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Abstract 
 
Contemporary approaches to predict single nucleotide polymorphisms (SNPs) that alter 
transcription factor binding rely upon the sequence affinity of a transcription factor as 
represented by its canonical motif.   WAVE (Whole-genome regulAtory Variants 
Evaluation) is a novel method for predicting more general regulatory variants that affect 
transcription factor binding, including those that fall outside of the canonical motif. 
WAVE learns a k-mer based generative model of transcription factor binding from ChIP-
seq data and scores variants using its generative binding model.  The k-mers learned by 
WAVE capture more sequence feature in transcription factor binding than a motif-based 
approach alone, including both a transcription factor’s canonical motif as well as 
associated co-factor motifs. WAVE significantly outperforms motif-based methods in 
predicting SNPs associated with allele-specific binding.  
 

Author Summary 
 
Specific variations in our genome sequence can render us more susceptible to a genetic 
disease. Certain disease risks are caused by genetic variations that alter where 
transcription factors bind to the genome and regulate cellular function. Previous 
methods for identifying which genetic changes are significant have assumed that 
transcription factor binding is dependent on a short single sequence recognized by a 
transcription factor.  Here we consider a more general model where the binding of a 
factor may be up or down regulated by any number of short DNA sequences that are 
proximal to a binding site. Our method substantially improves the detection of genomic 
changes that are important for factor binding.  
 

Introduction 
 
Genome-Wide Association Studies (GWAS) have proved to be a rich source of genetic 
polymorphisms that are strongly associated with complex traits and diseases [1–4].  
Variants in protein coding sequences include missense and nonsense mutations are 
simple to characterize.  However, many GWAS detected variations reside in non-coding 
regions with regulatory function [4,5].  The influence of such variation in partially 
annotated non-coding regions on gene expression and other cellular functions are not 
well understood. Previous work has observed that non-coding DNA changes in the 
recognition sequences of transcription factors (TF) can affect gene expression and 
cellular phenotypes [6].  Thus predicting the effect of genomic variants on TF binding is 
an essential part of interpreting the role of non-coding variants in pathogenesis.  
Existing computational approaches to predict the effect of SNPs on TF binding such as 
sTRAP, rSNP-MAPPER and HaplogReg2 are based on quantifying the difference of the 
reference and alternate alleles in matching to canonical TF motifs [7–13].    
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WAVE (Whole-genome regulAtory Variants Evaluation) learns the sequence features 
essential for TF binding de novo from whole-genome ChIP-seq data and scores variants 
by the predicted change in ChIP-seq read counts between the reference and alternate 
alleles.   WAVE improves on the motif-based model in two ways. First, WAVE doesn’t 
assume the existence of a canonical motif. Instead it provides more descriptive power in 
modeling transcription factor binding through de novo sequence effect learning. This 
allows us to capture more subtle sequence features underling transcription factor 
binding such as non-canonical motifs. Second, WAVE accounts for the spatial effect of 
the sequences and learns the effect of cis-regulatory regions outside of the motif.  This 
enables us to model the role of important auxiliary sequences in transcription factor 
binding, such as cofactors. 
 
We evaluate WAVE on the ChIP-seq data for transcription factors NF-κB and CTCF.  In 
both datasets, the active k-mers identified by WAVE captures the canonical TF motifs as 
well as associated sequences such as known co-factors. WAVE also significantly 
outperforms existing approaches in prioritizing SNPs associated with NF-κB and CTCF 
allele-specific binding (ASB).   
 

Results 
 
WAVE learns a vocabulary of k-mers that regulate factor binding  
 
WAVE is a fully generative model of ChIP-seq reads of the genome. We assume that the 
genome is a long regulatory sequence that contains k-mers as “code words” that induce 
invariant spatial effects on proximal transcription factor binding.  Following this 
assumption, we modeled the read counts produced by transcription factor ChIP-seq at a 
given base as the log-linear combination of spatial effect of a set of learned k-mers 
whose effect range covers that base.  
 
