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Crossvalidation is a method for estimating predictive performance and adjudicating between multiple models. On each of k 

folds of the process, k-1 of k independent subsets of the data (training set) are used to fit the parameters of each model and 

the left-out subset (test set) is used to estimate predictive performance. The method is statistically efficient, because training 

data are reused for testing and performance estimates combined across folds. The method requires no assumptions, provides 

nearly unbiased (slightly conservative) estimates of predictive performance, and is generally applicable because it amounts to 

a direct empirical test of each model. 

 

Introduction 

Empirical science often involves an informal process of 

hypothesis generation followed by a formal experimental 

test of a specific hypothesis. Both hypothesis generation 

and testing are empirical processes, but the first is 

exploratory and inconclusive, and the second is 

confirmatory and supported by formal statistical inference. 

This two-stage procedure is mirrored in data analysis, 

where exploratory analyses can help generate specific 

hypotheses and the latter are subjected to formal 

inference. Similarly, the fitting of the parameters of a 

model can convert a vague and difficult-to-test hypothesis 

into a specific and testable hypothesis. 

Crossvalidation is a statistically efficient method for using 

the cycle of fitting (i.e. generation of a specific hypothesis) 

and testing within the analysis of a single data set. More 

specifically, crossvalidation can be used to estimate the 

predictive performance of alternative models that require 

parameter fitting. The method can also be used to 

adjudicate between different models. One element of 

crossvalidation is the division of the data set into 

independent subsets used for generation of a specific 

hypothesis (also known as “parameter estimation”, “fitting” 

or “training”) and validation (also known as “testing”)
1
. The 

                                                                 

1
 Some authors use the term validation set, and reserve the 

term test set for a third independent subset of the data, 

other element is the use of each data subset for training 

and testing on different “folds” of the process. This reuse of 

the data for the purposes of training and testing is what the 

prefix “cross” in crossvalidation refers to. It renders the 

process statistically efficient. 

Let us first consider the case of two-fold crossvalidation. 

The data is divided into two subsets, typically of equal size. 

One set is designated as the training set, the other as the 

test set. The training could consist in fitting the weights of a 

linear model. The testing might involve measuring the 

accuracy of the predictions of the model (e.g. the 

classification accuracy or the coefficient of determination). 

More generally, model fitting can be thought of as the 

generation of a specific hypothesis (the fitted model) from 

a general space of hypotheses (the model’s parameter 

space). After using one set of data to generate the 

hypothesis, using the same set to test the hypothesis would 

be circular (Kriegeskorte et al., 2009): The specific 

hypothesis (the fitted model) will reflect the noise to some 

extent. New data with independent noise can serve to test 

the specific hypothesis. The use of an independent data set 

for testing ensures that overfitting does not positively bias 

the estimate of predictive performance. Using independent 

data sets simply enables us to perform an empirical test of 

predictive performance. 

                                                                                                            
used when a second level of validation is required. Here we 

use the concepts of validation and test interchangeably. 
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Using one half of the data for training and the other half for 

testing provides a valid test. However, we might have 

designated the training set as the test set and vice versa. 

Swapping the two sets will give slightly different, but 

equally valid results. This motivates using each subset as 

the test set once and averaging the estimates of predictive 

performance. Note that (a) the training data are 

independent of the test data on each fold, (b) the test data 

are independent between folds, and (c) the training data 

are independent between folds in two-fold crossvalidation. 

Nevertheless, the estimates of predictive performance 

obtained on different folds are not independent, because 

each fold uses all data. For an intuition on this dependency 

of the results of different folds, consider the effect of the 

noise on the estimates of predictive performance. If the 

noise makes data set 1 appear slightly more consistent with 

data set 2, then predictive performance is likely to appear 

slightly greater on both folds of crossvalidation. Conversely, 

if the noise makes data set 1 appear slightly less consistent 

with data set 2, then predictive performance is likely to 

appear slightly smaller on both folds of crossvalidation. If 

the estimates of predictive performance across folds were 

independent, we would expect averaging of the estimates 

across folds to reduce the variance of the overall estimate 

by a factor equal to the square root of the number of folds. 

Because the folds are dependent, averaging of the 

estimates across folds improves the estimate by a smaller, 

but typically still substantial, factor. 

