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Abstract

Decision confidence is a forecast about the probability that a decision will be correct.

Confidence can be framed as an objective mathematical quantity the Bayesian poste-

rior probability, providing a formal definition of statistical decision confidence. Here

we use this definition as a starting point to develop a normative statistical framework

for decision confidence. We analytically prove interrelations between statistical deci-

sion confidence and other observable decision measures. Among these is a counterintu-

itive property of confidence that the lowest average confidence occurs when classifiers

err in the presence of the strongest evidence. These results lay the foundations for a

mathematically rigorous treatment of decision confidence that can lead to a common

framework for understanding confidence across different research domains, from hu-

man behavior to neural representations.

1 Introduction

Previous theoretical studies have offered a number of different approaches to under-

stand the statistical and algorithmic issues involved in computing and deploying deci-

sion confidence. For instance, a signal detection theory framework is often employed

for probing decisions under uncertainty, and can provide a strong basis for understand-

ing decision confidence as well (Fleming and Dolan, 2010; Kepecs et al., 2008; Ma,

2010; Maniscalco and Lau, 2012; Ratcliff and Starns, 2009). Sequential sampling mod-

els have been used to understand how decisions are reached based on noisy evidence
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across time (Bogacz et al., 2006). These can be readily extended with a computation

of confidence (Drugowitsch et al., 2014; Pleskac and Busemeyer, 2010; Schustek and

Moreno-Bote, 2014; Vickers, 1979). Perhaps the most intuitive extension is within the

race model framework, where the difference between decision variables for the winning

and losing races provides an estimate of confidence (Kepecs et al., 2008; Merkle and

Van Zandt, 2006; Moreno-Bote, 2010; Vickers, 1979; Zylberberg et al., 2012). Mech-

anistically, neural network models based on attractor dynamics have also been used to

study how confidence can be computed by neural circuits (Insabato et al., 2010; Rolls

et al., 2010).

Such computational models have also helped to interpret experimental studies

on the neural basis of decision confidence. However, it remains unclear how one could

identify a confidence computation among mixed signals acquired from the brain, or how

confidence in non-human animals can be quantified without verbal reports of their sub-

jective feelings. What would a neural or behavioral implementation of confidence look

like with respect to other observable measures of a decision? To resolve this quandary,

previous studies employed quantitative models that could provide a formal prediction

for what a representation of the internal variable of “confidence” would look like in

terms of observable and quantifiable parameters. For instance, the orbitofrontal cortex

of rats, a region implicated in the prediction of outcomes, was found to carry neural

signals related to confidence (Kepecs et al., 2008). This was established by identifying

unique signatures of confidence common to signal detection theory and the race model

of decision-making. Similarly, signal detection theory predictions have been used to un-

derstand correlates of decision confidence in the dorsal pulvinar (Komura et al., 2013)
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and sequential sampling models in the parietal cortex (Kiani and Shadlen, 2009). With-

out such computational foundations, it would not be possible to identify and rigorously

study representations of confidence in neurons. Beyond a description of how confi-

dence could be computed, signal detection theory has also been used as a starting point

for evaluating the metacognitive sensitivity of human confidence reports (Ferrell and

McGoey, 1980; Higham and Arnold, 2007; Higham et al., 2009; Kunimoto et al., 2001;

Lachman et al., 1979; Nelson, 1984).

Here we approached the well-studied topic of decision confidence from a mathe-

matical statistics perspective. We had two main goals. First, compared to prior studies,

we attempted to make as few assumptions as possible about the structure of noise and

decision rule or the algorithm used for estimating confidence. Second, we approached

the question of confidence from a psychophysical perspective so it may be useful for

psychological and neural studies that often use perceptual uncertainty. The premise of

our framework is a normative model of confidence which relates confidence to evidence

through conditional probability (Kahneman and Tversky, 1972). While this premise is

widely accepted, we show that beyond calibration to outcome probabilities, it makes

strong predictions about how a measure of confidence should relate to the discrim-

inability of experimentally presented decision evidence.

