
Title:  Improving effect size estimation and statistical power with multi-echo fMRI and its impact 
on understanding the neural systems supporting mentalizing 

Authors:  Michael V. Lombardo1,2,3*, Bonnie Auyeung3,4, Rosemary J. Holt3, Jack Waldman3, 
Amber N. V. Ruigrok3, Natasha Mooney3, Edward T. Bullmore5, Simon Baron-Cohen3, & Prantik 
Kundu6* 

Affiliations:   

1 Department of Psychology, University of Cyprus, Cyprus 
2 Center for Applied Neuroscience, University of Cyprus, Cyprus 
3 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK 
4 Department of Psychology, School of Philosophy, Psychology, and Language Sciences, 

University of Edinburgh, UK 
5 Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK 
6 Section on Advanced Functional Neuroimaging, Departments of Radiology & Psychiatry, 

Icahn School of Medicine at Mount Sinai, USA 

Corresponding Authors:  Michael V. Lombardo (mvlombardo@gmail.com) and Prantik Kundu 
(prantik.kundu@mssm.edu)  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2015. ; https://doi.org/10.1101/017350doi: bioRxiv preprint 

mailto:mvlombardo@gmail.com
https://doi.org/10.1101/017350
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 

Functional magnetic resonance imaging (fMRI) research is routinely criticized for being 
underpowered due to characteristically small sample sizes. fMRI signals also inherently possess 
various sources of non-BOLD noise that further hampers ability to detect subtle effects. Here we 
take a bottom-up approach to addressing these problems via implementing multi-echo fMRI 
data acquisition and denoising innovations that can substantially improve effect size estimation 
and statistical power. We show that effect sizes on two different tasks within the social cognitive 
domain of mentalizing/theory of mind were enhanced at a median rate of 27% in regions 
canonically associated with mentalizing, while much more substantial boosts (43-130%) were 
observed in non-canonical cerebellar areas. This effect size boosting is primarily a consequence 
of reduction of non-BOLD noise at the subject level, which then translates into consequent 
reductions in between-subject variance. Power simulations demonstrate that enhanced effect 
size enables highly-powered studies at traditional sample sizes. Moreover, the cerebellar effects 
observed after applying our multi-echo innovations may be unobservable with conventional 
imaging at traditional sample sizes. The adoption of multi-echo fMRI innovations can help 
address key criticisms regarding statistical power and non-BOLD noise and enable potential for 
novel discovery of aspects of brain organization that are currently under-appreciated and not 
well understood.  
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Introduction 

A common criticism of neuroscience research in general1 and functional MRI (fMRI) in 
particular2, is that studies are characteristically statistically underpowered. Low statistical power 
by definition means that a study will have less of a chance for detecting true effects, but also 
means that observed statistically significant effects are less likely to be true and will be more 
susceptible to the biasing impact of questionable research practices1,3. This problem is 
important given the emergent ‘crisis of confidence’ across many domains of science (e.g., 
psychology, neuroscience), stemming from low frequency of replication and the pervasive 
nature of questionable research practices1,3,4. 

Low statistical power can be attributed to small sample sizes, small effect sizes, or a 
combination of both. The general recommended solution is to increase sample size, increase 
within-subject scan time, or both. These recommendations are pragmatic mainly because these 
variables are within the control of the researcher during study design. While these 
recommendations are important to consider2,5-8, other considerations such as dealing with 
substantial sources of non-BOLD noise inherent in fMRI data also need to be evaluated before 
the field assumes increasing sample size or scan time to be the primary or only means of 
increasing statistical power. These considerations are especially poignant when mandates for 
large-N studies and increased within-subject scan time are practically limiting due to often cited 
reasons such as the prohibitively high costs for all but the most well-funded research groups or 
in situations where the focus is on studying sensitive, rare, and/or less prevalent patient 
populations and where increasing scan time is impractical (e.g., children, neurological patients). 

On the issue of non-BOLD noise variability, it is well known that fMRI data are of variable 
quality. Poor and variable quality data can significantly hamper ability to achieve accurate and 
reproducible representations of brain organization. It is widely understood that the poor 
sensitivity of fMRI often arises from high levels of subject motion (often task correlated), 
cardiopulmonary physiology, or other types of imaging artifact9. These artifacts are problematic 
because they are often inadequately separable from the functional blood oxygenation level 
dependent (BOLD) signal when using conventional fMRI methods. Given an advance in fMRI 
methodology that allows enhanced detection and removal of these artifacts, the situation 
regarding statistical power and sample size may change markedly. Such advances could create 
viable experimental alternatives or supplements to the recommendation for increasing sample 
size/scan time to boost statistical power, and concurrently make for a situation that can more 
reliably enable discovery of subtle but potentially key aspects of typical and atypical brain 
function. 