There is an obvious disadvantage to two-fold 

crossvalidation. Although all the data contribute to the 

estimate of predictive performance, the training set 

comprises only half the data on each fold. This typically 

means that the model is not fitted as well as it would be if 

all data had been used. Our crossvalidation estimate of 

predictive performance is therefore negatively biased in the 

sense that it will tend to underestimate the predictive 

performance our model would achieve on new data if it 

were fitted with all our data. This motivates the use of a 

greater portion of the data as training data on each fold. In 

k-fold crossvalidation (Fig. 1), the data is divided into k 

independent subsets. On each fold, one subset is held out 

as the test set, the others are used for training. As before, 

the estimates of predictive performance are averaged 

across folds. 

 

What’s the optimal number of  folds? 

Consider the case of k=10. In this case, 90% of the data is 

used for training on each fold. As a result the negative bias 

of the crossvalidation estimate of predictive performance 

will typically be small. Although the test set is smaller by 

factor k/2 on each fold (compared to two-fold 

crossvalidation), there are also k/2 times as many folds, 

across which the evidence will be combined to reduce the 

variance of the estimate of predictive performance. Using 

k>2, thus, appears statistically advantageous. However, 

more computation is required, because the model needs to 

be fitted k times. 

Beyond the higher computational demands, there is 

another disadvantage, however, to increasing k. For k=2, 

the two training sets are independent between folds. For 

k>2, the training sets are overlapping, and thus dependent, 

between folds. As explained above, the predictive-

performance estimates will always be dependent across 

folds, even for nonoverlapping training sets. However, their 

dependence grows with the dependence of the training 

sets across folds. This reduces the benefit of averaging the 

performance estimates across folds. 

The extreme case is n-fold crossvalidation, where n is the 

number of data points. This is also known as leave-one-out 

crossvalidation. One data point (or the smallest quantum of 

data on which predictive performance can be tested in a 

given scenario, e.g. one subject) is held out on every fold. 

The training sets, then, are identical for all but one data 

point and the fitted models will be very similar across folds. 

The estimate of predictive performance will be optimal in 

terms of its bias (the conservative bias will be minimized), 

but not in terms of its variance, which will be larger than for 

smaller settings of k. Empirical studies suggest that choices 

of k in the range of 5 to 10, yield good results in practice 

(Hastie & Tibshirani 2002). 

 

Important things to keep in mind when using 

crossvalidation 

(1) Training and test data must be independent. It is 

essential to ensure that the subsets the data are divided 

into are statistically independent. For example, fMRI time 

series are serially autocorrelated in terms of both the 

underlying signals and the noise. Two time points in the 

same temporal neighbourhood therefore must never 

straddle a division into training and test sets. To avoid this, 
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the data can be divided into scanner runs (or subruns, with 

an appropriate hemodynamic safety margin), and two 

disjoint sets of runs designated as the training and test data 

on each fold. 

(2) The folds yield dependent performance estimates. Any 

inferential procedures must not assume that the 

performance estimates obtained on different folds are 

independent. For example, when response patterns are 

classified and counts of correct and incorrect classifications 

summed over folds, a binomial test of the null hypothesis 

that performance is at chance level is not appropriate. A 

good approach is to obtain a single unbiased performance 

estimate for each subject, then use a non-parametric test 

(e.g. Wilcoxon’s signed-rank test) to test whether 

performance exceeds chance level. This approach can also 

be extended to model comparisons (using performance 

differences as the test statistic). It has the additional 

advantage of treating the variation across subjects as a 

random effect, and thus supports inferences about the 

population. 

(3) Multiple nested levels of crossvalidation might be 

needed. Crossvalidation serves the purpose to obtain 

estimates of predictive performance that are not biased by 

overfitting. In many scenarios, there is more than one level 

of parameters to be fitted. In a linear pattern classification 

analysis, for example, the classifier might have 

hyperparameters in addition to the weights associated with 

each response channel (e.g. each voxel). If the 

hyperparameters are to be chosen so as to maximise the 

crossvalidation estimate of performance, the maximum 

performance estimate will be biased by overfitting of the 

hyperparameters. A second level of crossvalidation is 

therefore needed. On each fold of the outer crossvalidation 

loop, the hyperparameter can be determined by nested 

crossvalidation within the training set. The optimal setting 

is then used to predict the test set (which has not been 

used to optimise the hyperparameter). 

