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Abstract  
Using robust, integrated analysis of multiple genomic datasets, we show that genes depleted for 
non-synonymous de novo mutations form a subnetwork of 72 members under strong selective 
constraint. We further show this subnetwork is preferentially expressed in the early development 
of the human hippocampus and is enriched for genes mutated in neurological, but not other, 
Mendelian disorders. We thus conclude that carefully orchestrated developmental processes 
are under strong constraint in early brain development, and perturbations caused by mutation 
have adverse outcomes subject to strong purifying selection. Our findings demonstrate that 
selective forces can act on groups of genes involved in the same process, supporting the notion 
that adaptation can act coordinately on multiple genes. Our approach provides a statistically 
robust, interpretable way to identify the tissues and developmental times where groups of 
disease genes are active.  Our findings highlight the importance of considering the interactions 
between genes when analyzing genome-wide sequence data.  
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Introduction 
Genetic variation is introduced into the human genome by spontaneously arising de novo 
mutations in the germline. The majority of these mutations have, at most, modest effects on 
phenotype; they are thus subject to nearly neutral drift and can be transmitted through the 
population, with some increasing in frequency to become common variants. Conversely, de 
novo mutations with large effects on phenotype are subject to many different selective forces, 
both positive and negative, with the latter resulting in either the variant being completely lost 
from the population or maintained at very low frequencies1.  
 
Large-scale DNA sequencing can now be used to comprehensively assess de novo mutations, 
with current applications focusing on the protein-coding portion of the genome (the exome). This 
approach has been used to identify causal genes and variants in rare mendelian diseases: for 
example, exome sequencing of ten affected individuals with Kabuki syndrome identified the 
methyl transferase KMT2D (formerly MLL2) as causal, after substantial post hoc data filtering2. 
In complex traits, this approach has successfully identified pathogenic genes harboring de novo 
mutations in autism spectrum disorders, intellectual disability and two epileptic 
encephalopthies3; notably, all these studies sequenced the exomes of parent-affected offspring 
trios and quantified the background rate of de novo mutations in each gene using formal 
analytical approaches. They were thus able to identify genes harboring a statistically significant 
number of mutations, which are likely to be causal for disease3,4.  
 
These large-scale exome sequencing studies have demonstrated that the rate of non-
synonymous de novo mutations is markedly depleted in some genes, and that these genes 
harbor disease-causing mutations. As synonymous de novo mutations occur at expected 
frequencies, this depletion is not driven by variation in the local overall mutation rate; instead, 
these genes appear to be intolerant of changes to amino acid sequence and are thus under 
selective constraint, with non-synonymous mutations removed by purifying selection. These 
genes represent a limited number of fundamental biological roles, which suggests that entire 
processes, rather than single genes, are under selective constraint. This is consistent with the 
extreme polygenicity of most human traits, where hundreds of genes play a causal role in 
determining organismal phenotype5,6. These genes must participate in the same cellular 
processes, but uncovering the relevant connections and the cell populations and developmental 
stages in which they occur remains a challenge. We and others have described statistical 
frameworks to test connectivity within a nominated set of genes3,4; whilst these approaches are 
adequate for testing limited gene sets, there is still a dearth of systematic ways to assess 
connectivity in a genome-wide fashion and identify the tissues in which connected groups of 
genes are likely to act in a statistically rigorous and interpretable way. 
 