In this study, we address problems related to statistical power through specific targeting 
of the problems related to non-BOLD artifact variability. We have applied a new approach that 
integrates the fMRI data acquisition innovation of multi-echo EPI with the decomposition method 
of independent components analysis (ICA), towards principled removal of non-BOLD signals 
from fMRI data. Our fully integrated implementation is called multi-echo independent 
components analysis or ME-ICA10. ME-ICA utilizes multi-echo fMRI to acquire both fMRI signal 
time series and their NMR signal decay, towards distinguishing functional BOLD from non-
BOLD signal components based on their respective and differentiable signatures in the decay 
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domain. Critically, BOLD and non-BOLD signal domains are readily differentiable in data 
analysis of the echo time (TE) domain - irrespective of overlap of signal patterns in the spatial 
and temporal domains. BOLD-related signals specifically show linear dependence of amplitude 
on TE, whereas non-BOLD signal amplitudes demonstrate TE-independence. Therefore, ME-
ICA is a biophysically and statistically principled bottom-up approach towards identifying and 
retaining BOLD-related variability while systematically removing non-BOLD variation. 

We apply ME-ICA to task-related activation mapping with block-designs and as a proof-
of-principle, we evaluate the method against other prominent denoising procedures (i.e. motion 
regression, GLMdenoise11). As a specific application of the method, we examine its impact on 
two separate tasks (i.e. the ‘SelfOther’ and ‘Stories’ tasks) tapping neural systems supporting 
the social cognitive domain or mentalizing and theory of mind and highlight its effects in terms of 
effect size estimation and power. We evaluate the impact of the method on two sets of brain 
regions; ‘canonical’ regions typically highlighted as important in the neural systems for 
mentalizing12-18 and ‘non-canonical’ regions in the cerebellum19. 

Results 

ME-ICA Denoising on the Raw Time Series 

Before touching on quantitative comparisons of effect size and power due to ME-ICA, it 
is helpful to convey properties of the images and time series acquired with ME acquisition, as 
well as the effect of ME-ICA denoising directly on the time series. ME sequences capture the 
decay of EPI images and (time series) with increasing TE, shown in Fig 1A. For example, ME 
data show the signal evolution of susceptibility artifact (i.e. signal dropout) in areas such as 
ventromedial prefrontal cortex (vMPFC) - it is made clear from Fig 1A that signal dropout occurs 
at longer TEs, as affected regions have short T2* due to proximity to air-tissue boundaries. 
Additionally, gray/white signal contrast increases over longer TE due to T2* differences between 
these tissue types.  The T2*-weighted optimal combination (TSOC) implements a matched-filter 
of TE images yielding a new image time series with optimized contrast (TE~T2*) and mitigation 
of susceptibility artifact by weighting towards the early TE in areas with short T2*. In Fig 1B we 
present time series data from ventromedial prefrontal cortex (vMPFC), posterior cingulate 
cortex/precuneus (PCC), and right cerebellum in order to demonstrate the effect of optimal 
combination on the time series, and then the effect of removing non-BOLD noise using ME-ICA 
relative to modeled task blocks. It is particularly apparent that ME-ICA, without prior information 
on task structure, recovers task-based block fluctuations while much of the middle echo, TSOC, 
and non-BOLD isolated signals carrying complex artifacts including drifts, step changes, and 
spikes.  
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F i g 1 : M u l t i - E c h o S i g n a l 
Characterization. Panel A shows the 
signal decay captured in multi-echo EPI 
images, for a single representative 
volume. With longer TE, gray/white 
contrast increases. Susceptibility artifact 
(e.g. dropout) also increases, as regions 
near in proximity to air-tissue boundaries 
have shorter T2*. The T2*-weighted 
optimal combination (TSOC) implements 
a matched-filter of TE images yielding a 
new image with optimized gray/white 
contrast (TE~T2*) and mitigation of 
susceptibility artifact. Panel B shows 
comparisons of time series data across 
three regions of interest; ventromedial 
prefrontal cortex (vMPFC), posterior 
cingulate cortex/precuneus (PCC), and 
right cerebellum. Each comparison shows 
the time series before model-based 
filtering of the middle TE image (black), 
TSOC image (blue), BOLD signals 
isolated on the basis of TE-dependence 
(green), and non-BOLD signals removed 
from the data (red).  Purple and orange 
lines represent modeled mentalizing and 
physical blocks respectively. 

ME-ICA Boosts Effect Size Estimation  

In evaluating ME-ICA-related effects on group-level inference, we examined the 
influence on non-BOLD denoising on effect size estimation. Effect size is operationalized here 
as a standardized measure of distance from 0 expressed in standard deviation units (i.e. mean/
sd) and is analogous to Cohen’s d. As illustrated in Fig 2, ME-ICA outperforms two other 
prominent methods for denoising (GLMdenoise11 and regressing out motion parameters or 
TSOC+MotReg). This enhanced performance is evident across both mentalizing tasks and in 
nearly every single region investigated. Quantifying the magnitude of effect size boosting as the 
difference in effect size estimates, we find that the median ME-ICA induced boost for canonical 
mentalizing regions is 27%. Boosts were much larger (nearly always greater than 50%) in areas 
like vMPFC and left temporal pole (lTP) that characteristically suffer from signal dropout. 
Amongst cerebellar areas, right and left cerebellar Crus I/II areas showed evidence of even 
larger effect size boosts ranging from 55-130% increases when compared to GLMdenoise and 
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43-108% increases when compared to TSOC+MotReg. See Supplementary Table 1 for full 
characterization of effect size estimates and effect size boosts. 

