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White-nose syndrome (WNS), a disease caused by the fungus ​Pseudogymnoascus          
destructans​1​, has spread west from New York to Missouri and has killed more than six               
million bats​2​. In bat hibernacula where WNS is present, mass mortality has been             
observed and there is a high potential for population collapse or extinction of some              
species at a regional level. ​Although WNS is not yet present in the western U.S., the                
high diversity of bat species​3 and appropriate conditions for​P. destructans in area caves              
may put these populations at risk. ​The absence of WNS in western caves provides a               
unique opportunity to ask questions about how bat species, geographic location, and            
habitat shape pre-WNS bat microbiota. The importance of microbiota is shown in            
many organisms, including amphibians, where individuals that survive a chytrid          
infection carry a higher prevalence of ​Janthinobacterium lividum​4​. The establishment          
of a pre-WNS baseline microbiota of western bats is critical to understanding how ​P.              
destructans may impact the native microbiota of the bats. Previous studies​5,6 that            
identified the microbiota of bats have focused on gut and fecal microbiota, with little              
attention given to the external microbiota. Here we show for the first time that habitat               
and geography influence differences in the abundance and diversity of external bat            
microbiota. From our 202 (62 cave-netted, 140 surface-netted) bat samples belonging           
to 13 species of western bats uninfected with WNS, we identified differences in             
microbiota diversity among sites, and between cave-netted versus surface-netted bats,          
regardless of sex and species. These results present novel information about the factors             
that shape external microbiota of bats providing new insights into patterns of diversity             
in a pre-WNS bat population. 

Since the discovery of WNS in 2006-2007 in New York​7​, there is conclusive             
evidence indicating that ​Pseudogymnoascus destructans ​acts as the primary pathogen          
causing the disease. Moreover, through controlled experiments, it was determined that           
WNS is spread by direct contact with this fungus​8​. ​P. destructans ​is often fatal to bats                
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because of its ability to colonize and penetrate bat tissue, which disrupts hibernation             
by causing frequent arousals of bats in hibernacula​9,10​. Consequently, this leads to            
depletion of critical energy reserves stored as fat and an inability to maintain water              
homeostasis​11​. Research evidence suggests that ​P​. destructans ​originated in Europe,          
accounting for the absence of mass mortality of bats in European hibernacula infected             
with ​P. destructans​12​. 

The westward movement of WNS is on a trajectory that will allow it to enter               
the West through Colorado and New Mexico's respective southern and northern           
borders. Within these regions are western analogs (e.g., ​Myotis evotis​) of bat species             
that have been greatly impacted by WNS in the east (e.g.​, Myotis septentrionalis​) and              
would likely succumb to the same fate. Potentially, over 16 western bat species could              
be affected by this disease. Thus, ​given the rapid westward spread of WNS and our               
limited knowledge about the susceptibility of western bat populations, there is a need             
to establish the baseline microbiota across key western bat species. ​This ​pre-WNS            
external microbiota dataset of western U.S. bat populations will serve as a resource for              
future studies that investigate the differences in vulnerabilities of different bat species,            
as well as aid in identifying the dynamics that influence the occurrence of microbial              
communities present on the surface of bats. Similar to gut microbiota​13​, external            
microbiota​14 may suppress external bacterial and fungal infections, as seen with the            
chytrid fungal infections in amphibians​15​. The microbiota patterns documented in our           
study will provide insight into the diversity of a pre-WNS bat population across states              
that have habitats that are vulnerable to WNS. We hypothesize that habitat,            
geography, and bat clustering behavior account for the diversity of external microbiota            
communities found on bats. 

To address our hypothesis, ​during the springs and summers of 2013 and 2014,             
we ​collected a pre-WNS dataset of 202 western bats from five locations in the              
Southwest, including Carlsbad Caverns National Park (CCNP), Fort Stanton-Snowy         
River Cave National Conservation Area (FS), El Malpais National Monument          
(ELMA), and caves near Roswell (HGL), New Mexico, as well as Grand Canyon             
Parashant National Monument (PARA), Arizona, to determine which factors         
influence the bat microbiota. ​We characterized samples by geographic sites (captured           
bats between and within New Mexico and Arizona, Figure 1), cave versus            
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surface-netted bats, sex, and species (Supplemental Data 1). Analysis of the data by sex              
and species found weak to no evidence (ratio of random error was 2 or less) as                
predictors of microbiota composition; therefore, our metadata analysis focused on          
sites of capture and cave versus surface-netted samples. Alpha diversity indices of            
bacterial and fungal samples (Figure 2a, b, respectively) show differences in mean            
diversity between sites and a large variation of diversity within a site. The highest              
observed bacterial diversity was seen in bats sampled at ELMA. The lowest observed             
bacterial diversity was from HGL. For fungal samples, the highest observed diversity            
was from FS and lowest from HGL. Across all samples the observed fungal diversity              
was much lower than the bacterial diversity. 

