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Abstract 

Expression quantitative trait loci (eQTLs) are a key tool to dissect cellular processes mediating 

complex diseases. However, little is known about the role of repetitive elements as eQTLs. We 

report a genome-wide survey of the contribution of Short Tandem Repeats (STRs), one of the 

most polymorphic and abundant repeat classes, to gene expression in humans. Our survey 

identified 2,060 significant expression STRs (eSTRs). These eSTRs were replicable in orthogonal 

populations and expression assays. We used variance partitioning to disentangle the contribution 

of eSTRs from linked SNPs and indels and found that eSTRs contribute 10%-15% of the cis-

heritability mediated by all common variants. Functional genomic analyses showed that eSTRs 

are enriched in conserved regions, co-localize with regulatory elements, and are predicted to 

modulate histone modifications. Our results show that eSTRs provide a novel set of regulatory 

variants and highlight the contribution of repeats to the genetic architecture of quantitative human 

traits. 
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Introduction 

In recent years, there has been tremendous progress in identifying genetic variants that affect 

expression of nearby genes, termed cis expression quantitative trait loci (cis-eQTLs). Multiple 

studies have shown that disease-associated variants often overlap cis-eQTLs in the affected 

tissue1,2. These observations suggest that understanding the genetic architecture of the 

transcriptome may provide insights into the cellular-level mediators underlying complex traits3-5. 

So far, eQTL-mapping studies have mainly focused on SNPs and to a lesser extent on bi-

allelic indels and CNVs as determinants of gene expression6-10. However, these variants do not 

account for all of the heritability of gene expression attributable to cis-regulatory elements as 

measured by twin studies, leaving on average about 20-30% unexplained7,11.  It has been 

speculated that such heritability gaps could indicate the involvement of repetitive elements that 

are not well tagged by common SNPs12,13.  

To augment the repertoire of eQTL classes, we focused on Short Tandem Repeats (STRs), one of 

the most polymorphic and abundant type of repetitive elements in the human genome14,15. 

These loci consist of periodic DNA motifs of 2-6bp spanning a median length of around 25bp. 

There are about 700,000 STR loci covering almost 1% of the human genome. Their repetitive 

structure induces DNA-polymerase slippage events that add or delete repeat units, creating 

mutation rates that are orders of magnitude higher than those of most other variant types14,16. Over 

40 Mendelian disorders, such as Huntington’s Disease, are attributed to STR mutations, most of 

which are caused by large expansions of trinucleotide coding repeats17. However, trinucleotide 

coding STRs are only a minute fraction of all genomic STRs. The majority consist of di- 

and tetranucleotide motifs, which are overrepresented in promoter and regulatory regions18.   

Multiple lines of evidence support the potential role of STRs in regulating gene expression. In 

vitro studies have shown that STR variations can modulate the binding of transcription 

factors19,20, change the distance between promoter elements21,22, alter splicing efficiency23,24, and 

induce irregular DNA structures that may modulate transcription25. Recent computational work 

showed that dinucleotide STRs are a hallmark of enhancer elements in Drosophila26. In 

vivo experiments have reported specific examples of STR variations that control gene expression 

across a wide range of taxa, including Haemophilus influenza27, Saccharomyces 

cerevisiae28, Arabidopsis thaliana29, and vole30. In humans, several dozen candidate-gene studies 

used reporter assay experiments to show that STR variations modulate gene expression19,31-35 and 
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alternative splicing23,36,37. However, there has been no systematic evaluation of the contribution 

of STRs to gene expression in humans.  

To that end, we conducted a genome-wide analysis of STRs that affect expression of nearby 

genes, termed expression STRs (eSTRs), in lymphoblastoid cell lines (LCLs), a central ex-

vivo model for eQTL studies. This well-studied model permitted the integration of whole genome 

sequencing data, expression profiles from RNA-sequencing and arrays, and functional genomics 

data. We tested for association in close to 190,000 STR×gene pairs and found over 2,000 

significant eSTRs. Using a multitude of statistical genetic and functional genomics analyses, we 

show that hundreds of these eSTRs are predicted to be functional, uncovering a new class of 

genetic variants that modulate gene expression.  

Results 

Initial genome-wide discovery of eSTRs  

The initial genome-wide discovery of potential eSTRs relied on finding associations between 

STR length and expression of nearby genes. We focused on 311 European individuals whose 

LCL expression profiles were measured using RNA-sequencing by the gEUVADIS8 project and 

whose whole genomes were sequenced by the 1000 Genomes Project38. The STR genotypes were 

obtained in our previous study39 in which we created a catalog of STR variation as part of the 

1000 Genomes Project using lobSTR, a specialized algorithm for profiling STR variations from 

high throughput sequencing data40. Briefly, lobSTR identifies reads with repetitive sequences that 

are flanked by non-repetitive segments. It then aligns the non-repetitive regions to the genome 

using the STR motif to narrow the search, thereby overcoming the gapped alignment problem and 

conferring alignment specificity. Finally, lobSTR aggregates aligned reads and employs a model 

of STR-specific sequencing errors to report the maximum likelihood genotype at each 

locus. lobSTR recovered most (r2=0.71) of the additive genetic variance of STR loci in the 1000 

Genomes datasets based on large-scale validation using 5,000 STR genotype calls obtained by 

capillary electrophoresis, the gold standard for STR genotyping39. The majority of genotype 

errors were from dropout of one allele at heterozygote sites due to low sequencing coverage. We 

simulated the performance of STR associations using lobSTR calls compared to the capillary 

calls. This process showed that STR genotype errors reduce the power to detect eSTRs by 30-

50% but importantly do not create spurious associations (Supplementary Note and 

Supplementary Fig. 1). 
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To detect eSTR associations, we regressed gene expression on STR dosage, defined as the sum of 

the two STR allele lengths in each individual. We opted to use this measure based on previous 

findings that reported a linear trend between STR length and gene expression19,32,34 or 

disease phenotypes41,42. As covariates, we included sex, population structure, and other 

technical parameters (Fig. 1a and Supplementary Methods). We employed this process on 

15,000 coding genes whose expression profiles were detected in the RNA-sequencing data. For 

each gene, we considered all polymorphic STR variations that passed our quality criteria 

(Methods) within 100kb of the transcription start and end sites of the gene transcripts as 

annotated by Ensembl43.  On average, 13 STR loci were tested for each gene (Supplementary 

Fig. 2), yielding a total of 190,016 STR×gene tests.   

Our analysis identified 2,060 unique protein-coding genes with a significant eSTR (gene level 

FDR≤5%) (Fig. 1b, Supplementary Table 1). The majority of these were di- and tetra-

nucleotide STRs (Supplementary Tables 2, 3). Only 13 eSTRs fall in coding exons but eSTRs 

were nonetheless strongly enriched in 5’UTRs (p=1.0×10-8), 3’UTRs (p=1.7×10-9) and regions 

near genes (p<10-28) compared to all STRs analyzed (Supplementary Table 4). We repeated the 

association tests with two negative control conditions by regressing expression on (i) STR 

dosages permuted between samples and (ii) STR dosages from randomly chosen unlinked loci 

(Fig. 1b, Supplementary Fig. 3). Both negative controls produced uniform p-value distributions 

expected under the null hypothesis. This provides support for the absence of spurious associations 

due to inflation of the test statistic or the presence of uncorrected population structure.  