We began from first principles in statistics by positing that confidence is a prob-

ability estimate describing a belief (Cox, 2006). Thus confidence can be related to the

available evidence supporting the same belief through a conditional probability. As

such, Bayes’ rule provides a way to understand confidence in terms of quantifiable
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evidence (Ferrell and McGoey, 1980; Griffin and Tversky, 1992). Formally, decision

confidence can be defined as a probability estimate that the chosen hypothesis is cor-

rect, given the available perceptual evidence – referred to as the percept. The difficulty

with this definition of decision confidence is that it uses the percept, a variable internal

to the decision maker. Therefore, it is unclear whether predictions are feasible without

explicit assumptions about perception, how the internal percept is generated from the

external stimulus. Such assumptions are generally used in the signal detection frame-

work to keep the percept variable mathematically tractable. Here we show, however,

that it is possible to analytically derive several novel predictions interrelating confidence

with choice correctness and evidence discriminability with few or no assumptions about

the percept distribution or about the transfer functions between stimulus, percept and

choice.

2 Results

From a statistical perspective, a decision process can be viewed as a hypothesis test that

evaluates the outcome of a choice against a null hypothesis representing its collective

alternatives. Statistical decision confidence can then be defined as a Bayesian posterior

probability, which quantifies the degree of belief in the correctness of the chosen hy-

pothesis. In this view, both choice and confidence depend on the quality and amount

of evidence informing the particular choice. Therefore we mathematically formalized

evidence discriminability based on ideas from psychophysics, as a way to measure the

quality of evidence presented to a decision maker.
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Based on these definitions, we derived four general properties of statistical deci-

sion confidence. First, confidence predicts accuracy: the level of confidence predicts

the expected fraction of correct choices – as often intuitively posited. Second, confi-

dence increases with the discriminability of presented evidence for correct choices, but

counterintuitively, for incorrect choices, confidence decreases with increasing evidence-

discriminability. Third, when presented with a zero-discriminability choice (i.e. an

equal amount of evidence supporting each hypothesis, implying chance decision accu-

racy), the mean decision confidence is precisely 0.75. Fourth, while evidence discrim-

inability itself predicts accuracy (a property referred to as the psychometric function),

confidence provides further information improving the prediction of accuracy for any

given level of discriminability.

2.1 Defining statistical decision confidence

To provide the most general statistical model of a decision process, we define all rel-

evant components (stimulus, percept, choice, confidence) as random variables and the

functions that link them (perception, decision) as probabilistic functions. This way the

theory presented below applies to both stochastic and deterministic decision rules po-

tentially involving multidimensional stimuli and multiple choices. Decisions are based

on an internal variable (decision variable or percept, D̂), which is the decision makers

estimate of a corresponding external variable (stimulus or evidence, D).

Definition 1. Let us denote the external variable D and realizations of this random vari-
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Figure 1: A framework for statistical decision confidence. A stochastic framework

of perceptual decision making can be formalized by introducing a small set of random

variables. Random variables are denoted by capital letters, and their realizations in

lower case.

able d (referred to as evidence). Let us denote the corresponding internal variable D̂ and

realizations of this random variable d̂ (referred to as percept; often referred to elsewhere

as the decision variable). We define another random variable called the choice, denoted

by θ (realizations denoted by ϑ). The choice is a probabilistic function of the percept:

ϑ = θ(d̂).

The choice can be evaluated in terms of a hypothesis testing problem:

null-hypothesis (H0 ): the choice ϑ = θ(d̂) is incorrect;

alternative hypothesis (H1 ) : the choice ϑ = θ(d̂) is correct.

Thus, the choice is designated correct if the alternative hypothesis is true and incorrect

otherwise. The evaluation can equivalently be defined as a binary random variable (out-

come, Π) that is a probabilistic function of choice. Next, confidence (c) can be defined

as the probability of the alternative hypothesis being true (i.e. Π(θ) = 1) provided the

percept and the choice.
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Definition 2. Define confidence as

c = P (H1|d̂, ϑ). (1)

Equivalently,

c = P (Π(θ) = 1|d̂, ϑ). (2)

As previously, the random variable will be denoted by C and its realizations by c. Note

that for deterministic choice models, d̂ determines ϑ, so c = P (H1|d̂). We can now

define a function that determines confidence from percept and choice.

Definition 3. Define the belief function ξ : R(D̂)×R(θ)→ [0, 1] as

ξ(d̂, ϑ) = P (H1|d̂, ϑ) = P (Π(θ) = 1|d̂, ϑ). (3)

where R(D̂) denotes percept space and R(θ) denotes the range of all possible choices

(i.e., the choice space).

2.2 Choice accuracy equals statistical decision confidence

Intuitively, confidence, being defined as an estimate of choice correctness, should pre-

dict the expected outcome. We provide a formal treatment of the relationship between

confidence and accuracy below.