Non-metric multidimensional scaling plots of bacterial and fungal communities         
by site (i.e., ELMA, HGL, FS, CCNP, and PARA) show five groupings (Figures 3a, b).               
The HGL and PARA samples form two distinct tight clusters, while the remaining             
groups form looser associations. The NMDS plots of bacteria and fungi from cave and              
surface-netted bats show two distinctive groups with little overlap for the bacterial            
samples (Figures 4a, b). To further test if the observed patterns in the NMDS could be                
attributed to habitat and geography parameters, we used a random forest model. We             
tested whether microbiota composition could identify samples based on cave versus           
surface-netted and by site. The ratio of random error was 3.63 among bacteria samples              
from all sites, whereas the ratio of random error was 6.25 between cave versus              
surface-netted bacteria samples. The ratio of random error for fungal samples among            
all sites was 5.23 and for cave versus surface-netted it was 2.56. Cave versus              
surface-netted was the most predictive for bacterial samples, while site was most            
predictive for fungal samples. 

The significance of habitat and geography on community structure was tested           
using a poisson-lognormal generalized linear mixed model analysis of count data.           
Operational taxonomic units (OTUs) that show up as significant at a false discovery             
rate correction <0.05 for bacterial phyla (Extended Data Figure 1) include           
Acidobacteria, Actinobacteria, Alphaproteobacteria, Bacteroidetes,    
Betaproteobacteria, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes,     
Tenericutes, and TM7 among all sites. Between cave versus surface-netted bats, the            
significant bacterial phyla include Acidobacteria, Actinobacteria, Alphaproteobacteria,       
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Armatimonadetes, Chloroflexi, Cyanobacteria, Deltaproteobacteria, Firmicutes,     
Nitrospirae, Synergistetes, and Thermi. In the fungal communities, the following          
classes (Extended Data Figure 2) differed by site: Ascomycota unidentified,          
Dothideomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetesm Pezizomycetes,     
Saccharomycetes, Sordariomycetes, Agaricomycetes, Tremellomycetes, and Incertae      
sedis. Dothideomycetes, Eurotiomycetes, Leotiomycetes, Pezizomycetes,     
Saccharomycetes, Ascomycota unidentified, and Agaricomycetes were the classes that         
differed between cave and surface-netted bats. 

Our results show a complex relationship of external bat microbiota with respect            
to habitat and geographic effects such as site of capture and habitat (cave versus              
surface-netted). ​We concluded that species or sex of bat was not significant in             
determining microbiota composition. However, geographic site, and habitat are         
significant in determining diversity observed for both bacterial and fungal microbiota.           
One explanation for the minimal overlap on the NMDS of the microbiota found on              
bats from cave versus surface-netted sites may be the result of microbiota community             
turnover as the bats opportunistically change roosting areas. This turnover is           
hypothesized to be similar to what has been observed in the variation in human hand               
microbiota from interactions with household surfaces​15​. We attribute differences in          
microbial alpha diversity to microbiota acquired in the habitats in which bats were             
captured. ​Additionally, we believe low diversity of bacteria and fungal microbiota in            
HGL is related to having a less complex landscape in the form of a sparse grassland                
habitat, fewer social interactions and clustering behavior of the single bat species            
present in these caves.  

Our discovery of habitat and geographic patterns related to the external           
microbiota of western bats shows that bat behavior and local roosting habitat drive the              
patterns in microbiota diversity. We suggest future investigations should include a           
broad range of habitat types and associated bat species along differing latitudinal and             
longitudinal gradients to better understand the observed patterns in diversity.          
Fundamental questions should be addressed, such as, ”Does specific site location           
within a geographic area (e.g., Colorado Plateau) or sampling locality (e.g., cave and             
surface), as well as the number of species occupying these sites during sampling and              
time of year, affect the composition of external microbiota?” Additionally, future           

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2015. ; https://doi.org/10.1101/017319doi: bioRxiv preprint 

https://doi.org/10.1101/017319
http://creativecommons.org/licenses/by/4.0/


findings can provide insight into the microbial community relationships between          
regions where ​P. destructans is present, with and without WNS, and which natural             
occurring bat bacteria and fungi can be used to suppress WNS. 
 