We have developed a robust, unbiased framework to address these questions and applied it to 
genome-wide selective constraint data derived from exome sequences of 6,503 individuals4. We 
identified a single, statistically significant subnetwork of 72 interacting genes highly intolerant of 
non-synonymous variation, with no other interacting groups of genes showing evidence of such 
coordinate constraint. To establish biological context for this subnetwork, we developed a robust 
approach to test for preferential expression of the module as a whole, rather than the individual 
constituent genes.  Using gene expression data from the cosmopolitan atlas of tissues in the 
Roadmap Epigenome Project7,8, we found that this subnetwork is preferentially expressed in 
several early-stage tissues, with the strongest enrichment in fetal brain. To more carefully 
dissect the role of this subnetwork in the central nervous system, we analyzed expression data 
from BrainSpan9, an atlas of the developing human brain, and found that the constrained gene 
subnetwork is preferentially expressed in the early development of the hippocampus. Consistent 
with this observation, this module is enriched for genes mutated in neurological, but not other, 
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Mendelian disorders. We thus show that selective constraint acts on a set of interacting genes 
active in early brain development, and that these genes are in fact intolerant of mutation. Our 
Protein Interaction Network Tissue Search (PINTS) framework is publicly available at 
https://www.dropbox.com/sh/hgwmf1qx3a5wdxz/AACUvEH4EAb3yKLnxKBAg_nxa?dl=0. 
 
Results 
Calculating selective constraint scores 
We have previously described a framework to assess selective constraint across coding 
sequences in the genome4. Briefly, we calibrated an expectation for all possible conversions of 
one base to another by mutation from non-coding sequence. For each transition, we modeled 
the effect of the surrounding sequence and its conservation across species to correct for context 
effects. We then counted the number of synonymous and non-synonymous variants in the 
coding sequence of each gene in the genome and derived a statistic of constraint on each class 
of variation compared to this global expectation.  We found that a number of genes show 
decreased rates of non-synonymous substitution but expected rates of synonymous 
substitution, consistent with purifying selection removing the non-synonymous alleles from the 
population. 
 
Analysis framework description 
If constrained genes lie in biologically meaningful networks, we expect them to (i) interact and 
(ii) be expressed in the same tissues. We developed a robust, modular workflow (PINTS – 
Protein Interaction Network Tissue Search; Figure 1) to test both of these hypotheses at a 
genome-wide level. To detect interactions between constrained genes we used a high-
confidence protein-protein interaction network (InWeb10), and employed a clustering algorithm 
previously validated on such networks11. We assessed significance empirically by randomly 
reassigning constraint scores to genes (see Methods and Supplementary material). We then 
tested any significant subnetworks for preferential expression in the diverse tissue atlas 
provided by the Roadmap Epigenome Project (REP), which assays gene expression in 27 
human primary samples across the developmental spectrum8. Our final dataset is comprised of 
9729 genes both present in InWeb and detected in at least one REP tissue.  
 
Our workflow is both modular and flexible: clustering algorithms, gene-gene relationships and 
tissue atlases can be replaced as required, so that analyses can be tailored to suit specific 
biological problems. A flexible implementation, including all data described here, is freely 
available as an R package at 
https://www.dropbox.com/sh/hgwmf1qx3a5wdxz/AACUvEH4EAb3yKLnxKBAg_nxa?dl=0.   
 
Highly constrained genes form a protein interaction module expressed in fetal tissues 
and the immune system 
We define highly constrained genes as those with evidence of constraint on non-synonymous 
de novo substitutions (p < 5 x 10-6, Bonferroni correction for the number of genes in our InWeb 
dataset) but null synonymous constraint scores, indicating intolerance to functionally relevant 
mutation rather than fluctuations in the local mutation rate4. Of these, 107/9729 genes pass this 
stringent threshold (p < 2.2 x 10-16; Table S1), and form the core of the analysis presented here. 
We found that 67/107 form a connected subnetwork (Figure 2A; Table 1). Five additional genes 
are included as our cluster detection algorithm by design looks for a backbone of null nodes 
connected to many signal nodes. To assess the significance of this observation, we randomly 
distribute constraint scores to InWeb nodes 1000 times and find that the constrained 
subnetwork is larger (p < 0.001) and more densely connected (number of edges: p < 0.001; 
clustering coefficient: p = 0.008) than expected by chance (Figure 2B). As such, it also explains 
more total constraint in the genome than expected (p < 0.001). After accounting for the genes 
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forming this subnetwork, we found no evidence of other independent subnetworks of 
constrained genes. 
 
