk/pub/gencode/Gencode mouse/release M4/gencode.vM4.annotation.gtf.gz).

This file is used to obtain the frame information of the CDS regions of the transcripts.

• Human tRNA gene copy number: Downloaded from the gtrna database [2]:

(http://gtrnadb.ucsc.edu/Hsapi/Hsapi-summary-codon.html).

• Contaminated sequences: Both ribosomal sequences and tRNA sequences are included in the

contaminated sequences. Ribosomal sequences are downloaded from Ensemble’s [8] ncRNA

database with gene biotype as rRNA; tRNA sequences are downloaded from the gtrna

database [2] (http://gtrnadb.ucsc.edu/download/tRNAs/eukaryotic-tRNAs.fa.gz).
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