WAVE first learns the spatial effect of all k-mers (k=1 to 8) over a spatial window of 

400  base pairs (bp) de novo from ChIP-seq data using a regularized Poisson regression 
(Fig. 1A).   WAVE then computes the predicted ChIP-seq read counts for the reference 
and alternate allele of a variant from the log-linear combination of the spatial effect of 
the learned k-mers. WAVE predicts the effect of a genomic variant on transcription 
factor binding by the sum of squared per-base change of predicted reads between two 
alleles. (Materials and Methods) 
 
Fig. 1. WAVE accurately predicts ChIP-seq signal across the genome 
(A) The schematic of WAVE pipeline. The spatial effects of all the k-mers are learned 
from the ChIP-seq datasets. And then the k-mer-specific profiles (purple, cyan and 
green) corresponding to the k-mers underlining the reference and alternate alleles for a 
variant are aggregated by log-linear combination to yield a spatial prediction of local 
ChIP-seq reads for the reference (blue) and alternate allele (red). WAVE scores the 
variant by the change of predicted reads. (B) Example held-out genomic region on 
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chromosome 14 showing ChIP-seq reads (red), WAVE-predicted reads (black), and reads 
from a negative control model trained on rabbit IgG ChIP-seq data (green). (C) 
Comparison of WAVE-predicted (x-axis) and observed (y-axis) ChIP-seq reads in binned 
regions of held-out chromosome 14. Models were trained on combined ChIP-seq data 
from 10 ENCODE LCL individuals (black) or rabbit IgG ChIP-seq data (red). 
 
Although WAVE fits a model with potentially large parameter space ( 400  bp window 

for 87380 k-mers when maxk   8), it uses sparsifying regularization to avoid overfitting 

and to limit the number of active k-mers (Materials and Methods). For example, in the 
NF-κB WAVE model, most of the binding signal is predicted by 1% of the 87380 k-mers 
(S1 Fig.). WAVE is also robust to the choice of window sizes of k-mer’s spatial effect, 
although we found that WAVE model with window size of 400 bp produced the best 
Pearson’s correlation (S1 Table) 
 
We first tested if WAVE could predict held-out ChIP-seq data.  We trained a WAVE 
model on NF-κB ChIP-seq data from chromosomes 1-13 of 10 LCL ENCODE individuals 
and compared the predicted ChIP-seq signal from WAVE to ChIP-seq reads on a held-out 
chromosome (chromosome 14).  The predicted ChIP-seq signals are very similar to 
actual ChIP-seq reads (Fig. 1B-C), with Pearson’s correlations of 0.64 chromosome-wide 
and 0.44 restricted to regions within 2kb of a binding event identified by GEM [14]. 
Negative control WAVE models trained to capture biases such as chromatin state on 
rabbit IgG ChIP-seq datasets yield Pearson’s correlations of only 0.51 chromosome-wide 
and 0.10 within 2kb of binding events. 
 
We found the SNP scores generated by WAVE are consistent across similar training 
datasets. We trained four separate WAVE models on NF-κB ChIP-seq data from four 
different individuals GM12878 (CEU), GM12892 (CEU), GM18951 (JPT) and GM19193 
(YRI). The SNP scores for the set of common (minor allele frequency ≥1%) SNPs from the 
1000 Genomes Project (1KG) are consistent across the four different models (S2 Fig.). 
Moreover, we found the WAVE model trained on the combined ChIP-seq data from 10 
LCL individuals had a clear improvement in Pearson’s correlation between predicted and 
actual reads when compared with any model trained from a single individual (S1 Table). 
 
WAVE captures sequence features of TF and its co-factors 
 
We then examined if WAVE correctly learned the strongest expected sequence features 
from the binding data that correspond to the canonical motifs for NF-κB and CTCF.  Both 
WAVE models were trained on combined ChIP-seq data from 10 LCL ENCODE individuals 
and position weight matrices were generated for visualization purposes by hierarchical 
clustering of the active k-mers in WAVE (Materials and Methods) and matched to known 
TF motifs in JASPAR and TRANSFAC with STAMP [14]. We found that the top two k-mer 
clusters for NF-κB were strongly matched to motifs from NF-κB family (Fig. 2A) and the 
top 6 k-mer clusters for CTCF were all strongly matched to the CTCF motif (Fig. 2B and 
S3 Fig.).  
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Fig. 2. Active k-mers detected by WAVE contains the canonical TF motif and associated 
cofactors 
(A) The average k-mer effect and aggregated position weight matrix of the strongest k-
mer cluster from the NF-κB WAVE model (columns 1 and 2) along with the motif for REL 
from NF-κB family (MA0107.1 from JASPAR). (B) The average k-mer effect and 
aggregated position weight matrix of the strongest k-mer cluster from the CTCF WAVE 
model (columns 1 and 2) along with the CTCF motif (MA0139.1 from JASPAR). (C) The 
average k-mer effect and aggregated position weight matrix of the 3rd, 4th, 6th, and 9th 
strongest k-mer clusters from the NF-κB WAVE model compared with motifs for NRF1 
(M00652 from TRANSFAC), EST1 (M00032 from TRANSFAC), AP1 (MA0099.2 from 
JASPAR) and IRF1  (M00062 from TRANSFAC). 
 