The genes in the constrained subnetwork appear to represent several fundamental cell 
processes, most notably mitosis and cell proliferation (SMC1A, SMC3, CTNNB1) and 
transcriptional regulation (CHD3, CHD4, SMARCA4). We performed a formal pathway analysis 
to further test this and found enrichment of several annotated pathways reflecting these 
fundamental processes (Table 2). Encouraged that our detected subnetwork represents one or 
more biological processes under constraint, we sought to add cellular context to our 
observations. In particular, we wanted to determine if this group of genes is preferentially 
expressed in particular tissues, indicating a likely site of action. We thus developed an approach 
to estimate the joint probability of preferential expression of the genes in the subnetwork in each 
tissue of an atlas of expression data, while accounting for how frequently each gene is detected 
across the entire atlas. We applied our approach, which uses Markov random fields, to the 
expression data on 27 primary tissues and cell lines available from the Roadmap Epigenome 
Project. Using two conservative permutation-based significance tests, we find the constrained 
subnetwork is preferentially expressed in a number of fetal and immune tissues (Figure 2C and 
Table 3), including fetal brain (p < 0.001), the immune cell subpopulations marked by CD34 (p < 
0.001) and CD8 (p = 0.017) and fetal thymus (p = 0.048). We note that, whilst only a subset of 
genes are expressed in any one tissue, the combinations of genes expressed in these tissues is 
highly statistically significant: each gene is only expressed in a small subset of the tissues 
interrogated, so the cumulative probability of seeing these genes coordinately expressed in any 
one tissue is small.  
 
As several tissues are enriched for subnetwork expression, we sought to understand whether 
we were capturing the same signature across multiple tissues reflecting a shared process. We 
assessed whether the same genes are preferentially expressed in each tissue, and found a 
distinct signature in the fetal brain and heart samples and the immune cell subpopulations 
(CD34, CD8, CD3, thymus; pairwise p < 0.05 hypergeometric test; Table S2). To ensure our 
tissue expression results are not an artifact of the threshold we set for preferential expression, 
we repeated the entire analysis with a range of threshold values and found consistent results 
across tissues; this is most notable in fetal brain (Figure 2D and Table S3), which remains 
significant irrespective of threshold used. 
 
Genes under selective constraint are more likely to harbor pathogenic mutations causing 
mendelian diseases, consistent with intolerance of functional mutations4. Accordingly, we found 
that our subnetwork of 72 genes is significantly enriched for OMIM annotations (p = 0.0013). To 
further elucidate this observation, we mapped all OMIM entries to Medical Subject Headings 
(MeSH) disease categories and assessed enrichment per organ system category. We found 
that our subnetwork is significantly enriched for genes mutated in mendelian diseases affecting 
the central nervous system (Fisher’s exact p = 0.0017, Table S5), validating our observation of 
enrichment in fetal brain. We note that this enrichment is not in the inflammatory/immune 
neurological disease sub-category, suggesting no overlap with the discrete immune signature 
we found. Samocha et al have previously reported that constrained genes are also enriched for 
de novo mutations associated with autism spectrum disorders, further strengthening our 
conclusion that this constrained subnetwork represents a brain-related biological process.  
 
The constrained module is preferentially expressed in early brain development 
To further elucidate the relevance of our constrained module to brain physiology, we 
interrogated expression data for multiple brain structures across developmental stages from the 
BrainSpan project9. We found a strong signature of preferential expression in very early stages 
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of development, which declines rapidly and is absent by mid-gestation and remains inactive 
after birth into adulthood (Figure 3A and Table 3). Several transitional structures in the early 
brain exhibit significant preferential expression levels, including the ganglionic eminences that 
eventually form the ventral forebrain and the early structures of the hippocampus. The latter 
structure shows the most consistent signature across developmental time, with the module’s 
pattern of expression gradually weakening and becoming non-significant by mid gestation (post-
conception weeks 16-18; Figure 3B). These results, taken with the likely involvement of 
constrained genes in fundamental processes of mitosis and transcriptional regulation, suggest 
this gene module is relevant to developmental patterning at crucial time points in early brain 
development.  
 