Definition 4. Accuracy is the expected proportion of correct choices:

A = E[Π(θ)]. (4)

We seek to determine the following function: f : [0, 1]→ [0, 1], f : c 7→ Ac, where Ac
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is the accuracy for choices with a given confidence. Our claim is that this function is

the identity.

Theorem 1. Accuracy equals confidence:

Ac = c. (5)

Proof. For every given value of confidence, there is a set of percept-choice pairs leading

to the same confidence value: let us denote the image of c by the inverse belief function

ξ−1 as {(d̂i, ϑi)}i∈I , the set of percept-choice pairs mapping onto c. Let us first assume

that I is a countable set. Accuracy for confidence c is determined by the probability of

a correct choice if C = c over the probability of encountering the confidence level of c

(that is, P (C = c)):

Ac =

∑
i∈I P (H1, d̂i, ϑi)∑
i∈I P (d̂i, ϑi)

.

From the definition of joint probability,

Ac =

∑
i∈I P (H1, d̂i, ϑi)∑
i∈I P (d̂i, ϑi)

=

∑
i∈I P (H1|d̂i, ϑi) · P (d̂i, ϑi)∑

i∈I P (d̂i, ϑi)
.

As we know that ∀i ∈ I : P (H1|d̂i, ϑi) = c,

Ac =

∑
i∈I P (H1|d̂i, ϑi) · P (d̂i, ϑi)∑

i∈I P (d̂i, ϑi)
=

∑
i∈I c · P (d̂i, ϑi)∑
i∈I P (d̂i, ϑi)

=
c ·
∑

i∈I P (d̂i, ϑi)∑
i∈I P (d̂i, ϑi)

= c.

However, I is not necessarily a countable set. We can re-write the equations in

continuous form to apply to any set as follows.

Ac =

∫
Π=1

∫∫
(D̂,θ)∈ξ−1(c)

fΠ,D̂,θ(π, d̂, ϑ)dϑdd̂dπ∫∫
(D̂,θ)∈ξ−1(c)

fD̂,θ(d̂, ϑ)dϑdd̂
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Here Π is a random variable that is 1 if the choice is correct and 0 otherwise (outcome,

see above).

Ac =

∫
Π=1

∫∫
(D̂,θ)∈ξ−1(c)

fΠ,D̂,θ(π, d̂, ϑ)dϑdd̂dπ∫∫
(D̂,θ)∈ξ−1(c)

fD̂,θ(d̂, ϑ)dϑdd̂

=

∫
Π=1

∫∫
(D̂,θ)∈ξ−1(c)

fΠ(π|D̂ = d̂, θ = ϑ) · fD̂,θ(d̂, ϑ)dπdϑdd̂∫∫
(D̂,θ)∈ξ−1(c)

fD̂,θ(d̂, ϑ)dϑdd̂

=

∫
Π=1

∫∫
(D̂,θ)∈ξ−1(c)

c · fD̂,θ(d̂, ϑ)dπdϑdd̂∫∫
(D̂,θ)∈ξ−1(c)

fD̂,θ(d̂, ϑ)dϑdd̂

=
c ·
∫∫

(D̂,θ)∈ξ−1(c)
fD̂,θ(d̂, ϑ)dϑdd̂∫∫

(D̂,θ)∈ξ−1(c)
fD̂,θ(d̂, ϑ)dϑdd̂

= c.

Note that these considerations about confidence do not depend on a particular

theory of perception, that is, the function mapping from the external variable (stimulus)

onto the internal percept: D 7→ D̂. Furthermore, the derivation also does not depend

on a particular theory of decision, that is, the function between the percept and the

choice: D̂ 7→ θ. This includes both deterministic and stochastic decision models, the

latter referring to models where a percept does not uniquely determine a choice. In

case of deterministic decision models, the percept unequivocally determines the choice,

thus in the equations we could drop the choice from the inverse picture of confidence,

taking only the percept into account: {d̂i}i∈I instead of {(d̂i, ϑi)}i∈I . However, as this

simplified version would not include stochastic decision models, we chose to adhere to

the general formalization.

Another notable aspect of this derivation is that there is no need for a relation to
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be defined on the percept space. However, if the choice is fixed (or determined by the

percept, as in deterministic decision models), confidence defines a natural relation on

percepts by ξ. More precisely, the order relation on confidence values can be pulled

back to the percept space by taking ξ−1(c) and restricting it to a particular choice.