The initial discovery set of eSTRs was largely reproducible in an independent set of individuals 

using an orthogonal expression assay technology. We obtained an additional set of over 

200 individuals whose genomes were also sequenced as part of the 1000 Genomes Project and 

whose LCL expression profiles were measured by Illumina expression array44. These individuals 

belong to cohorts with African, Asian, European, and Mexican ancestry, enabling testing of the 

associations in a largely distinct set of populations. The Illumina expression array allowed testing 

882 eSTRs out of the 2,060 identified above. The association signals of 734 of the 882 (83%) 

tested eSTRs showed the same direction of effect in both datasets (sign test p=2.7×10-94) and the 

effect sizes were strongly correlated (R=0.73, p=1.4×10-149) (Fig. 1c), despite only moderate 

reproducibility of expression profiles across platforms (Supplementary 

Note and Supplementary Fig. 4). Overall, these results show that eSTR association signals are 

robust and reproducible across populations and expression assay technologies.  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2015. ; https://doi.org/10.1101/017459doi: bioRxiv preprint 

https://doi.org/10.1101/017459
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2015. ; https://doi.org/10.1101/017459doi: bioRxiv preprint 

https://doi.org/10.1101/017459
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

Partitioning the contribution of eSTR and nearby variants 

An important question is whether eSTR association signals stem from causal STR loci or are 

merely due to tagging SNPs or other variants in linkage disequilibrium (LD). Previous results 

reported that the average STR-SNP LD is approximately half of the traditional SNP-SNP LD39,45, 

but there are known examples of STRs tagging GWAS SNPs46.   

To address this question, we partitioned the relative contributions of eSTRs versus all common 

(MAF≥1%) bi-allelic SNPs, indels, and structural variants (SV) in the cis region using a linear 

mixed model (LMM) (Fig. 2a). Multiple studies have used this approach to measure the total 

contributions of common variants to the heritability of quantitative traits and to partition the 

contribution of different classes of variants47,48. Taking a similar approach, we included two types 

of effects for each gene: a random effect (h2
b) that captures all common bi-allelic loci detected 

within 100kb of the gene and a fixed effect (h2
STR) that captures the best STR. To test whether 

other causal variants on the local region could inflate the estimate of the STR contribution, we 

simulated gene expression with a causal SNP eQTL per gene while preserving the local haplotype 

structure. In this negative control scenario, the LMM correctly reported a median h2
STR/h2

cis≈0 

across all conditions (Supplementary Note and Supplementary Fig. 5), where h2
cis= h2

b+h2
STR. 

This suggests that other causal variants in LD do not inflate the estimator of the relative 

contribution of STRs. As the LMM is expected to downwardly bias the variance explained in the 

presence of genotyping errors, the reported h2
STR is likely to be conservative. 

The LMM results showed that eSTRs contribute about 12% of the genetic variance attributed to 

common cis polymorphisms. For genes with a significant eSTR, the median h2
STR was 1.80%, 

whereas the median h2
b was 12.0% (Fig. 2b), with a median ratio of h2

STR/h2
CIS = 

12.3% (CI95% 11.1%-14.2%; n=1,928) (Table 1). We repeated the same analysis for genes with at 

least moderate (≥5%) cis-heritability (Methods) regardless of the presence of a significant eSTR 

in the discovery set. The motivation for this analysis was to avoid potential winner’s curse49 and 

to obtain a transcriptome-wide perspective on the role of STRs in gene expression (Fig. 2c). In 

this set of genes, eSTRs contribute about 13% (CI95% 12.2%-13.4%; n=6,272) of the genetic 

variance attributed to cis common polymorphisms.  The median h2
STR was 1.45% of the total 

expression variance, whereas the median h2
b was 9.10% (Table 1). Repeating the analysis while 

treats STRs as a random effect showed highly similar results (Supplementary Note, 

Supplementary Table 5, Supplementary Fig. 5-6,). Taken together, this analysis shows that 
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STR variations explain a sizeable component of gene expression variation after controlling for all 

variants that are well tagged by common bi-allelic markers on in the cis region.   
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The effect of eSTRs in the context of individual SNP eQTLs 

To further assess the contribution of eSTRs in the context of other variants, we also inspected the 

relationship between eSTRs and individual cis-SNP eQTLs (eSNPs). We performed a traditional 

eQTL analysis with the whole genome sequencing data of 311 individuals that were part of the 

discovery set to identify common eSNPs [minor allele frequency (MAF) ≥5%] within 100kb of 

the gene. This process identified 4,290 genes with an eSNP (gene-level FDR≤5%). We then re-

analyzed the eSTR association signals while conditioning on the genotype of the most significant 

eSNP (Fig. 3a). For each eSTR, we ascertained the subset of individuals that were homozygous 

for the major allele of the best eSNP in the region. If the eSTR simply tags this eSNP, its 

conditioned effect should be randomly distributed compared to the unconditioned effect. 

Alternatively, if the eSTR is causal, the direction of the conditioned effect should match the 

original effect. We conducted this analysis for eSTR loci with at least 25 individuals homozygous 

for the best eSNP and for which these individuals had at least two unique STR genotypes (1,856 

loci). After conditioning on the best eSNP, the direction of effect for 1,395 loci (75%) was 

identical to that in the original analysis (sign test p<4.2×10-109) and the effect sizes were 

significantly correlated (R=0.52; p=3.2×10-130) (Fig. 3b). This further supports the additional role 

of eSTRs beyond traditional cis-eQTLs.  

We also found that hundreds of eSTRs in the discovery set provide additional explanatory value 

for gene expression beyond the best eSNP. In 23% of genes, the eSTR significantly improved the 

explained variance of gene expression over considering only the best eSNP according to an 

ANOVA model comparison (FDR<5%) (Fig. 3c-e, Methods). Combined with the 183 genes with 

an eSTR but no significant eSNP, these results show that at least 30% of the eSTRs identified by 

our initial scan cannot be explained by mere tagging of the best eSNP. Given the reduced quality 

of STR compared to SNP genotypes, this analysis is likely to underestimate the true contribution 

of STRs. Nonetheless, our results show concrete examples for hundreds of associations in which 

the eSTR increases the variance explained by the best eSNP. 
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Functional Genomics Supports the Causal Role of eSTRs 

To provide further evidence of their causal role, we analyzed eSTRs in the context of functional 

genomics data. First, we assessed the potential functionality of STR regions by measuring 

signatures of purifying selection, since previous findings have reported that putatively causal 

eSNPs are slightly enriched in conserved regions50.  We inspected the sequence conservation51 

across 46 vertebrates in the sequence upstream and downstream of the eSTRs in our discovery 

dataset (Fig. 4a). To tune the null expectation, we matched each tested eSTR to a random STR 

that did not reach significance in the association analysis but had a similar distance to the nearest 

transcription start site (TSS). The average conservation level of a ±500bp window around eSTRs 

was slightly but significantly higher (p<0.03) than for control STRs. Tightening the window size 

to shorter stretches of ±50bp showed a more significant contrast in the conservation scores of the 

eSTRs versus the control STRs (p<0.01) (Fig. 4a inset), indicating that the excess in conservation 

comes from the vicinity of the eSTR loci. Taken together, these results show that eSTRs 

discovered by our association pipeline reside in regions exposed to relatively higher purifying 

selection, further suggesting a functional role. 