 

Examples of brain imaging analyses that do or 

do not require crossvalidation  

Example 1: Univariate activation analysis. The effects of 

experimental conditions on activation within a predefined 

brain region are often analysed with linear models. The 

framework of univariate linear regression does not require 

us to divide the data or perform crossvalidation. In the 

analysis of functional magnetic resonance imaging data, for 

example, it is typically reasonable to assume that the errors 

are univariate normal and to account for temporal 

autocorrelation of the time series by pre-whitening or pre-

colouring. The predictor weights and any linear contrasts of 

interest, along with their standard errors, can then be 

estimated and inference can be performed using a single 

data set. This approach is generally preferred to a 

crossvalidation approach for its power, elegance, and 

convenience. 

Even in univariate activation analysis, however, the use of 

independent validation sets can be essential. For example, 

when a given data set is used to explore the brain for 

locations exhibiting a particular effect (to define regions of 

interest) and statistically related activation effects are then 

to be analysed for the region thus defined. In this scenario, 

independent data are needed to ensure valid statistical 

inference and unbiased estimates of effect sizes 

(Kriegeskorte et al. 2009; Vul et al. 2009; Kriegeskorte et al. 

2010). Independent validation data are also needed when a 

large number of univariate activation predictors is fitted 

with regularisation, and when the model’s ability to 

generalize to a different set of stimuli is to be tested (e.g. 

Kay et al. 2008; Huth et al. 2012). 

Example 2: Univariate activation mapping. In the previous 

example, we assumed a single predefined region of interest 

on whose regional-average activation was analysed by 

univariate regression. Let us consider the brain mapping 

problem. The hypothesis that contrasting two cognitive 

states will reveal greater activity somewhere in the brain is 

more difficult to test than the hypothesis that there will be 

brain activity in a specific region. We need to analyse all 

locations and perform inference on the map as a whole. 

The field has developed powerful techniques for mapping 

activation contrasts throughout a measured volume, while 

accounting for temporal and spatial dependencies, and for 

the multiple testing across locations. One approach relies 

on Gaussian field theory (Friston et al. 1994; Worsley et al. 

1996), another uses nonparametric permutation tests 

(Nichols & Holmes, 2002; see also article 324. Non-

parametric procedures). Both of these aim to control the 

familywise error rate (Nichols & Hayasaka 2003). An 

alternative approach to the multiple-testing problem is to 

control the false-discovery rate (Genovese et al. 2002; see 

also article 323. False discovery rate procedures). None of 

these approaches require crossvalidation. Classical brain 

mapping is an example of a scenario where the 

complication of crossvalidation can be avoided. Many of 

the established methods rely on particular assumptions 
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(e.g. univariate normal errors), which are justified and 

which increase the power of the statistical inference. 

Example 3: Multivariate pattern-information analysis. 

Analyses of multivariate activity patterns within a 

predefined region of interest can reveal the information 

contained in local brain representations (for a tutorial 

introduction, see Mur et al. 2009). One approach to 

detecting information in patterns would be multivariate 

linear regression (Krzanowski 1988), the multivariate 

generalization of the analysis framework used for 

univariate activation analysis. However, this framework 

relies on the assumption that the errors are normally 

distributed. Whereas the normal assumption is reasonable 

for the univariate scenario, it is not in general safe to rely 

on multivariate normal errors in pattern analyses 

(Kriegeskorte at al., 2006). This is one reason why the field 

has preferred permutation tests and crossvalidation-based 

approaches including linear discriminant analysis. When a 

Fisher linear discriminant or linear support-vector machine 

(Bishop 2006) is fitted with one data set and its 

performance compared to chance level using independent 

data, the assumptions of the model are implicitly tested. 

For example, the Fisher linear discriminant is based on a 

multivariate normal model of the errors, much like the 

multivariate regression framework. However, a violation of 

multinormality would only decrease predictive 

performance. Inference on crossvalidated performance 

estimates therefore provides a valid test of pattern 

information that does not rely on the multinormal 

assumption for its validity (although it does depend on 

multinormality for optimal power). This illustrates how 

crossvalidation can reduce our reliance on questionable 

assumptions. 