Discussion 
We have shown that selective constraint influences sets of interacting genes involved in core 
cellular control processes, and that these have elevated expression levels in early stages of 
central nervous system development. We found the strongest enrichment in the early 
hippocampal stages at post-conception weeks 8-9, with additional signals in ventral forebrain 
structures and the parietal cortical wall. This stage of development involves neuronal 
proliferation through carefully orchestrated sequences of cell differentiation during 
developmental patterning across the brain. As the constrained subnetwork we have detected is 
enriched for genes involved in the control of mitosis and transcription, we speculate that it plays 
a fundamental role in these processes. Our finding that neurological mendelian disease genes 
are over-represented, combined with previous reports of de novo mutations affecting autism 
spectrum disorders, intellectual disability and epileptic encephalopathy, further support this 
notion, indicating that any perturbation leads to severe phenotype. This strong limitation in 
tolerance may also explain our observation of enrichment in immune cell populations, as precise 
control of developmental decisions is crucial to the correct differentiation of the lymphoid and 
myeloid lineages throughout life. As the selective constraint scores are by design corrected for 
both coding sequence length and GC bias4, constraint is more likely to be due to intolerance of 
changes to protein function rather than structural characteristics of the encoded proteins. 
 
More broadly, our results present a glimpse into how natural selection may coordinately shape 
groups of genes. Most studies of selection aim to identify specific alleles inconsistent with the 
nearly neutral model of drift, with particular success in studies of recent positive selection12,13. 
We suggest that the majority of these effects represent near-mendelian effects on relevant 
phenotypes, which are the actual targets of selective forces: for example, variability in lactase 
persistence is almost entirely explained by any one of handful of necessary and sufficient 
alleles14. However, the majority of human traits are polygenic, and selection would exert far 
weaker effects on relevant alleles, which only explain a fraction of phenotypic variance. 
Although such polygenic adaptation15 has proven difficult to detect thus far, our data provide 
confirmation that selective forces can act on groups of genes involved in the same process, 
supporting the notion that adaptation can act coordinately on multiple genes.  
 
We have presented a robust approach to identifying sets of interacting genes under selective 
constraint and placing these into biological context, using the wealth of from genome-scale data 
produced by large-scale public projects. Our approach builds on robust statistical frameworks to 
interrogate single variants or genes and thus provides previously lacking biological context from 
which further hypotheses can be drawn. The approach is flexible and not restricted to studies of 
constraint: measures of other forms of natural selection, non-human hominid introgression, 
common and rare variant disease association and any other gene-wise measures can be 
analyzed in our framework. Further, as PINTS is modular, appropriate tissue atlases can be 
used to meaningfully interpret results. We believe our work represents a new class of 
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approaches that can leverage multiple genome-scale datasets to gain new insight into biological 
activities responsible for health and disease.  
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Materials and methods 
Selective constraint data 
We have used selective constraint scores as previously described4. Briefly, we used a mutation 
rate table—containing the probability of every trinucleotide XY1Z mutating to every other 
possible trinucleotide XY2Z—based on intergenic SNPs from the 1000 Genomes project and the 
sequence of a gene to determine that gene’s probability of mutation. These sequence context-
based probabilities of mutation were additionally corrected for regional divergence between 
humans and macaques as well as the depth of coverage for each base in an exome sequencing 
study. Given the high correlation (Pearson’s r = 0.94) between the probability of a synonymous 
mutation in a gene with the number of rare (MAF < 0.01%) synonymous variants in that gene 
seen in the NHLBI’s Exome Sequencing Project, we used a linear model to predict the number 
of rare missense variants expected per gene in the same dataset. The difference between 
observation and expectation was quantified as a signed Z score of the chi-squared deviation. 
The missense Z score was used as the basis for determining selective constraint. In this study, 
we took a conservative approach to assessing selective constraint, using the Bonferroni 
correction for number of InWeb genes to derive a significance threshold of pc < 5 x 10-6. 
 