We also found that eSTRs significantly co-localize with functional elements. eSTRs show the 

strongest enrichment closest to transcription start sites (Fig. 4b) and to a lesser extent near 

transcription end sites (Supplementary Fig. 7), similar to patterns previously observed 

for eSNPs50. We then inspected the co-localization of eSTRs with histone modifications as 

annotated by the Encode Consortium6 in LCLs. eSTRs were strongly enriched in peaks of histone 

modifications associated with regulatory regions (H3K4me1, H3K4me2, H3K4me3, H3K27ac, 

H3K9ac) and transcribed regions (H3K36me3), and highly depleted in repressed 

regions (H3K27me3) (Fig. 4b). These results match previous patterns of enrichments found for 

putatively causal eSNPs50. To test the significance of these signals, we constructed a null 

distribution for each histone modification by measuring the co-localization of 

eSTRs with randomly shifted histone peaks similar to the fine-mapping procedure of Trynka et 

al.52. This null distribution controls for co-occurrence of eSTRs and histone peaks due to their 

proximity to other causal variants. We found eSTR/histone co-localizations were significant 

(weakest p-value<0.01) after the peak shifting procedure, suggesting that these results stem from 

the eSTRs themselves. We also performed a peak-shifting analysis using ChromHMM 

annotations53 (Fig. 4c). The two strongest enrichments for eSTRs were weak-promoters 

(p<0.002) and weak-enhancers (p<0.004). Again, this analysis shows overlap of eSTRs with 

elements that are predicted to regulate gene expression.  
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Finally, we found that eSTR variations are likely to modulate the occupancy of 

certain histone marks. For each eSTR, we created a series of DNA sequences reflecting the STR 

alleles observed among individuals in our dataset (Fig. 4d). We used these sequences as an input 

to the WAVE (Whole-genome regulAtory Variants Evaluation) model54, which predicts ChIP-

sequencing experiments directly from genomic sequences (Methods). The output of WAVE 

showed the predicted effect of STR variations on the occupancy of chromatin marks. We then 

compared the distribution of the magnitude of effect sizes between eSTRs and a randomly chosen 

control set of STRs. eSTRs had significantly greater effects than control STRs on the predicted 

occupancy of all tested histone marks (pH3K4me3=3.4×10-5, pH3K9ac =5.4×10-8, pH3K36me3=2.1×10-9, 

pH3K27me3=0.0047; Mann-Whitney rank test) (Fig. 4e). We also discovered a marginally significant 

effect on DNAseI (p=0.016) but not on P300 (p=0.94). Importantly, since the input material for 

this analysis is solely STR variations that are independent of any linked variants, these results 

provide an orthogonal piece of evidence of the functionality of eSTRs and suggest modulating 

histone marks as a potential mechanism.  
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Discussion 

Our study conducted the first genome-wide characterization of the effect of STR variation on 

gene expression and identified over 2,000 potential eSTRs. Further statistical analysis showed 

that eSTRs contribute on average about 10-15% of the cis-heritability of gene expression 

attributed to common (MAF≥1%) polymorphisms and that at least a third of these eSTRs improve 

the explained heritability beyond the strongest SNP-eQTLs. Functional genomics analyses 

provide further support for the predicted causal role of eSTRs.               

We hypothesize that there are more eSTRs to find in the genome. Variance partitioning across all 

moderately heritable genes showed that STRs that did not reach significance still account for a 

sizeable component of gene expression variance. Our analysis also had several technical 

limitations. First, STRs show higher rates of genotype errors than SNPs, which limited our power 

to detect eSTRs and likely downwardly biased their estimated contribution in the LMM and 

ANOVA. In addition, about 10% of STR loci in the genome could not be analyzed because they 

are too long to be spanned by current sequencing read lengths39. Second, based on previous 

findings in humans19,32,34, our association tests focused on a linear relationship between STR 

length and gene expression. However, experimental work in yeast reported that certain loci 

exhibit non-linear relationships between STR lengths and expression28, which are unlikely to be 

captured in our current analysis. Finally, our association pipeline takes into account only the 

length polymorphisms of STRs and cannot distinguish the effect of sequence variations inside 

STR alleles with identical lengths (dubbed homoplastic alleles55). Addressing these technical 

complexities would probably require phased STR haplotypes and longer sequence reads that are 

currently beyond reach for large sample sizes. We envision that recent advancements in 

sequencing technologies56 will further expand the catalog of eSTRs.  

Previous reports have highlighted the overlap between eQTLs and GWAS hits of human 

diseases7,8,11, suggesting a similar role for STRs. These loci, as well as other repetitive elements, 

have been largely overlooked by GWAS studies due to the technical complexities in genotyping 

them across a large number of samples. Analyzing the contribution of these loci in complex 

disease studies will require the availability of large scale whole genome sequencing data or the 

development of reliable imputation methods from genotyping arrays.  Regardless of the technical 

method, our results suggest that such efforts might reveal exciting biology beyond that observed 

through the prism of traditional point mutations. 
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Methods 

Genotype datasets 

lobSTR genotypes were generated for the phase 1 individuals from the 1000 Genomes Project as 

described in39. Variants from the 1000 Genomes Project phase 1 release were downloaded in VCF 

format from the project website. HapMap genotypes were used to correct association tests for 

population structure. Genotypes for 1.3 million SNPs were downloaded for draft release 3 from 

the HapMap Consortium webpage. SNPs were converted to hg19 coordinates using the liftOver 

tool and filtered using Plink57 to contain only the individuals for which both expression array data 

and STR calls were available. Throughout this manuscript, all coordinates and genomic data are 

referenced according to hg19. 

Expression datasets 

RNA-sequencing datasets from 311 HapMap lymphoblastoid cell lines for which STR and SNP 

genotypes were also available were obtained from the gEUVADIS Consortium. Raw FASTQ 

files containing paired end 100bp Illumina reads were downloaded from the EBI website. The 

hg19 Ensembl transcriptome annotation was downloaded as a GTF file from the UCSC Genome 

Browser58,59 ensGene table. The RNA-sequencing reads were mapped to the Ensembl 

transcriptome using Tophat v2.0.760 with default parameters. Gene expression levels were 

quantified using Cufflinks v2.0.261 with default parameters and supplied with the GTF file for the 

Ensembl reference version 71. Genes with median FPKM of 0 were removed, leaving 23,803 

genes. We restricted analysis to protein coding genes, giving 15,304 unique Ensembl genes. 