Methods 

We sampled 202 bats (62 cave and 104 surface-netted), belonging to 13 species             
(Supplemental Data 1), for external microbiota identification​from a total of five study             
sites in the Southwest: Grand Canyon Parashant National Monument (PARA), in           
Arizona, and Carlsbad Caverns National Park (CCNP), Fort Stanton (FS), El Malpais            
National Monument (ELMA), and Bureau of Land Management (HGL) caves near           
Roswell, New Mexico.​Bat sample collection was allowed under the following permits:            
2014 Arizona and New Mexico Game and Fish Department Scientific Collecting           
Permit (SP670210, SCI#3423, SCI#3350), National Park Service Scientific Collecting         
Permit (CAVE-2014-SCI-0012, ELMA-2013-SCI-0005, ELMA-2014-SCI-0001,    
PARA-2012-SCI-0003), Fort Collins Science Center Standard Operating Procedure        
(SOP) SOP#: 2013-01, and an Institutional Animal Care and Use Committee (IACUC)            
Permit from the University of New Mexico (Protocol #12-100835-MCC) and from the            
National Park Service (Protocol #IMR_ELMA.PARA_Northup_Bat_2013.A2). 
The ​skin (i.e., ears, wings and uropatagia) and furred surfaces of the bat were swabbed               
(Figure 1b) with sterile swabs soaked in sterile Ringer’s solution​16​. Each swab was             
placed in a sterile 1.7ml snap-cap microfuge tube and immediately frozen in a liquid              
nitrogen dry shipper. Samples were transported to the University of New Mexico and             
stored in a -80°C freezer. We used MR DNA Molecular Research LP, Shallowater,             
Texas (http://www.mrdnalab.com/) for genomic DNA extraction and 454        
sequencing diversity assays ​of bacterial 16S rDNA and fungal ITS genes. 

All 454 reads were processed in QIIME​17​. Bacterial sequences shorter than 200            
bp or longer than 500 bp and with a quality score lower than 30 were eliminated.                
Bacterial samples were denoised and clustered with sumaclust​18 and chimera checked           
using usearch​19​. Fungal sequences were pre-processed by discarding all sequences with a            
quality score lower than 30. Fungal clustering was done using the open reference             
picking with the sumaclust option. Taxonomy was assigned using the Greengenes 13_8            
core data set​20 with uclust and the UNITE OTUs 12_11​21 alpha data set with              
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SortMeRNA​22​, respectively. This yielded a total of 193 bacterial 16S and fungal ITS             
paired samples and 9 bacteria samples with no fungal counterpart. 

Variation in community structure was visualized using the phyloseq package​23          
and ggplot2​24 in the R software package​25​. Beta diversity was analyzed using nonmetric             
dimensional analysis. Random forest models were run in QIIME using 10-fold           
cross-validation with 1,000 trees. The MCMC.otu package​26 in R was used to quantify             
proportional changes in community structure between cave and surface netted. 
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Figure 1 ​Location of field sites and example swabbing ​a, Map of the field sites where                
bats were collected for this study (Map designed by Ara Kooser CC-BY 3.0. Data by               
OpenStreetMap, under ODbL) and ​b, Swabbing of a cave bat (​Myotis velifer​) netted             
in Left Hand Tunnel, CAVE for genomic DNA. 
 
Figure 2 Observed diversity of microbiota across regions for El Malpais National            
Monument (ELMA), Fort Stanton-Snowy River Cave National Conservation Area         
(FS), Grand Canyon Parashant National Monument (PARA), Carlsbad Caverns         
National Park (CCNP), and High Grasslands (HGL). ​a, Box plot of alpha diversity             
indices for microbial communities separated by region and ​b, Box plot of alpha             
diversity indices for fungal communities separated by region. 
 
Figure 3 Regional relationships between microbiota communities and biogeographic         
parameters for El Malpais National Monument (ELMA), Fort Stanton-Snowy River          
Cave National Conservation Area (FS), Grand Canyon Parashant National         
Monument (PARA), Carlsbad Caverns National Park (CCNP), and High Grasslands          
(HGL). a, Bacterial NMDS plot colored by area the bats were caught ​b, Fungal              
NMDS plot colored by area the bats were caught. 
 
Figure 4 Cave versus surface-netted relationships between microbiota communities         
and cave versus surfaced netted bats microbiota for El Malpais National Monument            
(ELMA), Fort Stanton-Snowy River Cave National Conservation Area (FS), Grand          
Canyon Parashant National Monument (PARA), Carlsbad Caverns National Park         
(CCNP), and High Grasslands (HGL) ​a, Bacterial NMDS plot colored by cave or             
surface netted ​b,​ Fungal NMDS plot colored by cave or surface-netted. 
 
 

     
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2015. ; https://doi.org/10.1101/017319doi: bioRxiv preprint 

https://doi.org/10.1101/017319
http://creativecommons.org/licenses/by/4.0/


Figure 1 

 
 
 

     
Figure 2 
a. b. 

 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2015. ; https://doi.org/10.1101/017319doi: bioRxiv preprint 

https://doi.org/10.1101/017319
http://creativecommons.org/licenses/by/4.0/


     
Figure 3 
a. b. 

 
 
 
Figure 4 
a. b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2015. ; https://doi.org/10.1101/017319doi: bioRxiv preprint 

https://doi.org/10.1101/017319
http://creativecommons.org/licenses/by/4.0/


Extended Data Figure 1 
a. b. 

 
 
Extended Data Figure 2 

 
 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2015. ; https://doi.org/10.1101/017319doi: bioRxiv preprint 

https://doi.org/10.1101/017319
http://creativecommons.org/licenses/by/4.0/