Example 4: Multivariate pattern-information mapping. As 

for univariate activation, it is useful to map an imaged 

volume continuously so as to locate brain regions 

containing a particular kind of information in their local 

multivariate patterns (Kriegeskorte et al. 2006). One 

approach relies on nonparametric permutation tests (as 

used in univariate mapping), where the stimulus labels are 

permuted to simulate the null hypothesis. Such tests do not 

require distributional assumptions and enable us to use the 

most suitable test statistics including those provided by 

classical multivariate statistics (Krzanowski 1988), measures 

of the similarity structure of the patterns (Kriegeskorte et 

al. 2008), or crossvalidated pattern-classifier performance 

estimates. Another approach is to enter multiple single-

subject descriptive pattern-information maps into a 

multisubject inferential mapping procedure, treating 

subject as a random effect. As for the permutation 

approach, the pattern-information statistics may or may 

not involve crossvalidation. 

Example 5: Selection among multiple nonlinear 

computational models. A major goal of brain science is to 

test computational models of brain information processing. 

Brain imaging studies have begun to incorporate such 

models into the data analysis (e.g. Kay et al. 2008; for a 

review see Kriegeskorte 2011). In contrast to the generic 

statistical models discussed in the previous examples, a 

model of this type mimics the actual information processing 

performed by the brain. For example, it may take stimuli in 

the form of bitmap images as its input and predict their 

representation in a visual area. Interesting models of brain 

information processing are typically complex and nonlinear. 

In order to test and compare models, we need to 

determine the extent to which they can predict brain 

representations of arbitrary novel stimuli (or novel stimuli 

within a predefined population of stimuli). When models of 

this type have parameters to be fitted, the use of 

independent validation sets (data for different stimuli) is 

essential. Current analyses of this type typically require 

crossvalidation procedures. 

 

What are the alternatives to crossvalidation 

and what are their advantages and 

disadvantages? 

Bayesian model selection. Evaluation of the predictive 

performance of a model and selection among alternative 

models can be approached using probability theory. The 

predictive performance of a model m on a data set d can be 

measured as p(d|m), the probability of the data given the 

model. The philosophically most compelling way to select a 

model is by its probability given the data, p(m|d), which 

can be computed using Bayes theorem (MacKay 2003; 

Bishop 2006; see also articles 325. Bayesian model 

inversion and 328. Bayesian model selection). A fully 

probabilistic treatment of model selection requires explicit 

representation of all sources of uncertainty including a 

prior probability distribution over the model space. This 

approach requires no fitting. It therefore does not suffer 

from overfitting, and does not require empirical validation 

on independent data (Ghahramani 2013). A fully 

probabilistic approach, while simple in theory, can be 

daunting in practice. First, modelling all sources of 

uncertainty is often difficult, and results will depend on the 

assumptions made. A second challenge is probabilistic 
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inference. A growing literature on stochastic and 

deterministic approximate inference algorithms, including 

Markov chain Monte Carlo sampling, provides powerful and 

general solutions to this challenge. However, the particular 

problem at hand may require a custom-built solution for 

inference. Fully automatic methods are not yet widely 

accessible. Fitting a model’s parameters greatly simplifies 

inference and can render an otherwise untestable model 

testable. Therefore empirical tests on independent data (as 

efficiently implemented by crossvalidation) remain an 

important tool for scientific data analysis – whether the 

inference framework adopted is Bayesian or frequentist, or 

a combination of both. Assumptions implicit to the models, 

then, are continually confronted with the ultimate 

challenge: predicting new data. 

Minimum description length. Another criterion for model 

selection is the minimum description length (MDL) 

principle. The MDL principle states that the best model is 

the one that enables the most efficient compression of the 

data. The compressed data must describe the model, its 

parameters, and the residuals of the fit to the data. 

Complex models are implicitly penalized because their 

description takes more space. The winning model best 

balances its own complexity against the size of the residuals 

(and thus the number of bits needed to transmit them at a 

specified precision). The preference for models that can be 

concisely described can be interpreted as a prior favouring 

simple models. The MDL principle then turns out to be 

equivalent to Bayesian inference (MacKay 2003). In 

practice, determining the MDL by optimally encoding 

models, parameters, and residuals for compressed 

transmission is a nontrivial engineering challenge. The 

explicitly Bayesian approach may be easier to implement 

and preferable for its conceptual clarity. 