Fig 2:  ME-ICA Effect Size Boosting.  This figure shows effect size estimates (panels B-D) 
from all regions of interest (panel A). Effect sizes are expressed in standard deviation units and 
are analogous to Cohen’s d. Colored clouds in each plot represent density of estimates 
obtained from 1000 bootstrap resamples, while unfilled circles represent estimates within the 
true dataset. 
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Because our operational definition of effect size is a standardized measure that 
incorporates both mean and variability measurements, we went further in decomposing how 
these boosts in effect size estimation manifested in terms of changes to either the mean and/or 
variability measurements.  It is clear from Fig 3 that ME-ICA induces these boosts primarily by 
reducing estimates of variability at the 2nd level group analysis. Given that at a within-subject 
level ME-ICA is working to remove non-BOLD noise from the time series, it is clear that one 
consequence of this for group-level modeling is clear reduction of between-subject variance 
which works to enhance standardized effect size estimates. 

Fig 3:  ME-ICA Reduction in Variance in Group-Level Analyses.  This figure shows mean 
and standard deviation estimates from 2nd level group modeling that contribute to the 
standardized effect size calculations.  Panels A and B show mean estimates for all regions in 
both tasks.  Panels C and D show standard deviation estimates.  Colored clouds in each plot 
represent density of estimates obtained from 1000 bootstrap resamples, while unfilled circles 
represent estimates within the true dataset. 
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Impact of ME-ICA on Statistical Power 

Because ME-ICA improves standardized effect size estimation, it necessarily follows that 
statistical power will also be boosted, as such estimates are critical in such computations. 
However, for assessing the practical impact that ME-ICA may have, it is necessary to assess 
the impact such effect size boosting has on statistical power and sample size. Here we describe 
power simulations that mainly inform what we could expect in future work given effect size 
estimates similar to what we have observed in the current study under ME-ICA versus other 
analysis pipelines. 

Power curves for each analysis pipeline across a range of sample sizes from n=5 to 
n=100 are illustrated in Fig 4A-B.  Minimum sample size necessary for achieving 80% power at 
an alpha of 0.05 are shown in Fig 4C.  Across all canonical regions and both tasks, the median 
minimum sample size to achieve 80% power at an alpha of 0.05 with ME-ICA is n=19.  Minimum 
sample sizes across nearly all regions were well within reach of current standards for sample 
size (e.g., n<45). In contrast, for GLMdenoise and TSOC+MotReg the median minimum sample 
size for canonical regions is n=33 and n=41 respectively and there were several important 
regions whereby n>45 is necessary.  

For cerebellar regions, the power benefits due to ME-ICA were even more pronounced. 
Aside from medial cerebellar region XI (mCereb) in the Stories task which did not result in a 
sizeable effect (e.g., effect size <0.1), the minimum sample size needed for the bilateral 
cerebellar Crus I/II areas (rCereb, lCereb) were always well within the a range of sample size 
that is typical for today’s standards when using ME-ICA (e.g., n<45). This stands in contrast to 
the situation for GLMdenoise and TSOC+MotReg, where sample size always required n>40 and 
in many instances was not attained by n=100. 

   
For further illustration of practical impact, these boosts in statistical power and reduction 

in sample size necessary for achieving 80% power can be quantified into monetary savings.  
Assuming a scan rate of $500 per individual, if one was only interested in canonical regions, 
using ME-ICA would amount to median savings of $6,000 compared to GLMdenoise and 
$10,500 compared to TSOC+MotReg.  If one was interested in cerebellar regions, using ME-
ICA would save $15,500 compared to GLMdenoise and $26,000 compared to TSOC+MotReg. 

Visual examination of the power curves in Fig 4A-B highlights a point of diminishing 
returns when power is greater than 95%, as the improvements in power for adding more 
subjects diminishes substantially.  We term this effect ‘saturation’. When using ME-ICA, many 
regions quickly reach these saturation levels at sample sizes that are practically attainable (e.g., 
n<45). In contrast, other pipelines like GLMdenoise and TSOC+MotReg typically require 
considerably larger sizes to hit these saturation levels.  
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Fig 4:  Power Simulations.  This figure shows power curves constructed for each processing 
pipeline across a range of sample sizes from 5 to 100 (panels A-B).  The minimum sample size 
necessary for achieving 80% power is shown in panel C for the Stories task (left) and SelfOther 
task (right). The dotted line indicates sample size of n=45. 