Expression values were quantile-normalized to a standard normal distribution for each gene. 

The replication set consisted of Illumina Human-6 v2 Expression BeadChip data from 730 

HapMap lymphoblastoid cell lines from the EBI website. These datasets contain two replicates 

each for 730 unrelated individuals from 8 HapMap populations (YRI, CEU, CHB, JPT, GIH, 

MEX, MKK, LWK) and were generated as described by Stranger et al.62. Background corrected 

and summarized probeset intensities (by Illumina software) contained values for 7,655 probes. 

Additionally, probes containing common SNPs were removed63. Only probes with a one-to-one 

correspondence with Ensembl gene identifiers were retained. We removed probes with low 

concordance across replicates (Spearman correlation ≤ 0.5). In total we obtained 5,388 probes for 

downstream analysis. 

Each probe was quantile-normalized to a standard normal distribution across all individuals 

separately for each replicate and then averaged across replicates. These values were quantile-

normalized to a standard normal distribution for each probe. 

eQTL association testing 

Expression values were adjusted for individual sex, individual membership, gene expression 

heterogeneity, and population structure (Supplementary Methods). Adjusted expression values 

were used as input to the eSTR analysis. To restrict to STR loci with high quality calls, we 

filtered the callset to contain only loci where at least 50 of the 311 samples had a genotype call. 

To avoid outlier genotypes that could skew the association analysis, we removed any genotypes 

seen less than three times. If only a single genotype was seen more than three times, the locus was 

discarded. To increase our power, we further restricted analysis to the most polymorphic loci with 
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heterozygosity of at least 0.3. This left 80,980 STRs within 100kb of a gene expressed in our LCL 

dataset. 

A linear model was used to test for association between normalized STR dosage and expression 

for each STR within 100kb of a gene (Supplementary Methods). Dosage was defined as the sum 

of the deviations of the STR allele lengths from the hg19 reference. For example, if the hg19 

reference for an STR is 20bp, and the two alleles called are 22bp and 16bp, then the dosage is 

equal to (22-20)+(16-20) = -4bp. Then, STR genotypes were zscore-normalized to have mean 0 

and variance 1. For genes with multiple transcripts we defined the transcribed region as the 

maximal region spanned by the union of all transcripts. The linear model for each gene is given 

by: 

𝑦⃗𝑔 =  𝛼𝑔 + 𝛽𝑗,𝑔 𝑥⃗𝑗 + 𝜖𝑗,𝑔   

where 𝑦⃗𝑔 = (𝑦𝑔,1, … , 𝑦𝑔,𝑛)
𝑇

 with 𝑦𝑔,𝑖 the normalized covariate-corrected expression of gene 𝑔 in 

individual 𝑖 , 𝑛  is the number of individuals, 𝛼𝑔  is the mean expression level of homozygous 

reference individuals,  𝛽𝑗,𝑔 is the effect of the allelic dosage of STR locus 𝑗  on gene 𝑔 , 𝑥⃗𝑗 =

(𝑥𝑗,1, … , 𝑥𝑗,𝑛)
𝑇

 with 𝑥𝑗,𝑖 the normalized allelic dosage of STR locus 𝑗 in the 𝑖th individual, and 

𝜖𝑗,𝑔is a random vector of length 𝑛 whose entries are drawn from 𝑁(0, 𝜎𝜖,𝑗,𝑔
2 ) where 𝜎𝜖,𝑗,𝑔

2  is the 

unexplained variance after regressing locus 𝑗 on gene 𝑔. The association was performed using the 

OLS function from the Python statsmodels package. For each comparison, we tested 𝐻0: 𝛽𝑗,𝑔 = 0 

vs. 𝐻1: 𝛽𝑗,𝑔 ≠ 0 using a standard 𝑡-test. We controlled for a gene-level false discovery rate (FDR) 

of 5% (Supplementary Methods). 

 
Partitioning heritability using linear mixed models 

For each gene, we used a linear mixed model to partition heritability between the best explanatory 

STR and other cis variants. We used a model of the form: 

𝑦⃗𝑔 =  𝛼𝑔 +  𝛽𝑗,𝑔 𝑥⃗𝑗 + 𝑢⃗⃗𝑔 +  𝜖𝑗,𝑔 

where: 

 𝑦⃗𝑔, 𝛼𝑔, 𝛽𝑗,𝑔, 𝑥⃗𝑗, and 𝜖𝑗,𝑔 are as described above. 

 𝑢⃗⃗𝑔 is a length 𝑛 vector of random effects and 𝑢⃗⃗𝑔~𝑀𝑉𝑁(0, 𝜎𝑢𝑔
2 𝐾𝑔) with 𝜎𝑢𝑔

2  the percent 

of phenotypic variance explained by cis variants for gene 𝑔. 

 𝐾𝑔 is a standardized 𝑛 × 𝑛 identity by state (IBS) relatedness matrix constructed using all 

common bi-allelic variants (MAF≥1%) reported by phase 1 of the 1000 Genomes Project 

within 100kb of gene 𝑔 . This includes SNPs, indels, and several biallelic structural 

variants and is constructed as 𝐾𝑔 =  
1

𝑝
∑

1

𝑣𝑎𝑟(𝑥𝑖)

𝑝
𝑖=0  (𝑥⃗𝑖 − 1𝑛𝑚𝑒𝑎𝑛(𝑥⃗𝑖))(𝑥⃗𝑖 −

1𝑛𝑚𝑒𝑎𝑛(𝑥⃗𝑖))𝑇 where 𝑝 is the total number of variants considered, 𝑥⃗𝑖 is a length 𝑛 vector 

of genotypes for variant 𝑖, and 1𝑛 is a length 𝑛 vector of ones. Note the mean diagonal 

element of 𝐾𝑔 is equal to 1. 
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We used the GCTA program64 to determine the restricted maximum likelihood estimates (REML) 

of 𝛽𝑗,𝑔 and 𝜎𝑢𝑔
2 . To get unbiased values of 𝜎𝑢𝑔

2 , the --reml-no-constrain option was used. 

We used the resulting estimates to determine the variance explained by the STR and the cis 

region. We can write the overall phenotypic variance-covariance matrix as: 

𝑣𝑎𝑟(𝑦⃗𝑔) =  𝛽𝑗,𝑔
2 𝑣𝑎𝑟(𝑥⃗𝑗) +  𝜎𝑢𝑔

2 𝐾𝑔 + 𝜎𝜖𝑗,𝑔
2 𝐼𝑛 

where: 

 𝑣𝑎𝑟(𝑦⃗𝑔) is an 𝑛 × 𝑛 expression variance-covariance matrix with diagonal elements equal 

to 1, since expression values for each gene were normalized to have mean 0 and variance 

1. 

 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix. 

This equation shows the relationship: 

𝜎𝑝
2 =  𝜎𝑆𝑇𝑅

2 + 𝜎ℎ𝑎𝑝𝑙𝑜𝑡𝑦𝑝𝑒
2 + 𝜎𝜖

2 

where: 

 𝜎𝑝
2 is the phenotypic variance, which is equal to 1. 