Information criteria. In certain scenarios, we can avoid 

both the challenge of a fully Bayesian approach and the 

computational demands of crossvalidation. The Akaike 

information criterion (AIC) and the Bayesian information 

criterion (BIC) provide measures of model performance that 

account for model complexity. AIC and BIC combine a term 

reflecting how well the model fits the data with a term that 

penalizes the model in proportion to its number of 

parameters. These criteria are easier to compute than a 

crossvalidation estimate of predictive performance and 

they enable accurate model selection when the 

assumptions they are based on hold. The AIC relies on an 

asymptotic approximation that may not hold for a given 

finite data set, and the BIC relies on the assumption that 

the model errors are independent and normally distributed. 

Both AIC and BIC are functions of the parameter count and 

the maximised likelihood, i.e. the probability of the data 

given the maximum-likelihood fit of the model. Counting 

parameters is not in general a good method of estimating 

model complexity. For example, the effective number of 

parameters is reduced when the hypothesis space is 

regularised using an explicit prior or by including a penalty 

on undesirable parameter combinations in the cost 

function minimised by the fitting procedure. The effective 

number of parameters can be difficult to estimate 

accurately. Nevertheless, where applicable, AIC and BIC 

provide a quick and easy way to compare models. 

 

Concluding remarks 

Statistical inference, whether Bayesian or frequentist, 

necessarily combines data with (explicit or implicit) prior 

assumptions. Prior assumptions can stabilise our estimates 

and guide our inferences. In Bayesian inference, a prior – 

when correct – can improve the accuracy of our inference. 

In frequentist inference, similarly, prior assumptions (e.g. 

about the error distribution) – when correct – can lend us 

power. Unsurprisingly, inference techniques that make 

fewer assumptions tend to have less power. 

The classical statistical approach is to decide on a set of 

prior assumptions and then fit and perform inference on 

the basis of a single data set. In theory, this obviates the 

need for checking predictive performance on independent 

data. In a fully Bayesian framework, overfitting is not an 

issue. In a frequentist framework, overfitting can be 

accounted for analytically for simple models (e.g. when we 

compute the standard error of a parameter estimate for a 

linear model with independent normal errors). A likelihood-

ratio test comparing two point hypotheses has been shown 

to be optimally powerful (Neyman & Pearson 1933) – and 

thus more powerful than crossvalidation-based tests – 

when its assumptions hold. This reflects the benefits of 

prior knowledge. 

Without tests of predictive performance on independent 

data, however, the classical statistical approach to 

inference is severely limited, for two reasons. First, our 

assumptions are usually not exactly true, and therefore our 

inferences are not necessarily reliable. Second, the classical 

statistical approach is only feasible for a very restricted 

class of models. This is the reason why the field that has led 

the development of the most complex models, machine 

learning, heavily relies on crossvalidation. 
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In science our models should mirror the mechanisms we 

hypothesise, and not be limited to a small set we happen to 

know how to test with a single data set. Our goal is not 

mathematical elegance, but learning about nature. Testing 

effects and selecting models according to their actual 

predictive power on new data puts all assumptions to the 

test and keeps us firmly grounded in empirical reality. 

In sum, the advantage of crossvalidation over alternative 

methods is its generality: It can be applied when other 

methods cannot and it does not rely on assumptions or 

approximations. For many of the most interesting and well-

motivated models in brain science, a fully Bayesian 

approach is daunting and the assumptions required for 

classical frequentist inference and for information criteria 

for model selection may not hold. Crossvalidation enables 

us to develop our models as motivated by the science 

(rather than the statistics) and to employ the familiar 

procedure of first defining a hypothesis specific enough to 

be testable and then testing it empirically within the 

analysis of a single data set. 

 

Figure 1: The division of the data into independent 

training and test sets in 5-fold crossvalidation. 
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GLOSSARY 

Generalization performance: the quality of the predictions 

about new data afforded by a model fitted with a given 

data set. 

Overfitting: the inevitable effect of measurement error on 

the estimates of parameters obtained by fitting a model to 

a given data set. 

Independence (statistical independence): the absence of 

any relationship, linear or nonlinear, deterministic or 

stochastic, between two variables. Independence implies 

that learning either variable does not change our belief 

(expressed as a probability distribution) about the other 

variable.  

 

KEYWORDS 

Machine learning, statistical learning, generalization, 

induction, model selection, model identification, hypothesis 

testing, overfitting, statistical inference 
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