Functional Connectivity Evidence for Cerebellar Involvement in Neural Systems 
Supporting Mentalizing 

The improvements in effect size estimation particularly for cerebellar regions is important 
as it potentially signals the ability of ME-ICA to uncover novel effects that may have been 
undetected in previous research. To further test the importance of cerebellar contributions to 
mentalizing, we have examined resting state functional connectivity data and the relationship 
that cerebellar connectivity patterns may have with task-evoked mentalizing systems. Prior work 
suggests that specific cerebellar regions may be integral participants with the default mode 
network20. The default mode network incorporates many of the regions that are highly 
characteristic in task-evoked systems supporting mentalizing21. Meta-analytically defined 
cerebellar regions associated with mentalizing show some overlap with these cerebellar default 
mode areas22. Therefore, if cerebellar regions for which ME-ICA systematically produces boosts 
in effect size are integral participants in neural circuits associated with mentalizing, we 
hypothesized that resting state connectivity patterns with such cerebellar regions would be 
highly involved in the default mode network.  Taking this hypothesis one step further, we also 
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hypothesized that if these cerebellar nodes are truly important within the neural systems that 
support mentalizing, we should expect that cerebellar resting state functional connectivity 
patterns highlighted with multi-echo EPI methods would recapitulate the patterns observed for 
activational topology observed during mentalizing tasks across the whole-brain and within the 
same participants. 

Confirming these hypotheses we find that bilateral cerebellar seeds involved in 
mentalizing show highly robust resting state functional connectivity patterns that resemble the 
default mode network within the same participants scanned on our task paradigms. Visually, the 
similarity between the ME-ICR connectivity maps and our Mentalizing>Physical activation maps 
are striking (Fig. 5A). Quantitatively we assessed this similarity through voxel-wise correlations 
(estimated with robust regression) across the whole-brain, and here we confirm that the resting 
state functional connectivity maps are strikingly similar in patterning to what we observe for 
task-evoked mentalizing activation patterns (all r > 0.37) (Fig. 5B). Relative to the activation-
connectivity similarity observed in TSOC+MotReg data, the activation-connectivity similarity 
obtained with ME-ICA and ME-ICR is much larger (i.e. z > 8.85) (Fig 5B-5D).   

Fig 5:  Resting state functional connectivity from cerebellar seed regions and pattern 
similarity with Mentalizing>Physical activation maps.  This figure shows resting state 
connectivity from right and left cerebellar seed voxels (i.e. peak voxels from the NeuroSynth 
‘mentalizing’ map) and their similarity to Mentalizing>Physical activation maps.  Panel A shows 
activation and resting state functional connectivity maps when using ME-ICA and multi-echo 
independent components regression (ME-ICR23).  All data are visualized at thresholded of 
voxelwise FDR q<0.05.  Panel B shows scatterplots and robust regression correlations between 
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whole-brain activation and connectivity patterns when using ME-ICA and ME-ICR.  Robust 
regression was used to calculate the correlation in a way that is insensitive to the outliers in the 
connectivity map which are voxels that are proximally close to the seed region.  Panel C shows 
activation and cerebellar functional connectivity maps for data when using conventional analysis 
approaches on TSOC data.  Activation maps are thresholded at FDR q<0.05.  Connectivity 
maps are thresholded at the same t-statistic threshold for defining FDR q<0.05 in ME-ICR 
analyses (which were already much higher than the FDR q<0.05 cutoff estimated from TSOC 
data), and were shown in this manner to show connectivity at the exact same t-threshold cutoff.  
Panel D shows activation and connectivity similarity estimated with robust regression in TSOC 
data. 

  
Discussion  

Task-based fMRI studies are characteristically of small sample size and thus 
underpowered for all but the largest and most robust effects. Furthermore, typical task-based 
fMRI studies do not apply advanced methods to mitigate substantial non-BOLD noise that is 
generally known to be inherent in such data. Combining small underpowered studies with little 
to no consideration of persistent non-BOLD noise that is present in the data even after typical 
pre-processing and statistical modeling creates a situation where most task-based studies are 
potentially missing key effects and makes for somewhat impractical conditions for most 
researchers where massive sample sizes are required to overcome such limitations. In this 
study we show that our methodological innovation, ME-ICA, results in robust increases in effect 
size estimation and statistical power in block-design studies. These improvements are 
empirically demonstrated against other prominent denoising alternatives. As a consequence of 
these improvements in effect size and power, we also demonstrate application of this method 
towards identification of novel effects in the cerebellum involved in the neural systems 
supporting mentalizing. Assuming similar effect sizes in future work, power simulations suggest 
that discovery of these novel cerebellar effects will remain nonetheless hidden at 
characteristically small sample sizes and without the multi-echo denoising innovations we report 
here. 