Therefore, we can define the relative terms “low-confidence” percept and “high-

confidence percept” based on the relation of confidence values the percepts map onto

by the belief function; we will use this concept while proving Theorem 2. Please note

that this relation always refers to fixed choices.

2.3 Confidence increases with increasing evidence discriminability

for correct choices and decreases for incorrect choices

Psychophysical studies require to measure decision performance at varying levels of

decision difficulty. This necessitates the quantification of the decision difficulty axis,

along which the proportion of correct choices can then be measured. Such interrela-

tions, termed psychometric functions, provide a good handle on behavioral performance

allowing the detection of subtle changes in behavior. However, there is no single way of

grading choice difficulty, resulting in a broad variety of such measures, which compli-

cates the theoretical treatment of psychometric functions. Therefore we define evidence

discriminability by its property of measuring difficulty as a class of functions in order

to provide a general treatment of the interrelations of choice difficulty and confidence.

Definition 5. Define evidence discriminability as a (deterministic) function of the evi-
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dence distribution:

∆ = ∆(P (D)) (6)

The evidence discriminability function has to fulfill the following property:

∆(P1(D)) > ∆(P2(D)) ⇐⇒ P (H1|P1(D)) > P (H1|P2(D))

⇐⇒ P (Π(θ) = 1|P1(D)) > P (Π(θ) = 1|P2(D))

⇐⇒ E(Π(θ)|P1(D)) > E(Π(θ)|P2(D)), (7)

that is, higher discriminability should be equivalent to greater expected outcome (higher

probability of correct choices). Any monotonically increasing function of expected

outcome satisfies this criterion and can serve as evidence discriminability.

Having defined evidence discriminability, we can now examine how confidence

changes with evidence discriminability separately for correct and incorrect choices. We

show below that while confidence increases with increasing evidence discriminability

for correct choices, it counterintuitively decreases for incorrect choices.

Theorem 2. Let us assume that

• belief independence: the belief function (ξ) is independent of evidence discrim-

inability;

• percept monotonicity: for any given confidence c, the relative frequency of per-

cepts mapping to c by ξ changes monotonically with evidence discriminability

for any fixed choice.

Under these assumptions, confidence increases for correct choices and decreases for

incorrect choices with increasing evidence discriminability.

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 1, 2016. ; https://doi.org/10.1101/017400doi: bioRxiv preprint 

https://doi.org/10.1101/017400


Proof. We begin with the somewhat counterintuitive claim regarding the incorrect choices.

Let us first examine the two assumptions in more detail.

The first assumption postulates that the function from percept-choice pairs to con-

fidence does not change with evidence discriminability. Thus, whenever we calculate

expected value of confidence over a percept distribution, only the percept distributions

will depend on evidence discriminability.

For incorrect choices, the second assumption means that with increasing evidence

discriminability, the relative frequency of low-confidence percepts increases while the

relative frequency of high-confidence percepts decreases in the percept distribution.

Note that low-confidence and high-confidence percepts are defined here through the

relation imposed by ξ on the percepts (see our remark at the end of the previous section).

As a trivial consequence of this definition, confidence changes monotonically along

low- and high-confidence percepts.

Let us consider two different levels of evidence discriminability (∆1 < ∆2), with

corresponding distributions of percept restricted to incorrect choices P (∆1, low evi-

dence discriminability, i.e. ‘difficult choice’) and Q (∆2, high evidence discriminabil-

ity, i.e. ‘easy choice’). It is sufficient to show that the expected value of confidence is

larger for ∆1 than for ∆2:
1∫

0

c · p(c)dc >
1∫

0

c · q(c)dc

where p and q denotes the probability density functions corresponding to P and Q,

respectively. Note that p(c) can be thought of as the probability of the picture of c by

ξ−1 restricted to incorrect choices in the percept space.
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Equivalently,
1∫