 ℎ𝑆𝑇𝑅
2  is the variance explained by the STR. This is equal to 𝛽𝑗,𝑔

2 𝑣𝑎𝑟(𝑥⃗𝑗) =  𝛽𝑗,𝑔
2  since the 

STR genotypes were scaled to have mean 0 and variance 1. 

 ℎ𝑏
2 is the variance explained by bi-allelic variants in the cis region. This is approximately 

equal to 𝜎𝑢𝑔
2  since the local IBS matrix 𝐾𝑔 has a mean diagonal value of 1. 

We estimated the percent of phenotypic variance explained by STRs, 𝛽𝑗,𝑔
2 , using the unbiased 

estimator  ℎ̂𝑆𝑇𝑅
2 = 𝐸[𝛽𝑗,𝑔

2 ] =  𝛽̂𝑗,𝑔
2 − 𝑆𝐸2, where 𝛽̂𝑗,𝑔 is the estimate of  𝛽𝑗,𝑔 returned by GCTA, 

and 𝑆𝐸 is the standard error on the estimate, using the fact that 𝛽̂𝑗,𝑔 ~𝑁(𝛽𝑗,𝑔, 𝑆𝐸). We estimated 

the percent of phenotypic variance explained by bi-allelic markers as ℎ̂𝑏
2. Note for this analysis 

the STR was treated as a fixed effect. We also reran the analysis treating the STR as a random 

effect, and found very little change in the results (Supplementary Note). 

Results are reported for all eSTR-containing genes and for all genes with moderate total 

cis heritability, which we define as genes where ℎ𝑆𝑇𝑅
2 +  ℎ𝑏

2 ≥ 0.05. We used this approach 

as to our knowledge there are no published results about the cis-heritability of expression of 

individual genes in LCLs from twin studies. We used 10,000 bootstrap samples of each 

distribution to generate 95% confidence intervals for the medians. 

Comparing to the best eSNP 

We identified SNP eQTLs using SNPs with MAF ≥ 1% as reported by phase 1 of the 1000 

Genomes Project. We used an identical pipeline to our eSTR analysis to identify SNP eQTLs 

replacing the vector 𝑥⃗𝑗 with a vector of SNP genotypes (0, 1 or 2 reference alleles) that was z-

normalized to have mean 0 and variance 1. To determine whether our eSTR signal was indeed 
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independent of the best SNP eQTL at each gene, we repeated association tests between STR 

dosages and expression levels while holding the genotype of the SNP with most significant 

association to that gene constant. For this, we determined all samples at each gene that were 

either homozygous reference or homozygous non-reference for the best SNP. For the SNP allele 

with more homozygous samples, we repeated the eSTR linear regression analysis and determined 

the sign and magnitude of the slope. We removed any genes for which there were less than 25 

samples homozygous for the SNP genotype or for which there was no STR variation after holding 

the SNP constant, leaving 1,856 genes for analysis. We used a sign test to determine whether the 

direction of effects before and after conditioning on the best SNP are more concordant than 

expected by chance. 

We used model comparison to determine whether eSTRs can explain additional variation in gene 

expression beyond that explained by the best eSNP for each gene. For each gene with a 

significant eSTR and eSNP, we analyzed the ability of two models to explain gene expression: 

Model 1 (eSNP-only): 𝑦⃗𝑔 =  𝛼𝑔 + 𝛽𝑒𝑁𝑃,𝑔 𝑥⃗𝑒𝑆𝑁𝑃,𝑔 +  𝜖𝑗,𝑔  

Model 2 (joint eSNP+eSTR): 𝑦⃗𝑔 =  𝛼𝑔 + 𝛽𝑒𝑁𝑃,𝑔 𝑥⃗𝑒𝑆𝑁𝑃,𝑔 + 𝛽𝑒𝑆𝑇𝑅,𝑔 𝑥⃗𝑒𝑆𝑇𝑅,𝑔 +  𝜖𝑗,𝑔 

where 𝛼𝑔 is the mean expression value for the reference haplotype, 𝑦⃗𝑔 is a vector of expression 

values for gene 𝑔, 𝛽𝑒𝑆𝑁𝑃,𝑔  is the effect of the eSNP on gene 𝑔, 𝛽𝑒𝑆𝑇𝑅,𝑔 is the effect of the eSTR 

on gene 𝑔, 𝑥⃗𝑒𝑆𝑁𝑃,𝑔 is a vector of genotypes for the best eSNP for gene 𝑔, 𝑥⃗𝑒𝑆𝑇𝑅,𝑔 is a vector of 

genotypes for the best eSTR for gene 𝑔, and 𝜖𝑗,𝑔 gives the residual term. A major caveat is that 

the eSNP dataset has significantly more power to detect associations than the eSTR dataset due to 

the lower quality of the STR genotype panel (Supplementary Note), and this analysis is 

therefore likely to underestimate the true contribution of STRs to gene expression. We used 

ANOVA to test whether the joint model performs significantly better than the SNP-only method. 

We obtained the ANOVA p-value for each gene and used the qvalue package to determine the 

FDR.  

Conservation analysis 

Sequence conservation around STRs was determined using the PhyloP track available from the 

UCSC Genome Browser. To calculate the significance of the increase in conservation at eSTRs, 

we compared the mean PhyloP score for each eSTR to that for 1000 random sets of STRs with 

matched distributions of the distance to the nearest transcription start site. For each STR we 

determined the mean PhyloP score for a given window size centered on the STR. The p-value 

given is the percentage of random sets whose mean PhyloP score was greater than the mean of 

the observed eSTR set. 

Enrichment in histone modification peaks 

Chromatin state and histone modification peak annotations generated by the Encode Consortium 

for GM12878 were downloaded from the UCSC Genome Browser. Because variants involved in 

regulating gene expression are more likely to fall near genes compared to randomly chosen 

variants, simple enrichment tests of eSTRs vs. randomly chosen control regions may return strong 

enrichments simply because of their proximity to genes. To account for this, we randomly shifted 

the location of eSTRs by a distance drawn from the distribution of distances between the best 

STR and best SNP for each gene. We repeated this process 1,000 times. For each set of permuted 

eSTR locations, we generated null distributions by determining the percent of STRs overlapping 
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each annotation. We used these null distributions to calculate empirical p-values for the 

enrichment of eSTRs in each annotation.  

Predicting effects of STR variation on histone modifications 

The WAVE method builds on a kmer-based statistical model to predict the signal of ChIP-seq 

experiments from a DNA sequence context. Briefly, the model considers that each k-mer has a 

spatial effect on ChIP-seq read counts in a window of [-M, M-1] bp centered at the start of the k-

mer. The read count at a given base is then modeled as the log-linear combination of the effects 

of all k-mers whose effect ranges cover that base, where k ranges from 1 to 8.  