Many of the other k-mer clusters learned by WAVE correspond to co-factor binding 
motifs. The top k-mer clusters in the NF- κB WAVE model matched to ETS1, AP1, IRF1 
and NRF1 (Fig. 2C), which have been associated with NF-κB regulation [15–18] . To 
validate the role of these transcription factors in NF-κB binding, we performed co-factor 
analysis on the same NF-κB data using GEM to search for transcription factors that have 
spatially binding constraint with NF-κB.  This analysis identified AP-1 and IRF1 as the 
strongest co-factors of NF-κB binding.  Thus, WAVE captures the sequence context of 
factor binding and provides additional descriptive power. 
 
WAVE substantially outperforms motif-based approach in prioritizing ASB SNPs 
 
We then compared WAVE’s performance against motif-based approaches in 
discriminating SNPs that are known to alter transcription factor binding.  Allele-specific 
binding (ASB) studies have identified SNPs associated with significantly imbalanced 
binding events on heterozygous sites, making these SNPs an ideal standard for 
benchmarking [19,20].  We collected ASB SNPs with known differential binding as 
positive sets, resulting in a total of 56 SNPs for NFKB and 60 SNPs for CTCF (Materials 
and Methods).  
 
We constructed three sets of negative SNPs that we assume do not exhibit differential 
factor binding.  All of these negative sets are subsets of 1KG common (minor allele 
frequency ≥1%) SNPs. The first negative set is a random selection of 1000 1KG common 
SNPs from across the genome in order to sample overall background.  To account for 
the non-uniform distribution of ASB SNPs on the genome, the second negative set was 
composed of 1KG common SNPs within 1kb from an ASB SNP.  We found that 47 out of 
56 NF-κB ASB SNPs reside in one of the 15522 NF-κB binding regions (BR) identified by 
previous work[21].  Thus the third negative set was constructed for NF-κB analysis only 
to control for the confounding effects arise from proximal binding strength. This final 
negative set is a subset of second negative set that are located in any BR that contains a 
positive ASB SNP.   
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We evaluated the performance of Haploreg2, sTRAP, rSNP-Mapper, and WAVE in 
discriminating our positive set from each of our three negative sets.  The NF-κB and 
CTCF WAVE models were trained on combined data from 10 LCL ENCODE individuals.  
We found that WAVE outperformed all the other tested methods and had an AUC > 0.7 
on the third and most stringent negative set (Fig. 3 and S4 Fig.).  Since HaploReg2 does 
not provide a way to retrieve the actual score for each SNP, its binary classification 
performance was plotted as a point on the ROC curves. 
 
Fig. 3. WAVE significantly outperforms motif-based approaches in prioritizing NF-κB 
ASB-SNPs 
ROC curves for discriminating NF-κB ASB-SNPs from each of the three negative sets 
using WAVE, sTRAP, rSNP-MAPPER and HaploReg2. Dashed line indicates random 
chance. (A) Positive set chosen as all NF-κB ASB-SNPs (n=56). Negative set randomly 
sampled from 1KG common SNPs (n=1000). (B) Negative set limited to common 1KG 
variants that are located within 1000 bp from any NF-κB ASB-SNP (n=828). (C) Positive 
set limited to NF-κB ASB-SNP that are in BR (n=47). Negative set limited to common 1KG 
variants that are located within same BR as any SNP in the positive set (n=372). 
 
 
WAVE prioritizes SNPs that disrupt motifs 
 
The power of motif-based approaches is constrained to evaluating variants that fall 
inside a factor’s motif. To evaluate the power of WAVE on this narrower task we next 
tested WAVE’s performance on SNPs in our positive set that could be detected by motif 
based methods. 
 