There are several practical points of impact that these results underscore. First, 
addressing the problem of statistical power in neuroscience, particularly fMRI studies1,2, is a 
complicated matter as most recommendations for this problem rely on increasing the amount of 
data collected both at the within and between-subject levels. A practical barrier for most 
research labs however, is that increasing the scale of data collection (e.g. massive sample size 
studies) is typically cost prohibitive. Our innovations here take a different perspective on the 
problem of low statistical power, by addressing from the bottom up, the problem of non-BOLD 
noise, which directly has impact on the sensitivity of fMRI, and thus statistical power. In practical 
terms, we show that ME-ICA allows for such substantial boosts in effect size estimation and 
consequently statistical power whereby in most cases (i.e. canonical and cerebellar regions 
investigated here), requisite levels of statistical power are attainable at sample sizes that should 
not be out of reach for most research laboratories. Therefore, if in the future researchers were to 
take up our multi-echo innovations in combination with uptake of already prominent 
considerations to generally collect more data, we could envision that the situation for fMRI 
research could substantially improve.  
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It is particularly important to underscore here that we are not suggesting that ME-ICA is 
the panacea to the small sample size problem and that as a result, researchers could continue 
the tradition of small sample size studies. Rather, we advocate that there are always compelling 
reasons to collect more data and that if funds permit, researchers should go above and beyond 
data collection that will ensure that their studies are highly powered at traditional sample sizes. 
Such a situation will ensure that canonical large effects are robust and replicable. Moreover, 
boosts in the sensitivity of fMRI can open up a range of previously practically unattainable 
possibilities for new discoveries. Such new discoveries could take the form of much more 
enhanced sensitivity for detecting smaller and more subtle effects in brain regions that are 
currently not well understood or which are methodologically hampered by being continually 
veiled underneath blankets of non-BOLD noise. New discoveries could also be enabled with 
parsing apart further variability such as subgroups that may have important translational 
implications24, parsing apart heterogeneity mapped onto individual differences, and/or more fine 
grained hypotheses/methods that result in much smaller effects than the typical and more basic 
activation mapping paradigm. All of these situations could be substantially improved with a 
methodological approach that dramatically improves statistical power, but at the same time 
promotes and motivates researchers to collect larger samples than what is typically 
characteristic. 

 As an empirical demonstration of ME-ICA’s ability to enhance new discoveries for human 
brain functional organization, we have uncovered robust evidence that there are discrete 
cerebellar regions that should hold more prominence in discussions about the neural systems 
supporting mentalizing/theory of mind and the ‘social brain’. The cerebellum is already a 
neglected and not well understood brain area, particularly in the context of its potential role in 
higher-level cognition19,25-28. Prior indications that these cerebellar regions may be plausible 
candidates for neural systems supporting mentalizing come from meta-analytic evidence19. 
However, while meta-analytic evidence alone might suggest plausibility for these regions, it was 
still unclear as to the exact reasons for why these cerebellar regions have not been the topic of 
more extensive focus. 

In this study, one of the novel findings that may help explain why these cerebellar 
regions are missed, is that they are typically veiled in substantial amounts of non-BOLD noise 
that obscure researcher’s ability to detect such effects with traditional types of methods and 
analysis pipelines. Effect sizes for these regions under more traditional analysis approaches are 
typically small and the sample size necessary for detecting those effects with high power are 
much greater than what is typical for fMRI research.  However, after applying ME-ICA 
innovations, these effects are substantially boosted by 43-130%. As we show in this study, ME-
ICA primarily boosts effect size estimation via noise reduction at the within-subject level and 
consequently has impact for reduction of variance at the group level. Therefore, it is clear that 
these regions are typically highly saturated in non-BOLD noise and this problem helps to 
obscure these effects from traditional research practices of small sample sizes, usage of single-
echo EPI acquisition, and denoising procedures that do not fully identify and remove such noise 
variability.  

The ME-ICA innovations we present here should help researchers to gain a more stable 
foothold on cerebellar effects in the context of mentalizing and enable better circumstances for 
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parsing apart how their role can further our understanding of such complex social cognitive 
processes.  A promising avenue for future work on this topic would be to further understand the 
computational role the cerebellum plays in simulative processes that may be important in 
mentalizing29,30. Translationally, the link between cerebellum and mentalizing is also particularly 
intriguing, given the longstanding, yet independent, literatures in autism regarding the 
cerebellum31 and mentalizing32. Wang and colleagues28 have recently argued that 
developmental processes derailed within the cerebellum may be particularly important for 
understanding autism.  Autism is well known for hallmark deficits in the domain of social-
communication33 and impairments in the development of mentalizing/theory of mind and self-
referential cognition in autism34,35 as well as atypical functioning of neural mechanisms that 
bolster such processes36,37 are thought to be important as explanations behind social-
communication deficits in autism.  Thus, the intersection of developmental abnormalities in 
cerebellar development and their relationship to the development of mentalizing in autism will be 
an interesting new avenue of research enabled by these kinds of novel discoveries.  
  

An important caveat for this study is that our findings are based on block-design 
activation paradigms, utilizing relatively long-duration changes in susceptibility weighting. This 
differs from event-related paradigms, whereby activations may be associated with a significant 
inflow component that is S0-weighted. Future studies will involve assessing the suitability of ME-
ICA for the analysis of event-related studies as well as other more novel task-designs. With 
regard to novel task-designs such as temporally extended tasks, we have previously shown that 
ME-ICA also has the ability to separate ultra-slow BOLD effects from slow non-BOLD effects38, 
and this opens up a range of possibilities for new paradigms that may be particularly well-suited 
for temporally-extended and continuous tasks, such as more naturalistic paradigms for social 
cognition39.  