For each eSTR in our dataset, we generated sequences representing each observed allele. We 

filtered STRs with interruptions in the repeat motif, since the sequence for different allele lengths 

is ambiguous for these loci. For each mark, we used the model to predict the read count for each 

allele in a window of ±M bp from the STR boundaries, where M was set to 1,000 for all marks 

except p300, for which M was set to 200. Previous findings of WAVE showed that these values 

of M give the best correlation between predicted and real ChIP-seq signals using cross validation. 

For each alternate allele, we generated a score as the sum of differences in read counts from the 

reference allele at each position in this window. We regressed the number of repeats for each 

allele on this score and took the absolute value of the slope for each locus. We repeated the 

analysis on a set of 2,060 randomly chosen negative control loci and used a Mann-Whitney rank 

test to compare the magnitudes of slopes between the eSTR and control sets for each mark. 
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Figure Legends 

Figure 1: eSTR discovery and replication. (a) eSTR discovery pipeline. An association test 

using linear regression was performed between STR dosage and expression level for every STR 

within 100kb of a gene (b) Quantile-quantile plot showing results of association tests. The gray 

line gives the expected p-value distribution under the null hypothesis of no association. Black 

dots give p-values for permuted controls. Red dots give the results of the observed association 

tests (c) Comparison of eSTR effect sizes as Pearson correlations in the discovery dataset vs. the 

replication dataset. Red points denote eSTRs whose direction of effect was concordant in both 

datasets and gray points denote discordant directions.  

Figure 2: Variance partitioning using linear mixed models (a) The normalized variance of the 

expression of gene Y was modeled as the contribution of the best eSTR and common bi-allelic 

markers in the cis region (±100kb from the gene boundaries) (b&c) Heatmaps show the joint 

distributions of variance explained by eSTRs and by the cis region. Gray lines denote the median 

variance explained (b) Variance partitioning across genes with a significant eSTR in the 

discovery set and (c) variance partitioning across genes with moderate cis heritability.  

Figure 3: eSTR associations in the context of eSNPs (a) Schematic of the eSTR effect versus 

the effect conditioned on the best eSNP genotype. Under the null expectation, the original 

association (red line) comes from mere tagging of eSNPs. Thus, the eSTR effect disappears when 

restricting to a group of individuals (dots) with the same eSNP genotype (colored patches). Under 

the alternative hypothesis, the effect is concordant between the original and conditioned 

associations (b) The original eSTR effect versus the conditioned eSTR effect. Red points denote 

eSTRs whose direction of effect was concordant in both datasets and gray points denote 

discordant directions (c) Quantile-quantile plot of p-values from ANOVA testing of the 

explanatory value of eSTRs beyond that of eSNPs (d) STK33 is an example of a gene for which 

the eSTR (red rectangle) has a strong explanatory value beyond the best eSNP (blue circle) based 

on ANVOA. Indeed, when conditioning on individuals that are homozygous for the “C” eSNP 

allele (bottom left, green dots), the STR dosage still shows a significant effect (bottom right) (e) 

C11orf24 is an example of a gene for which the eSTR was part of the discovery set but did not 

pass the ANOVA threshold. After conditioning on individuals that are homozygous for the “G” 

eSNP allele (bottom left, green dots), the STR effect is lost (bottom right). 

Figure 4: Functional analysis of eSTR loci (a) Median PhyloP conservation score as a function 

of distance from the STR. Red: eSTR loci, gray: matched control STRs. Inset: the difference in 

the PhyloP conservation score between eSTRs and matched control STRs as a function of 

window size around the STR. (b) The probability that an STR scores as an eSTR in the discovery 

set as a function of distance from the transcription start site (TSS). eSTRs show clustering around 

the TSS (black line). Conditioning on the presence of a histone mark (colored lines) significantly 

modulated the probability of an STR to be an eSTR (c) The enrichment of eSTRs in different 

chromatin states (d) Schematic of the application of WAVE to predict histone modification 

signatures for different STR alleles. For each eSTR (red) and control STR (gray) we measured the 

magnitude of the slope between the STR allele and the WAVE score and then tested whether the 

magnitudes were significantly different between the two sets  (e) Comparison of the distribution 

of slope magnitudes for eSTRs (red) and controls (gray). A “*” denotes p-values < 0.01. 
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Tables  

 h2
b h2

STR h2
STR/h2

cis 

eSTR genes (n=1,928) 0.1203 (0.1139-0.1259) 0.0180 (0.0166-0.0199) 0.1230 (0.1106-0.1420) 

Moderate cis h2 (n=6,272) 0.0910 (0.0884-0.0938) 0.0145 (0.0137-0.0151) 0.1283 (0.1222-0.1346) 

Table 1: Heritability of gene expression explained by STRs vs. common bi-allelic variants. 

Values show the median and 95% confidence interval of the median across all eSTR-containing 

genes and genes with moderate cis heritability (≥5%). h2
b denotes the variance explained by all 

common cis bi-allelic variants, h2
STR denotes the variance explained by the best STR for each 

gene, and h2
cis= h2

STR + h2
b. 
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1 Supplementary Methods

1.1 Controlling for covariates

We controlled for a number of covariates by regressing them out of the expression dataset. The covariate-
corrected expression matrix is given by:

Y = (1−H)Y ′ (1)

where Y ′ is an n×m matrix of normalized expression values, Y is an n×m matrix of residualized expression
values, n is the number of individuals, m is the number of genes, H = C(CTC)−1CT is the hat matrix, and
C is an n× c matrix of c covariates. Specifically, the columns of C consist of the following sub-matrices:

C =

 ~cs Cp Cexp Cpopstruct

 (2)

1. Individual sex: this is a binary vector, ~cs ∈ {0, 1}n×1, where 0 denotes female and 1 male.

2. Individual population membership: this is a binary matrix Cp ∈ {0, 1}n×pop−1. A “1” in position
Cp(i, j) denotes that individual i belongs to population j. Specifically, pop is equal to to 4 for the
association tests with the gEUVADIS RNA-seq data.

3. Gene expression heterogeneity: Y ′ is a matrix that consists of all ~yg as its column vectors, where
~yg is a vector of expression values for gene g. To reduce variation due to experimental differences
or other unidentified confounding factors across expression datasets, the top 10 principal components
(PCs) corresponding to the top 10 eigenvectors of Y ′Y ′T were included as covariates for both the array
and RNA-sequencing datasets. Cexp ∈ Rn×10 indicates the matrix of the top 10 PCs.

4. Population structure: We first preprocessed the HapMap SNP dataset to include SNPs with MAF
> 10%. We used Plink [1] for LD-pruning with a pairwise correlation threshold of 0.5, a window size of
50 SNPs, and a step size of 5 SNPs. This left 286,010 SNPs for the RNA-sequencing dataset, which we
used to correct for population structure. We used the Tracy-Widom test for population stratification
proposed by Patterson, et al. [2] to determine the number of PCs to include as covariates. Let
Cpopstruct ∈ Rn×t indicate the matrix of the top t PCs removed, where t=5 for the RNA-sequencing
dataset.