0

c · [p(c)− q(c)]dc > 0

Let I0 ⊂ [0, 1] denote the interval where p < q, and I1 ⊂ [0, 1] the complementary

interval where p ≥ q. The existence of these intervals is the consequence of the mono-

tonicity assumption. Thus, there is a critical confidence value (denoted here by ccrit)

for which I0 = [0, ccrit] and I1 = [ccrit, 1]. We then re-write confidence as c = ccrit− c′

if c < ccrit and c = ccrit + c′ if c > ccrit; thus, c′ > 0 for both cases. Applying these

notations,

1∫
0

c · [p(c)− q(c)]dc =

ccrit∫
0

c · [p(c)− q(c)]dc+

1∫
ccrit

c · [p(c)− q(c)]dc

=

0∫
ccrit

(ccirt − c′) · [p(ccrit − c′)− q(ccrit − c′)]dc′+

1−ccrit∫
0

(ccrit + c′) · [p(ccrit + c′)− q(ccrit + c′)]dc′

=ccrit ·
( 0∫
ccrit

[p(ccrit − c′)− q(ccrit − c′)]dc′+

1−ccrit∫
0

[p(ccrit + c′)− q(ccrit + c′)]dc′
)

+

1−ccrit∫
0

c′ · [p(ccrit + c′)− q(ccrit + c′)]dc′−

0∫
ccrit

c′ · [p(ccrit − c′)− q(ccrit − c′)]dc′

=ccrit ·
( ccrit∫

0

[p(c)− q(c)]dc+

1∫
ccrit

[p(c)− q(c)]dc
)

+

1∫
ccrit

(c− ccrit) · [p(c)− q(c)]dc−
ccrit∫
0

(ccrit − c) · [p(c)− q(c)]dc
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=ccrit ·
( 1∫

0

[p(c)− q(c)]dc
)

+

1∫
ccrit

(c− ccrit) · [p(c)− q(c)]dc+

ccrit∫
0

(ccrit − c) · [q(c)− p(c)]dc

> 0

In the last step, the first term is 0, since

1∫
0

[p(c)− q(c)]dc =

1∫
0

p(c)dc−
1∫

0

q(c)dc = 1− 1 = 0

The second term is positive, since c−ccrit is positive on c ∈ [ccrit, 1] and the probability

density functions are evaluated on I1, where p ≥ q. Finally, the third term is also posi-

tive, because ccrit−c is positive on c ∈ [0, ccrit] and the probability density functions are

evaluated on I0, where q > p. As a consequence, the sum is positive, which completes

the proof for incorrect choices.

For correct choices, high-confidence percepts are increasingly more likely with

increasing evidence discriminability, thus present an opposite pattern compared to in-

correct choices. Therefore, a symmetric derivation proves the increase of confidence

with increasing evidence discriminability for correct choices.

The assumption that ξ is independent of evidence discriminability is necessary for

this derivation. In this framework, confidence is defined through the true distributions

of correct and incorrect choices, kept fixed; therefore this assumption is met. How-

ever, if confidence values are updated based on distributions reflecting varying values

of evidence discriminability, then the belief function will differ according to evidence

discriminability, thus the above proof does not apply. Furthermore, the expected value
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of confidence cannot decrease with increasing evidence discriminability for incorrect

choices: for the lowest levels of discriminability, when the outcome is at chance level,

confidence will fall to its lowest possible value, reflecting equal probabilities of the null

and alternative hypothesis regardless of the percept. This represents situations in which

the decision-maker is provided with information about evidence discriminability, e.g.

by grouping decisions of similar discriminabilities (like in a block experimental design),

providing an opportunity to learn about evidence discriminability and update the distri-

butions underlying confidence accordingly. Thus, the above theorem only applies when

updating confidence based on knowledge of evidence discriminability is prevented, e.g.

by randomizing the order of choices with different discriminability levels in an inter-

leaved design.

2.4 Confidence predicts outcome beyond evidence discriminability

Psychometric functions reveal accuracy for any given level of evidence discriminability.

While confidence also changes with evidence discriminability, it is not obvious whether

it carries additional information allowing better prediction of outcome for a given level

of evidence discriminability. Below we show that it does.

Theorem 3. For any given evidence discriminability, accuracy for low confidence choices

is not larger than that of high confidence choices (splitting the confidence distribution at

any particular value). A strict inequality holds in all cases when accuracy is dependent

on the percept.
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Proof. Let us take the set of low-confidence percept-choice pairs corresponding to the

low confidence choices by ξ−1, and similarly, the set of high-confidence percept-choice

pairs corresponding to the high confidence choices. By the definition of confidence

(Definition 2 in Section 2.1), low-confidence percept-choice pairs cannot have higher

accuracy than the high-confidence percept-choice pairs. If all percepts are associated

with the same accuracy (either when the percept does not carry information about the

hypotheses of choice, or when the percept determines the correct choice with a prob-

ability of one), the two accuracies are equal. Otherwise, the two accuracies should

necessarily differ, in which case the strict inequality holds.