As the first step, we classified our positive sets of NF-κB and CTCF ASB SNPs using sTRAP, 
rSNP-MAPPER and HaploReg2 with their default parameter and cutoff settings 
(Materials and Methods).  As motif disruption has been considered the primary 
mechanism by which variants alter transcription factor binding, we would expect most 
of the ASB SNPs to be identified by these methods. Surprisingly we found that the best 
motif-based method (rSNP-MAPPER for NF-κB and HaploReg2 for CTCF) detected only 
30% of our positive SNPs.  The set of correctly classified positive SNPs by the approaches 
significantly overlapped, while the efficiency of each method varied across different 
transcription factors (S2 Table). A total of 21 out of 56 NF-κB ASB SNPs and 24 out of 60 
CTCF ASB SNPs were detected by at least one of the three motif-based methods.  We 
refer these SNPs as motif-disrupting (MD) SNPs. A large fraction (~60%) of positive SNPs 
were not detected by any of the traditional motif-based approaches.  These results are 
consistent with our previous results (Fig. 3) which shows that the prediction power of 
motif-based approaches dramatically decreases to random after the top 30% positive 
targets. 
 
We then compared the performance of WAVE, sTRAP, rSNP-MAPPER and HaploReg2 in 
discriminating the motif-disrupting SNPs from our three negative sets. For both 
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transcription factors, WAVE achieved performance equal to motif-based approaches 
with an AUC >0.85 (Fig. 4 and S5 Fig.) in all control scenarios.  
 
Fig. 4. WAVE achieves performance equal to motif-based approaches in prioritizing 
NF-κB SNPs within binding motifs. 
ROC curves for discriminating NF-κB SNPs identified by any motif-based method (MD 
SNPs) from the various negative sets using WAVE, sTRAP, rSNP-MAPPER and HaploReg2. 
Dashed line indicates random chance. (A) Positive set chosen as all NF-κB MD SNPs 
(n=21). Negative set randomly sampled from common 1KG SNPs (n=1000). (B) Negative 
set limited to common 1KG variants that are located within 1000 bp from any NF-κB MD 
SNP (n=409). (C) Positive set limited to NF-κB MD SNPs that are in BR (n=18). Negative 
set limited to common 1KG variants that are located within same BR as any SNPs in the 
positive set (n=177). 
 
 

Discussion 
 
We have found the power of position weight matrices to be insufficient to properly 
score the effect of variants on factor binding.    Motif-based approaches were only able 
to correctly annotate 30% of ASB SNPs in our test set.   In addition, the performance of a 
motif-based model can vary dramatically across different transcription factors (Table S2).  
We expect that the poor performance of rSNP-MAPPER on CTCF might be the 
consequence of its use of a single CTCF position weight matrix (Materials and Methods).  
Thus motif-based methods are strongly constrained by their underling model. 
 
WAVE significantly outperformed motif-based scoring methods in prioritizing ASB SNPs 
from negative controls.   We find that WAVE’s incorporation of a window of sequence 
context permits it to model the effect of other sequences involved in transcription 
factor binding including co-factors.  These sequences are neglected by conventional 
motif-based motif modeling.  
 
WAVE outputs a numeric score for each SNP that is easy to interpret as the predicted 
number of reads changed by the variant. We showed that WAVE scores are robust to 
the choice of window size, and are consistent across the individuals used for training.  
We further demonstrated that by combining ChIP-seq data from multiple individuals of 
the same cell lines type to increase the size of the training set, we could improve 
WAVE’s goodness of fit to ChIP-seq reads. 
 
We are training WAVE on many transcription factor ChIP-Seq data to form a library of 
models that can be used to score the importance of candidate SNPs on a library of 
transcription factors. With WAVE’s superior performance in modeling transcription 
factor binding and predicting regulatory non-coding variants, we expect WAVE to play 
an important role in annotating and prioritizing putative causal variants for further 
downstream analysis. 
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Materials and Methods 
 
WAVE Model Overview 
The WAVE procedure of variant scoring consists of the following three steps: 
Step1: Learn the spatial effect of k-mers on TF binding from ChIP-seq datasets. 
Step2: Predict the TF binding signal around the reference and alternate allele of each 
SNP of interest 
Step3: Score a SNP by the sum of squared per-base change of binding signal between 
alleles 
 
Learning the Spatial Effect of K-mers 
The effect profile of a k-mer is defined as a real-valued vector of length 2M  that 
corresponds to a spatial window of [ , 1]M M   relative to the start position of the k-

mer. Specifically, the j-th entry of the profile for a k-mer is the expected log-change in 
read counts at the j-th base relative to the start of the k-mer. Here we consider k-mers 

with k  from 1 to 8 ( maxk   8) as this is the maximum length learnable with a typical 

ChIP-seq dataset.  As ChIP-seq signals are relatively sparse and spikey, we chose an 
effect range of 400  bp for each k-mer ( 400M  ). 
 