Residualized expression values were then used as input to the eQTL analysis.

1.2 Controlling for gene-level FDR

We controlled for a gene-level false discovery rate (FDR) of 5%, assuming that most genes have at most a
single causal eSTR. For each gene, we determined the STR association with the best p-value. This p-value
was adjusted using a Bonferonni correction for the number of STRs tested per gene to give a p-value for
observing a single eSTR association for each gene. Performing separate permutations for each gene was
computationally infeasible, and was found to give similar results to a simple Bonferfonni correction on a
subset of genes. We then used this list of adjusted p-values as input to the qvalue package [3] to determine
all genes with qval ≤ 5%.
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2 Supplementary Notes

2.1 STR genotype error reduces power to detect eSTRs

We performed simulations to evaluate the effect of lobSTR genotype errors on our power to detect eSTR
associations.

We used capillary electrophoresis calls from the Marshfield panel [4] as ground truth genotypes and lobSTR
calls for the same markers in our catalog as observed genotypes. We filtered for loci with at least 25 calls
for comparison. For each gene, we simulated expression values assuming a single causal STR per gene that
explains h2STR percent of expression variance. We performed the analysis for h2STR equal to 0.01, 0.05, 0.1,
0.3, and 0.5. Expression values were simulated as follows:

Yi = βXi + εi (3)

where Yi is the expression level for individual i, Xi is the true STR dosage for individual i, β =
√
h2STR is

the effect size of the STR, and εi ∼ N(0, 1− h2STR) is the residual term for individual i.

We performed association analysis regressing ~Y on both ~X and ~X ′, where ~X ′ are the observed STR dosages,
and tested whether β was significantly different than 0 in each case (p<0.01). We found that genotype
errors limit our power to detect eSTRs (Supplementary Fig. 1a) and cause us to underestimate the true
variance explained by STRs (Supplementary Fig. 1b) but do not introduce spurious eSTR signals.

2.2 Comparing expression across array and RNA-sequencing datasets

To determine the reproducibility of expression profiling across platforms, we compared gene expression for
the 122 individuals profiled by both array and RNA-sequencing. For each platform, we obtained a 122 ×
4,627 matrix Y Array and Y RNAseq, where Y Array(i,g) and Y RNAseq(i,g) give the expression of gene g in individual

i on the expression array and the RNA sequencing, respectively, before quantile normalization.

We measured the reproducibility of expression profiles inside subjects by calculating the Spearman rank
correlation for each pair of row vectors Y Array(i,.) and Y RNAseq(i,.) for i ∈ {1..122} (Supplementary Fig. 4a).

The average Spearman correlation was 0.71. A previous study by Maroni et al. [5] measured technical
reliability of RNA-seq versus array data with independent datasets. Importantly, they reported an average
Spearman correlation of 0.73 for reproducibility of expression profiles inside subjects. This result provides
additional support to the technical validity of our expression analysis pipeline.

eQTL replication requires that relative differences between subjects are reproducible across experiments.
We compared the order of individuals at each gene as reported by the array and the RNA-sequencing data
by measuring the Spearman rank correlation of the column vectors Y Array(.,g) and Y RNAseq(.,g) for g ∈ {1..4, 627}
(Supplementary Fig. 4b). The concordance of rank-order of individuals across platforms was moderate
(average Spearman rank correlation 0.22), which implies only moderate power to replicate QTLs across the
two platforms. Choy et al. performed a similar analysis with biological replicates of LCLs in two expression
arrays independent from our study [6]. They also reported Spearman rank correlations of 0.25-0.3 for relative
differences of expression between subjects, in agreement with our analysis.
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2.3 Partitioning heritability on simulated datasets

The best STR can often exhibit high collinearity with other cis variants. To rule out the possibility that
the LMM could be incorrectly partitioning variance to the STR in the case of tagging another causal variant
nearby, we performed simulations in which there was a single causal SNP eQTL per gene. For each gene, we
simulated expression values using the following process:

1. Choose the best SNP from the eQTL analysis on real data as the causal variant. Let this eQTL explain
σ2 percent of expression variance.

2. Simulate expression values as yi = βxi + εi where yi is the simulated expression value for individual i,
xi is the SNP genotype for individual i, β =

√
σ2, and ε ∼ N(0, 1− σ2).

3. Run the LMM analysis as described above to determine h2STR and h2b .

Notably, this procedure simulates the causal SNP based on the SNP-eQTL analysis, rendering the test more
realistic. The simulation was repeated for values of σ2 equal to 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 for
each gene on chromosome 18. We performed this analysis for both the cases of treating the STR as a fixed
and a random effect.

We observed that in both models, h2b was very close to the simulated value of σ2, as expected. Importantly,
the median value for h2STR was negative for the fixed effects case and 0 for the random effects case across
all simulations. The mean values were close to 0 in most realistic values of SNP-eQTL effects and slightly
biased (< 0.005) upwards in the case of very strong SNP-eQTLs (Supplementary Fig. 5). The median
ratio of h2STR to h2STR+h2b was < 0.1% for the fixed effects case and exactly 0 for the random effects case for
all simulations. These findings suggest that our LMM analysis reflects an accurate partitioning of variance
even in the presence of strong SNP-eQTLs.

To further validate that our estimators of h2STR are not inflated, we also ran the fixed effects LMM analysis
on random pairs of eSTRs and local bi-allelic mutations from chromosome 2 and gene expression profiles
from chromosome 1. This generated a null distribution for h2STR in the case of no association. In this
negative control condition, h2STR was distributed symmetrically around 0 with mean 7 × 10−4 and median
-0.002, demonstrating that the estimator is unbiased.

2.4 Treating STRs as random vs. fixed effects

In our LMM analysis to partition heritability between STRs and other cis variants, we treated the best STR
for each gene as a fixed effect. We repeated this analysis treating the STR as a random effect to determine
whether this choice significantly affects our results. We used a model of the form:

~yg = αg + ~vg + ~ug + ~εj,g (4)

where:

• ~vg is a length n vector of random effects for the best STR

• ~vg ∼MVNn(0, σ2
vgSg) with σ2

vg the percent of phenotypic variance explained by the best STR for gene
g

• Sg is a standardized IBS relatedness matrix constructed using the best STR. It was constructed as:

Sg =
1

var(~x)
(~x− 1n~x)(~x− 1n~x)T (5)
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where ~x is a length n vector consisting of genotypes for the best STR.

• All other variables are as described in the Online Methods.

We used the GCTA program [7] to determine the REML estimates of σ2
ug

and σ2
vg . GCTA encountered

numerical problems using the --reml-no-constrain option, likely due to the small sample size for each
gene and strong correlation between the STR and bi-allelic variance components. Therefore, estimates were
constrained to be between 0 and 1 and are biased to be greater than 0.

The overall phenotypic variance-covariance matrix is:

var(~yg) = σ2
vgSg + σ2

ug
Kg + σ2

εj,gIn (6)

with σ2
vg giving the percent of phenotypic variance explained by the best STR (h2STR) and σ2

ug
giving the

percent explained by other cis bi-allelic mutations (h2b).