 The multi-echo innovations we provide here offer substantial improvements that can 
largely affect how the field conducts fMRI research. All of the tools for implementing these 
innovations are open source and most contemporary imaging facilities possess all the requisite 
requirements to enable actively taking up these innovations as standard practice. We hope that 
the community will actively take up these new innovations, as they are likely to have massive 
benefits for improving major issues that hamper the field and may further enable potential for 
new discoveries about human brain function.  
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Online Methods 

Participants 

Participants were 69 adolescents (34 males, 35 females, mean age = 15.45 years, sd 
age = 0.99 years, range = 13.22-17.18 years) sampled from a larger cohort of individuals whose 
mothers underwent amniocentesis during pregnancy for clinical reasons (i.e. screening for 
chromosomal abnormalities). The main focus for sampling from this cohort was to study the fetal 
programming effects of steroid hormones on adolescent brain and behavioral development.  At 
amniocentesis, none of the individuals screened positive for any chromosomal abnormalities 
and were thus considered typically developing.  Upon recruitment for this particular study, we 
additionally checked for any self- or parent-reported neuropsychiatric conditions.  One individual 
had a diagnosis on the autism spectrum.  The remaining participants did not have any other 
kind of neurological or psychiatric diagnosis.  Analyses were done on the full sample of 69 
individuals, as analyses leaving out the one patient with an autism diagnosis did not change any 
of the results.   

Task Design 

Participants were scanned using two block-design fMRI paradigms.  The first paradigm, 
which we call the ‘SelfOther’ task, was a 2 x 2 within-subjects factorial design which contained 
two contrasts that tapped either self-referential cognition and mentalizing and was similar in 
nature to previously published studies1-3.  Briefly, participants were asked to make reflective 
judgments about either themselves or the British Queen that varied as either a mentalistic (e.g., 
“How likely are [you/the Queen] to think that it is important to keep a journal?”) or physical 
judgment (e.g., “How likely are [you/the Queen] to have bony elbows?”).  Participants made 
their judgments on a 1-4 scale, where 1 indicated ‘not at all likely’ and 4 indicated ‘very likely’.  
All stimuli were taken from Jason Mitchell’s lab and have been used in prior studies on 
mentalizing and self-referential cognition4,5.  The SelfOther task was presented in 2 scanning 
runs (8:42 duration per run; 261 volumes per run). Within each scanning run there were 4 
blocks per condition, and within each block there were 4 trials of 4 seconds duration each. Task 
blocks were separated from each other by a 16 second fixation block. The first 5 volumes of 
each run were discarded to allow for T2 stabilization effects. 

The second paradigm, which we call the ‘Stories’ task, was block-design which 
contained two contrasts that tapped mentalizing and language.  The paradigm was taken from 
the study by Gweon and colleagues6 and we utilized the exact same stimuli and stimulus 
presentation scripts provided to us by Hyowon Gweon and Rebecca Saxe.  Briefly, participants 
listened to a series of stories presented auditorily.  The stories differed in content and could 
either be mentalistic, social, or physical.  The social stories contained descriptions of people and 
characters but made no statements that referenced mental states.  Physical stories were 
segments of stories that described the physical setting and did not include people.  Mental 
stories were segments that included references to people as main characters and made 
references to mental states that those characters held.  The paradigm also included blocks for 
two other kinds of language control conditions that were not examined in this manuscript (i.e. 
stories read in a foreign language (e.g., Russian, Hebrew, and Korean) and blocks of music 
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played by different instruments (e.g., guitar, piano, saxophone, and violin)).  After participants 
heard each story segment they were given a choice of whether a specific auditory segment 
logically came next.  This was introduced to verify that participants were paying close attention 
to the stories and the details inside each story segment.  The Stories task was presented in 2 
scanning runs (6:36 duration per run; 192 volumes per run) and within each scanning run there 
were 2 blocks per condition.  The first 6 volumes were discarded to allow for T2 stabilization 
effects. 

 Resting state data was also collected on each participant with a 10 minute long ‘eyes-
open’ run (i.e. 300 volumes), where participants were asked to stare at a central fixation cross 
and to not fall asleep.  The multi-echo EPI sequence was identical to those used in the task 
paradigms. 

fMRI Data Acquisition 

 All MRI scanning took place on a 3T Siemens Tim Trio MRI scanner at the Wolfson Brain 
Imaging Centre in Cambridge, UK.  Functional imaging data during task and rest was acquired 
with a multi-echo EPI sequence with online reconstruction (repetition time (TR), 2000 ms; field 
of view (FOV), 240 mm; 28 oblique slices, alternating slice acquisition, slice thickness 3.8 mm; 
TE = 13, 31, and 48 ms, GRAPPA acceleration factor 2, BW=2368 Hz/pixel, flip angle, 90°).  
Anatomical images were acquired using a T1-weighted magnetization prepared rapid gradient 
echo (MPRAGE) sequence for warping purposes (TR, 2300 ms; TI, 900 ms; TE, 2.98 ms; flip 
angle, 9°, matrix 256 × 256 × 256, field-of-view 25.6 cm). 