Thus, even within the same level of difficulty, the internal noise (e.g. noisy per-

ception) can result in different percepts, some being “easier” and others “harder”. The

decision maker has access to this internal variable while the experimenter does not.

However, the confidence report contains at least part of this information, providing ad-

ditional information to the experimenter, which makes the experimenter’s estimate of

accuracy better.

2.5 The average confidence in neutral evidence

Next, we examine the average confidence at neutral evidence, i.e. evidence carrying no

information about the correct choice, for one-dimensional variables.

Theorem 4. Assuming

• the percept is determined by a symmetric distribution centered on the evidence
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(‘symmetric noise model’),

• the evidence is distributed uniformly over the evidence space, and

• the choice is deterministic,

the average confidence for neutral evidence is precisely 0.75.

Proof. We first prove the following lemma.

Lemma 5. Integrating the product of the probability density function and the distribu-

tion function of any probability distribution symmetric to zero over the positive half-line

results in 3/8:
∞∫

0

f(t)F (t)dt =
3

8
. (8)

Proof. ∀K −∞ < K <∞,

K∫
t=−∞

f(t)F (t)dt =

K∫
t=−∞

f(t)

t∫
x=−∞

f(x)dxdt

=

K∫
t=−∞

t∫
x=−∞

f(t)f(x)dxdt

=
1

2
2

K∫
t=−∞

t∫
x=−∞

f(t)f(x)dxdt

=
1

2

[ K∫
t=−∞

t∫
x=−∞

f(t)f(x)dxdt+

K∫
t=−∞

t∫
x=−∞

f(t)f(x)dxdt

]

=
1

2

[ K∫
t=−∞

t∫
x=−∞

f(t)f(x)dxdt+

K∫
x=−∞

K∫
t=x

f(x)f(t)dtdx

]

=
1

2

[ K∫
t=−∞

t∫
x=−∞

f(t)f(x)dxdt+

K∫
t=−∞

K∫
x=t

f(t)f(x)dxdt

]
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=
1

2

[ K∫
t=−∞

f(t)

t∫
x=−∞

f(x)dxdt+

K∫
t=−∞

f(t)

K∫
x=t

f(x)dxdt

]

=
1

2

[ K∫
t=−∞

f(t)
[ t∫
x=−∞

f(x)dx+

K∫
x=t

f(x)dx
]
dt

]

=
1

2

[ K∫
t=−∞

f(t)

K∫
x=−∞

f(x)dxdt

]

=
1

2

[ K∫
t=−∞

f(t)dt

K∫
x=−∞

f(x)dx

]

=
1

2

[ K∫
t=−∞

f(t)dt

]2

using that

{−∞ < t < K,−∞ < x < t} ⇐⇒ {−∞ < x < K, x < t < K}

for changing the integral boundaries and then swapping x and t in the second integral

term. Applying the above equation, we can write

∞∫
0

f(t)F (t)dt =

∞∫
−∞

f(t)F (t)dt−
0∫

−∞

f(t)F (t)dt

=
1

2

[ ∞∫
−∞

f(t)dt

]2

− 1

2

[ 0∫
−∞

f(t)dt

]2

=
1

2
12 − 1

2

[
1

2

]2

=
3

8

Proof of the theorem: Confidence for neutral evidence is determined by the percept cor-

responding to neutral evidence and the probability of being correct provided the percept

and the choice. Thus, the average confidence for neutral evidence can be calculated by
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integrating over the distribution of percepts provided neutral evidence (indicated here

by d = 0):

c0 =

∞∫
−∞

P (d̂|d = 0)ξ(d̂, ϑ)dd̂

Since we assumed deterministic choice (third assumption), confidence is determined by

the percept; therefore we can drop ϑ from the equation:

c0 =

∞∫
−∞

P (d̂|d = 0)ξ(d̂)dd̂

Based on our first assumption, the percept is determined by a symmetric distribution

around the evidence. Denote the density function of this symmetric (‘noise’) distribu-

tion f and its distribution function F . Since the percept distribution is symmetric,

c0 =

∞∫
−∞

P (d̂|d = 0)ξ(d̂)dd̂ = 2

∞∫
0

P (d̂|d = 0)ξ(d̂)dd̂

As a consequence of the second assumption of uniform evidence distribution, ξ(d̂) =

F (d̂) for d̂ > 0:

ξ(d̂) = P (d > 0|D̂ = d̂) =
P (d > 0, D̂ = d̂)

fD̂(d̂)
=

∫
d>0

P (D̂ = d̂|D = d)fD(d)dd

fD̂(d̂)
= F (d̂),

using the theorem of total probability. In the last step, we use that fD and fD̂ are

constant because of the uniformity assumption. (Note that we restrict the support of

P (D̂) to that of P (D).) Thus,

c0 = 2

∞∫
0

P (d̂|d = 0)ξ(d̂)dd̂ = 2

∞∫
0

f(d̂)F (d̂)dd̂

By applying the lemma,

c0 = 2

∞∫
0

f(d̂)F (d̂)dd̂ = 2
3

8
=

3

4
.
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Note that one of the critical assumptions we made is that the evidence is dis-

tributed uniformly over the evidence space. While real-life scenarios may often repre-

sent non-uniform evidence distributions, this uniformity property holds approximately

true for many psychophysics experiments using interleaved evidence strength. There-

fore Theorem 4 provides a quantitatively testable prediction about confidence reports in

psychophysics experiments.

2.6 Monte Carlo simulations illustrating the signatures of decision

confidence

To illustrate our theory we created a Monte Carlo simulation of the normative definition

of confidence. For the simulation, we assumed that Gaussian noise (µ = 0, σ = 0.18)

corrupts the external evidence, to generate an internal percept. We used a determin-

istic decision rule based on the sign of the percept. Thus, outcomes were correct if

the sign of the evidence and percept matched. Confidence was calculated as fraction

of correct trials for each percept based on Definition 2. This enabled us to explore

predicted interrelationships between confidence, evidence discriminability and choice.

Figure 2A shows that confidence predicts the mean choice accuracy (Theorem 1). Fig-

ure 2B demonstrates that mean confidence for a given level of evidence discriminability

increases for correct and decreases for incorrect choices (Theorem 2), and that the mean

confidence for neutral evidence is 0.75 (Theorem 4). Figure 2C illustrates that for each

given level of evidence discriminability, accuracy for high confidence choices is greater

than for low confidence choices (Theorem 3). Note that while accuracy across simula-
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tion trials with low confidence falls to chance (Figure 2A), on the converse, the average

confidence for neutral evidence is at mid-range (Figure 2B). This seemingly contradic-

tory result is explained by the fact that neutral evidence results in a mixture of percepts,

most of which are associated with an above-chance average accuracy, leading to an

apparent “overconfidence”. Taken together these plots illustrate four signatures of deci-

sion confidence in terms of externally quantifiable variables that can be experimentally

examined.
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Figure 2: The normative model of confidence predicts specific interrelationships

between evidence, outcome and confidence. (A-C) Monte Carlo simulations of the

normative model (10 billion trials). Bins with fewer than 100 simulation data points

were omitted. (A) Confidence equals accuracy. (B) Average confidence increases with

evidence discriminability from 0.75 for correct choices and decreases for errors. (C)

Conditioning on high or low confidence (split at c = 0.8) segregates psychometric

performance.

2.7 Relating P-values to confidence

Above we derived properties of statistical confidence based on the definition of deci-

sion confidence as a Bayesian posterior probability. We next sought to demonstrate their
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generality by testing their validity on confidence values produced by other statistical ap-

proaches. First, we constructed a simulation to test the properties of p-values produced

by a common statistical test for evaluating a choice between two hypotheses. First, we

examined the one-sided, two-sample Students t-test (Figure 3A-C). Samples of 20 mea-

surements were drawn from two Gaussian distributions on each simulation trial, where

the simulated task was to identify which underlying distribution had a larger mean. To

create graded discriminability, we varied the distance between the means from -0.5 to

0.5 with uniform probability. A simulation trial was designated as “correct” if the mean

of the 20 samples drawn from the distribution with the higher mean was higher than the

mean of the 20 samples drawn from the distribution with the lower mean. We computed

the p-value for each trial using a one sided two-sample t-test to provide a measure of

statistical confidence (1− p) in the chosen response. Thus each simulation trial yielded

an outcome (correct or error) and a measure of statistical confidence. Second, we also

performed simulations of a bootstrap test (Efron and Tibshirani, 1993), which does not

depend on a Gaussian assumption about the underlying distributions (Figure 3D-F).