For notational convenience we will use i  for genomic coordinate, k  for k-mer length, 
and j  for coordinate offset from the start of a k-mer. We assume that the genome 

consists of one large chromosome with coordinate 0 to N . In practice we will construct 
this by concatenating chromosomes with the telomeres acting as a spacer. We 

represent the effect vector of all k-mer of length k  as a parameter matrix k of size 

4 2k M . For any particular k-mer of length k  starting at base i  on the reference 

genome, we define  k

ig as its row index in k . So 
 ,  k

i

k

g j
  would denote the effect of this 

kmer at offset  , 1j M M   . Additionally, a special parameter 0  is used to set the 

average read rate of the genome globally. 
 
Given these definitions, we define a generative model for ChIP-seq reads on the genome. 

Observed counts iC  are generated from a Poisson distribution with rate parameter i  

which is defined as: 

 
 

  
0,  

, 1

exp ( )k
i j

k

i g j
k j M M

  


  

 
  

 
 
   

 
The problem we solve is a regularized Poisson regression. Particularly, we would like to 
maximize the following: 

  
1

min log    k

i i i

i

c


   
 

   
 
  
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To efficiently optimize this objective function, we performed minibatch-gradient 
descent, a variant of stochastic gradient descend method where in each iteration the 
gradient and error was calculated against a “mini-batch” of all the samples [22]. The 
detail of implementation can be found in the supplementary text (S1 Text).  
 
  
ChIP-seq Signal Prediction for Reference and Alternate Allele 

In step 2, given the effect profile k of all the k-mers trained from step1, we first predict 
the ChIP-seq count at each position i  across the reference genome by combining the 
effect of proximal k-mers into the log-linear model: 

 
 

  
0,  

, 1

exp (  )k
i j

k

i g j
k j M M

  


  

 
  

 
 
   

Then in similar manner, we predict the read counts of the alternate allele '

i  after 

replacing the k-mers that are affected by the variant. If we assume a Single Nucleotide 

Polymorphism (SNP), at most  
4

4 1
3

maxk
   k-mers will change.  

 
Variant Scoring 
In step 3, we score a SNP at locus i  on the genome by the sum of squared per-base 
change of binding signal at all bases within the effect range of any k-mers affected by 
the variant: 
 

 
 

' 2

1, 1

( )
max

i i j i j

j M k M

s   

    

   

 
 
Collapsing WAVE Profiles into PWM 
We interpret the active k-mers captured by WAVE with a post-processing framework 
that aggregates similar k-mers into position weight matrixes after filtering on effect size: 

1. We filter k-mers based on the sum of effect to eliminate inactive k-mers. 
2. We calculate the pair-wise Levenstein distance of the remaining k-mers. 
3. We perform UPGMA hierarchical clustering over the candidate k-mers until the 

minimal distance among clusters is larger than 2. 
4. For each cluster, we define its key k-mer as the one with the largest aggregate 

effect. We obtain the position weight matrix for this cluster by aligning all k-mers 
in the cluster against the key k-mer. 

 
Comparing with sTRAP, rSNP-MAPPER, HaploReg2 
sTRAP. We used the R version of sTRAP downloaded from the website for scalability. 
We used motif data from the JASPAR (included in sTRAP R package) and TRANSFAC 
(2013.1) databases, including MA0105.1, MA0107.1, MA0061.1, M00054, M00194, 
M00052, M00051, M03557, M00208, M03563 for NFKB and MA0139.1, M01200, 
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M01259 for CTCF. For binary classification, we chose an absolute log ratio cutoff of 0.21 
and min-pvalue cutoff of 0.1 as was suggested by the sTRAP paper. To plot the sTRAP 
ROC curve we ranked the SNPs by their absolute log ratio. 
 
rSNP-MAPPER. We scored SNPs with rSNP-MAPPER using the models associated with 
target TF in rSNP-MAPPER model library, including MA0105, MA0107, MA0061, M00774, 
M00054, M00052, T00595, T00594, T00606, T00593, T00592, T00591, T00588, T00587, 
T00590, M00051 for NF-κB and T00284 for CTCF. For binary classification, we used a 
score cutoff of 0 and score change cutoff of 2, as suggested in the rSNP-MAPPER paper. 
To plot the rSNP-MAPPER ROC curve we ranked the SNPs by their score change. 
 