Multi-Echo ICA (ME-ICA) Pipeline 

 Data were processed by ME-ICA using the tool meica.py as distributed in the AFNI 
neuroimaging suite (v2.5 beta10), which implemented both basic fMRI image preprocessing and 
decomposition-based denoising. meica.py implemented AFNI tools for preprocessing. For the 
processing of each subject, first the anatomical image was skull-stripped and then warped 
nonlinearly to the MNI anatomical template using AFNI 3dQWarp. The warp field was saved for 
later application to functional data. For each functional dataset, the first TE dataset was used to 
compute parameters of motion correction and anatomical-functional coregistration, and the first 
volume after equilibration was used as the base EPI image. Matrices for de-obliquing and six-
parameter rigid body motion correction were computed. Then, 12-parameter affine anatomical-
functional coregistration was computed using the local Pearson correlation (LPC) cost 
functional, using the gray matter segment of the EPI base image computed with AFNI 3dSeg as 
the LPC weight mask. Matrices for de-obliquing, motion correction, and anatomical-functional 
coregistration were combined with the standard space non-linear warp field to create a single 
warp for functional data. The dataset of each TE was then slice-time corrected and spatially 
aligned through application of the alignment matrix, and the total nonlinear warp was applied to 
the dataset of each TE. Critically, data were not spatially smoothed using a full-width-half-max 
(FWHM) spatial filter. The effective smoothness of the data after preprocessing (which 
inadvertently adds smoothing due to interpolation and re-gridding) was found to be ~5mm, 
compared to isotropic voxel size of 3.8mm. Note that the application of FWHM smoothing adds 
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to the image smoothness, such that 6mm FWHM smoothing yields an 11m FWHM effective 
smoothing. No time series filtering was applied in the preprocessing phase.  
   
 Time series denoising occurred over several steps, based on fitting multi-echo data and 
its statistical components to signal models reflecting the T2* and S0 signal decay processes. 
This has been detailed in our prior work7,8 and is summarized here. T2* and S0 images were 
computed from means of time series of different TEs. The separate TE time series datasets 
were “optimally combined” as a weighted average, with weights being a function of TE and local 
T2*. This procedure implemented a matched-filter that produced a contrast-optimized or “high 
dynamic range” time series dataset where the functional contrast-to-noise at each voxel was 
maximized and thermal noise is attenuated. The optimally combined data was then 
decomposed to further remove [approximately Gaussian distributed] thermal noise and 
concurrently reduce dimensionality by a known number of degrees of freedom. This was done 
by principal components analysis (PCA) decomposition, followed by TE-dependence analysis of 
each principal component. PCA components that exhibited neither TE-dependence nor TE-
independence and explained less than a data-driven threshold for variance explained were 
counted as thermal noise and projected out. This procedure is referred to as ME-PCA. Next, 
ICA (FastICA with tanh contrast function) was applied to the dimensionally reduced dataset to 
yield non-Gaussian spatial components indicating distinct signal processes that were orthogonal 
and statistically independent, alongside a time course mixing matrix. The mixing matrix was fit to 
the time series of each separate TE, producing coefficient maps for each component and TE. 
The signal scaling of each component across TEs was then use to compute Kappa (κ) and Rho 
(ρ), which were pseudo-F statistics indicating component-level TE-dependence and TE-
independence, respectively. A component classification algorithm was then applied that 
differentiated components into BOLD and non-BOLD categories. Lastly, the linear combination 
of BOLD component maps and their time series (both derived from the optimally combined time 
series) produced the ME-ICA BOLD dataset. 

Task-fMRI Data Analysis 
 All first and second level statistical modeling was performed in SPM8 (http://
www.fil.ion.ucl.ac.uk/spm/), using the general linear model (GLM). First level analyses modeled 
the hemodynamic response function (HRF) with the canonical HRF, and used a high-pass filter 
of 1/128 Hz.  In contrast to ME-ICA, we also ran denoising with two other prominent 
approaches; GLMdenoise9 and TSOC+MotReg. Each of these pipelines were fed TSOC data. 
For GLMdenoise, we extract global noise regressors it identified with cross validation and used 
these as regressors of no interest in first-level individual subject GLMs. For TSOC+MotReg we 
used motion parameters as regressors of no interest in first-level individual subject GLMs. When 
running first-level individual subject GLMs on ME-ICA denoised data, we did not include motion 
parameters as regressors of no interest because such artifact is already removed in principled 
manner at the prior denoising step.  All first-level individual subject GLMs modeled the specific 
contrast of Mentalizing>Physical, and these contrast images were input into second-level 
random effects GLM (i.e. one sample t-test).  Any whole-brain second-level group analyses we 
report are thresholded at a voxel-wise FDR q<0.0510. 