Exponential sample distributions were used. Offsets for the population means were

uniform, ranging between 0 and 1, and the bootstrap sample size was 1000. As shown

in Figure 3, the p-values derived from a t-test and a two-sample bootstrap test for differ-

ence between means reveal the same pattern of interrelationships we derived from the

Bayesian confidence definition. Thus, the predictions we derived for statistical decision

confidence are valid across different statistical approaches: Bayesian, frequentist and

bootstrap statistics.
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2-sample bootstrap test, Poisson noise model
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Figure 3: Two statistical tests reproduce patterns predicted by the normative

model. (A-C) A simulation of 10 million trials evaluated the one-sided, two sample

Students t-test p-value with respect to accuracy and evidence discriminability. Since

p indicates uncertainty, axes show 1 − p to indicate confidence. (A) 1 − p is posi-

tively correlated with accuracy. (B) 1 − p is monotonically increasing with evidence

discriminability for correct trials and decreasing for error trials. (C) P-values contain

information about outcome even at fixed evidence discriminability. (D-F) A simula-

tion of the p-value in a one-sided bootstrap test for an ordinal relationship between two

means, using exponential distributions.

3 Discussion

We presented a normative statistical framework that enables comparisons of statistical

decision confidence with confidence measures in other domains. Unlike signal detection
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theory and other algorithmic frameworks that simulate confidence judgments based on

assumptions about the underlying evidence distributions, we show that a strict analytical

treatment is possible in a distribution-free manner.

We analytically derived a set of properties of confidence defined as the Bayesian

posterior probability of a chosen hypothesis being correct. First, confidence predicts

accuracy: the level of confidence predicts the expected fraction of correct choices. This

property corresponds most directly to the intuitive notion of confidence as a graded

forecast about accuracy. Second, mean confidence for a given level of external evi-

dence is larger for correct than incorrect choices and in fact varies with an opposite sign

with evidence discriminability for correct vs. incorrect choices. Specifically, mean

confidence levels increase with the ease of discriminability for correct choices, but

counterintuitively, confidence decreases with increasing evidence-discriminability for

incorrect choices. This surprising dissociation is a consequence of the differences in

the distributions of conditional percepts between correct and incorrect choices. Third,

and perhaps most surprisingly, when presented with an equal amount of evidence sup-

porting each hypothesis, in other words a non-discriminable choice that will lead to

chance accuracy, the mean decision confidence is much greater than chance – precisely

0.75. Fourth, while the psychometric function defines the average choice accuracy for a

given level of external evidence, knowledge of confidence provides further information

improving the prediction of accuracy for any given level of discriminability.

These four properties are useful for interpreting both behavioral and physiolog-

ical experiments on decision confidence. Behaviorally, our framework makes it clear
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that even statistically optimal confidence reports can appear to show systematic miscal-

ibration. This mismatch between confidence reports and accuracy is most dramatically

illustrated by the 0.75 mean confidence for neutral evidence that produces chance accu-

racy behaviorally (0.5). As our framework makes it clear this apparent miscalibration

does not imply imperfect prediction of accuracy – rather it is a straightforward conse-

quence of conditioning confidence reports on external variables of the task (e.g,. stim-

ulus difficulty) that are not available to the decision maker. This property of statistical

confidence carries important implications for the interpretation of studies demonstrating

overconfidence in low discriminability and under-confidence in high discriminability

conditions – a controversial phenomenon termed the “hard-easy effect” (Drugowitsch

et al., 2014; Ferrell, 1995; Harvey, 1997; Juslin et al., 2000; Merkle, 2009; Moore and

Healy, 2008). More generally one has to be careful when analyzing behavior or neural

activity by conditioning on external variables not available to the decision maker rather

than the internal representations that they are based on. When internal representations

are examined as a function of external variables a computational theory is needed to un-

derstand how observables conditioned on the external variables is linked to the internal

representations. Therefore, rather than revealing miscalibration, conditioning on exter-

nal variables can be used to test signatures of decision confidence we derived (Figure 2)

and will be valuable in interpreting putative confidence-related neural activity as well

(Kepecs et al., 2008; Komura et al., 2013; Kiani and Shadlen, 2009).

The framework we presented can be interpreted as a prescriptive model, describ-

ing how the computation of confidence ought to be done. In this sense it is useful for

describing what a neural representation of confidence or its behavioral report should
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look like. Beyond this, we expect that our mathematical framework will serve as a

departure point for quantitatively studying the contribution of confidence to different

behaviors, and identifying confidence variables in other domains.
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