Estimates of the variance explained by STRs and by cis bi-allelic mutations using this model are consistent
with those obtained by treating STRs as a fixed effect (Table 1 and Supplementary Table 5). Because
the random effects estimates are constrained to be between 0 and 1, the random effects model tended to
partition variance all to a single variance component, but overall distributions of h2STR and h2b were similar
to the fixed effects case (Fig. 3a,b and Supplementary Fig. 6).
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3 Supplementary Figures

3.1 Supplementary Figure 1: STR genotype errors reduce power to detect
eSTR associations
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STR genotyping errors reduce power to detect eSTR associations. a. Power to detect associations
and b. estimated variance explained for different simulated values of variance explained by the STR. (black:
observed capillary electrophoresis genotypes, blue: lobSTR genotypes).
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3.2 Supplementary Figure 2: Number of STRs tested per gene
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Number of STRs tested per gene. Histogram gives the number of STRs within 100kb of each gene that
passed quality filters and were included in the eSTR analysis.
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3.3 Supplementary Figure 3: Unlinked controls follow the null
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Unlinked controls follow the null. QQ plot of association tests between random unlinked STRs and
genes.
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3.4 Supplementary Figure 4: Expression values are moderately reproducible
across platforms
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Expression values are moderately reproducible across platforms. a. Distribution of Spearman
rank correlation coefficients between gene expression profiles of individuals measured on microarray vs.
RNA-sequencing platforms. b. Distribution of Spearman rank correlation coefficients between the order of
individuals ranked by expression levels across transcripts measured using microarray vs. RNA-sequencing
platforms.
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3.5 Supplementary Figure 5: Variance partitioning simulations
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3.6 Supplementary Figure 6: Partitioning variance when treating the STR as
a random effect
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3.7 Supplementary Figure 7: Enrichment of eSTRs at transcription end sites
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the plot shows the percentage of STRs in that bin that were called as significant eSTRs.
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4 Supplementary Tables

4.1 Supplementary Table 1: Significant eSTRs

See file Gymrek etal signifcant estrs.tab.
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4.2 Supplementary Table 2: Distribution of motif lengths in eSTRs vs. all
STRs

Period Num. eSTRs % eSTRs Num. all STRs % all STRs Enrichment Pval
2 951 50.2% 50,184 62.0% 0.81 1.0
3 223 11.8% 7,369 9.1% 1.29 4.8× 10−5

4 516 27.2% 17,938 22.2% 1.23 8.2× 10−8

5 166 8.8% 4,466 5.5% 1.59 3.9× 10−9

6 39 2.1% 1,023 1.3% 1.63 2.4× 10−3

Distribution of motif lengths in eSTRs vs. all STRs. Distribution of motif lengths in all unique
eSTR loci vs. all unique STR loci included in the analysis after applying quality filters.
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4.3 Supplementary Table 3: Distribution of motifs in eSTRs vs. all STRs

Motif Num. eSTRs % eSTRs Num. all STRs % all STRs Enrichment Pval
AAAAAC 17 0.9% 217 0.3% 3.35 1.7× 10−5

AATC 10 0.5% 152 0.2% 2.81 3.2× 10−3

AAAAC 94 5.0% 1,822 2.2% 2.20 1.8× 10−12

AAC 95 5.0% 2,056 2.5% 1.97 5.0× 10−10

AAAC 173 9.1% 3,995 4.9% 1.85 9.0× 10−15

AAAG 47 2.4% 1,179 1.5% 1.70 3.6× 10−4

AAG 10 0.5% 285 0.4% 1.50 0.13
AAAAG 15 0.8% 449 0.6% 1.43 0.11
ATCC 16 0.8% 488 0.6% 1.40 0.11
ATC 10 0.5% 392 0.5% 1.09 0.44
AG 128 6.8% 5,174 6.3% 1.06 0.27
AAAT 198 10.4% 8,073 10.0% 1.05 0.25
AAAAT 35 1.8% 1,451 1.8% 1.03 0.45
AATG 16 0.8% 676 0.8% 1.01 0.52
AAT 74 3.9% 3,678 4.5% 0.86 0.92
AT 161 8.5% 8,775 10.8% 0.78 0.99
AC 662 34.9% 36,206 44.7% 0.78 1.0
AGAT 16 0.8% 1,561 1.9% 0.44 1.0

Distribution of motifs in eSTRs vs. all STRs. Distribution of motifs in all unique eSTR loci vs. all
unique STR loci included in the analysis after applying quality filters. Only motifs for which there were at
least 10 eSTRs are shown. Motifs were converted to canonical format as described in [8].
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4.4 Supplementary Table 4: Distribution of genomic locations of eSTRs vs. all
STRs

Annotation Num. eSTRs % eSTRs Num. all STRs % all STRs Enrichment Pval
Coding 13 0.7% 157 0.2% 3.54 9.1× 10−5

5’ UTR 51 2.7% 897 1.1% 2.43 1.0× 10−8

Exon 127 6.7% 2,452 3.0% 2.21 1.5× 10−16

3’ UTR 77 4.1% 1,569 1.9% 2.10 1.7× 10−9

Neargene (5’) 335 17.7% 7,357 9.1% 1.95 1.5× 10−32

Neargene (3’) 326 17.2% 7,399 9.1% 1.88 4.5× 10−29

Intron 1,314 69.3% 52,326 64.6% 1.07 6.1× 10−6

Intergenic 395 20.8% 23,373 28.9% 0.72 1.00

Distribution of genomic locations of eSTRs vs. all STRs. Annotations were compiled using Ensembl
version 71. “Exon” refers to both coding and non-coding exons and untranslated regions. “Neargene” refers
to regions within of a gene. “Intergenic” refers to STRs not falling into any other annotation. Note some
STRs may overlap multiple annotations.
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4.5 Supplementary Table 5: Heritability of gene expression explained by STRs
vs. SNPs in each LMM

h2b h2STR h2STR/h
2
cis

eSTR genes - (STR fixed) 0.1203 (0.1139-0.1259) 0.0180 (0.0166-0.0199) 0.1230 (0.1106-0.1420)
eSTR genes - (STR random) 0.1229 (0.1159-0.1295) 0.0200 (0.0178-0.0216) 0.1288 (0.1179-0.1451)
Moderate cis h2cis (STR fixed) 0.0910 (0.0884-0.0938) 0.0145 (0.0137-0.0151) 0.1283 (0.1222-0.1346)
Moderate cis h2cis (STR random) 0.0892 (0.0865-0.0918) 0.0143 (0.0137-0.0149) 0.1245 (0.1184-0.1309)

Heritability of gene expression explained by STRs vs. SNPs in each LMM. Values show the median
and 95% confidence interval of the median across all eSTR-containing genes and genes with moderate cis
heritability (≥5%). h2b denotes the variance explained by all common cis bi-allelic markers, h2STR denotes
the variance explained by the best STR for each gene, and h2cis = h2STR + h2b .
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