HaploReg2. We used HaploReg2’s default parameters.  As HaploReg2 is not able to give 
a numeric score for each SNPs, we performed binary classification of each SNP by 
looking for “NF-kappaB” or “CTCF” in the Motif column of the result for SNP sets of NF-
κB and CTCF respectively. 
 
 
ChIP-seq Data 
The NF-κB and CTCF ChIP-seq data used in this paper are both from ENCODE (GEO 
accession GSE31477 and GSE33213). NF-κB ChIP-seq data are from GM10847, GM12878, 
GM12891, GM12892, GM15510, GM18505, GM18526, GM18951, GM19099 and 
GM19193. CTCF ChIP-seq data are from GM10248, GM10266, GM12878, GM12891, 
GM12892, GM13976, GM13977, GM19238, GM19239 and GM19240 
 
Allele-Specific Binding (ASB) SNPs 
As a gold standard for SNPs that affect TF binding, we used the list of SNPs that are 
reported to induce allele-specific binding (ASB) of NF-κB and CTCF in GM12878. Our NF-
κB positive SNP set consists of 70 ASB SNPs combined from [19] and [20]. Our CTCF 
positive SNP set consists of 1336 ASB SNPs from [19].  After filtering on minor allele 
frequency (≥0.01), we are left with 54 SNPs for NF-κB and 1247 SNPs for CTCF, from the 
latter of which we further down-sampled 60 SNPs as our final CTCF positive SNP set to 
accommodate the limited scoring throughput of motif-based approaches evaluated in 
this study. 
 
WAVE Software 
The implementation of WAVE and related data are available at 
http://wave.casil.mit.edu/ 
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Supporting Information 
 
S1 Fig. Distribution of k-mer effect size predicted by WAVE 
Distribution of the summed effect-size of all 87380 k-kmers with length less than or 
equal to 8 from NF-κB WAVE model 
 
S2 Fig. WAVE is consistent cross LCL cell lines 
Scatter plots of SNP scores assigned by WAVE models trained on ChIP-seq data from 
different LCL individuals. (A) GM12878 vs. GM12892. (B) GM12878 vs. GM18951. (C) 
GM12878 vs. GM19193       
 
S3 Fig. Active set of k-mers detected by WAVE contained different parts of longer CTCF 
motif  
The average k-mer effect and aggregated position weight matrix of the 2rd, 3rd, 5th, 6th 
and 7th strongest k-mer cluster from CTCF WAVE model compared with CTCF motif 
(MA0139.1). 
 
S4 Fig. WAVE significantly outperformed motif-based approaches in prioritizing CTCF 
ASB-SNPs 
ROC curves for discriminating CTCF ASB-SNP from the various negative sets using WAVE, 
sTRAP, rSNP-MAPPER and HaploReg2. Dashed line indicates random chance. 
(A) Positive set chosen as all CTCF ASB-SNPs (n=60). Negative set randomly sampled 
from common SNPs from 1KG (n=1000). (B) Negative set limited to common 1KG 
variants that are located within 1000 bp from any CTCF ASB-SNP (n=1095). 
 
S5 Fig. WAVE achieved similar performance as motif-based approaches in prioritizing 
CTCF MD SNPs 
ROC curves for discriminating CTCF MD SNPs from the various Negative sets using 
WAVE, sTRAP, rSNP-MAPPER and HaploReg2. Dashed line indicates random chance.  
(A) Positive set chosen as all CTCF MD SNPs (n=24). Negative set randomly sampled 
from common SNPs from 1KG(n=1000). (B) Negative set limited to common variants 
from 1KG variants that are located within 1000 bp from any CTCF MD SNP (n=421). 
 
S1 Table. Pearson’s correlation between binding signal predicted by WAVE and actual 
ChIP-seq read counts on held-out chromosome 14 
 
S2 Table. Number of correctly annotated ASB SNP by motif-based approaches  
 
S3 Table. List of ASB SNP included in the analysis 
 
S1 Text.  The detailed implementation of parameter optimization in WAVE 
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