Resting State fMRI Connectivity Analysis 
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 Resting state connectivity on ME-ICA processed data was estimated using the multi-
echo independent components regression (ME-ICR) technique developed by Kundu and 
colleagues7. This analysis technique effectively controls for false positives in connectivity 
estimation by using the number of independent components estimated by ME-ICA as the 
effective degrees of freedom in single-subject connectivity estimation.  Once ME-ICA has the 
estimated number of components, these component maps are concatenated, and connectivity is 
estimated by computing the correlation of ICA coefficients between the seed and other brain 
voxels.  The seed regions we have chosen are the peak voxels from the NeuroSynth 
‘mentalizing’ map in right and left hemisphere cerebellum (RH MNI x = 29, y = -82, z = -39; LH 
MNI x = -25, y = -78, z = -39).  Connectivity GLM analyses were implemented within SPM and 
the second-level group connectivity maps are thresholded with a voxel-wise FDR threshold of 
q<0.05. 

 To assess the similarity between whole-brain resting state connectivity and 
Mentalizing>Physical activation maps, we used robust regression11 to compute the correlation 
between the whole-brain connectivity and activation maps. Robust regression allows for 
protection against the effects of outliers that are particularly pronounced in the connectivity 
maps, since voxels that contain or are proximally close to the seed voxel exhibit very large 
connectivity values.   

 Conventional functional connectivity analyses were also implemented on the TSOC 
data. Here we used AFNI 3dBandpass to bandpass filter the data between 0.01 and 0.1 Hz, and 
specifically used the -ort argument to additionally remove motion-related variability all in one 
step. No other steps were taken to denoise the data (e.g., global signal regression, white matter 
regression, etc). The bandpass filtered and motion-regressed data were then inserted into 
GLMs in SPM8. 

 To compare the difference between activation-connectivity correlations for ME-ICR vs 
TSOC+MotReg, we use the paired.r function within the psych R library (http://cran.r-project.org/
web/packages/psych/) to obtain z statistics to describe the difference between correlations.  
However, no hypothesis tests (i.e. p-values) are computed for these analyses as they are not 
needed since the comparisons are on correlations estimated from the entire population of 
interest (i.e. all voxels within whole-brain volume). 

Effect Size Estimation and Power Simulations 
  

All effect size and power estimates were computed with the fmripower Matlab toolbox 
(http://fmripower.org)12.  Effect size is operationalized here as a standardized measure of 
distance from 0 expressed in standard deviation units (i.e. mean/sd) and is analogous to 
Cohen’s d. The Type I error was set to 0.05 and we computed power across a sample size 
range from n=5 to n=100.  All effect size and power estimates were estimated from 
independently defined meta-analytic ROIs identified by NeuroSynth (http://neurosynth.org)13 for 
the feature ‘mentalizing’.  This feature contained 98 studies and 4526 activations. The 
NeuroSynth ‘mentalizing’ mask was first resampled to the same voxel sizes as the current fMRI 
datasets. Because regions surviving the NeuroSynth analysis at FDR q<0.01 were large and 
contained multiple peaks (e.g., medial prefrontal cortex comprised both dorsal and ventral 
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subregions), we constrained ROIs further by finding peak voxels within each region, and 
constructing a 8mm sphere around each peak.  This resulted in 11 separate ROIs. Eight of the 
11 have been reported and heavily emphasized in the literature (dorsomedial prefrontal cortex 
(dMPFC): x = -2, y = 60, z = 22; ventromedial prefrontal cortex (vMPFC): x = -2, y = 48, z = -20; 
right temporo-parietal junction (RTPJ): x = 59, y = -55, z = 27; left temporo-parietal junction 
(LTPJ): x = -48, y = -55, z = 26; posterior cingulate cortex/precuneus (PCC): x = 2, y = -52, z = 
42; right anterior temporal lobe (rATL): x = 48, y = -6, z = -20; left anterior temporal lobe (lATL): 
x = -52, y = 6, z = -35; left temporal pole (lTP): x = -40, y = 21, z = -24).  The remaining 3 
regions are located in the cerebellum (right hemisphere cerebellar region Crus II (rCereb): x = 
29, y = 82, z = -39; medial cerebellar region IX (mCereb): x = 2, y = -52, z = -47; left hemisphere 
cerebellar region Crus II (lCereb): x = -25, y = -78, z = -39) and have been relatively overlooked 
in the literature, with some exceptions that also rely on meta-analytic inference14. 

To get an indication of how big the effect size boost due to ME-ICA was, we computed a 
measure of effect size percentage increase operationalized as (ESME-ICA - ESTSOC or GLMdenoise)/
abs(ESTSOC or GLMdenoise) * 100. We also used bootstrapping (1000 resamples) to re-run SPM 
second-level group analysis and fmripower computations in order to construct 95% confidence 
intervals around effect size estimates.  To further describe the effects of ME-ICA over and above 
GLMdenoise TSOC+MotReg pipelines, we have computed the minimum sample size to achieve 
80% power, minimum sample size to achieve 95% or more power (what we call ‘power 
saturation’ levels), and the sample size and cost reduction due to using ME-ICA to achieve a 
study with 80% power, assuming a per subject scanning cost of $500. In cost savings 
computations, any regions that did not achieve requisite power before n=100 were excluded 
from such calculations. 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