Detecting selectively constrained subnetworks in protein-protein interaction data 
We used InWeb, a previously described comprehensive map of protein-protein interactions, 
containing 169,736 high-confidence interactions between 12,687 gene products, compiled from 
a variety of sources10. By mapping ENSEMBL IDs, we were able to identify 9729 interconnected 
genes with constraint scores from Samocha et al also present in the REP expression data 
(below), to which we restricted our analysis. 
 
To detect clusters of interacting constrained genes, we used a heuristic form of the prize-
collecting Steiner tree (PCST) algorithm16,17, which has been previously applied to protein-
protein interaction data11. The canonical form of the PCST algorithm takes a connected, 
undirected graph G(V,E,w,u) with V vertices and E edges, with vertex weights w and edge 
weights u; it then finds the connected subgraph T(V’,E’) with maximal profit(T), which is some 
function of (w’-u’). By definition, T is a minimal spanning tree. The algorithm thus identifies the 
set of nodes with the strongest signal given the cost of their connecting edges. The classical 
PCST algorithm is, however, NP-hard, which makes it computationally intractable on the scale 
of InWeb16. Several heuristic simplifications have been proposed, including one previously 
validated as suitable for protein-protein interaction networks11. This approach partitions the set 
V into null (with weights w < 0) and signal (with weights w > 0) vertices (genes) and equal edge 
weights e before searching for T. Beisser et al have implemented this approach in the BioNet 
package for the R statistical language18. Here, we define signal genes as those with constraint 
scores passing the Bonferroni threshold of pc < 5 x 10-6, and calculate the weights as w = -
log(pc) + log(5 x 10-6). The PCST algorithm returns a single, maximal T solution; to discover 
further independent subnetworks, we apply the method iteratively after we assigning gene 
nodes in the previously discovered solution to be null.  
 
The algorithm always returns a solution for T, so we sought to assess the significance of our 
observations empirically. To understand if the observed solution is unlikely by chance, we 
permuted the constraint scores of genes 1000 times and for each iteration ran the heuristic 
PCST to generate 1000 random resampled subnetworks (these are also used in the tissue-
specificity analyses described below). We then quantified the following key parameters and 
assessed how many random subnetworks had values exceeding those of the true discovered 
subnetwork: size (number of gene nodes); density (number of connections); clustering 
coefficient and total amount of constraint explained (sum of constraint scores). 
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Gene expression data processing and preferential expression analysis 
We obtained gene expression data for a cosmopolitan set of tissues from the Roadmap 
Epigenome Project (REP)8. The REP data consists of 88 samples across 27 tissue types from 
diverse human organs, profiled on the Affymetrix HuEx-1_0-st-v2 exon array, which we 
downloaded on 9/25/2013 from http://www.genboree.org/EdaccData/Current-
Release/experiment-sample/Expression_Array/. We processed these data using standard 
methods available from the BioConductor project19,20. Briefly, we removed cross-hybridizing 
probesets, applied RMA background correction and quantile normalization and then 
summarized probesets to transcript-level intensities. We then mapped transcripts to genes 
using the current Gencode annotations for human genes (version 12). Transcripts with no match 
in Gencode were removed and the remaining transcripts we again quantile normalized. We then 
assigned transcript expression levels to their matching genes. Where multiple transcripts 
mapped to the same gene we used the transcript with maximum expression over all cell types. 
 
The Brainspan atlas9 data are available as processed, gene-level expression levels from 
from http://www.brainspan.org/static/download.html. We mapped these genes to the InWeb 
gene set using ENSEMBL IDs, and quantile normalized data for the overlapping genes. We 
then grouped replicate data by developmental stage and brain structure and calculated 
preferential expression as described above. 
 
We used a previously described approach to detect tissue-specific expression across each 
tissue atlas21. Briefly, we group together replicates from the same cell type and compute 
pairwise differential expression between all pairwise combinations of tissues, using an empirical 
Bayes approach to account for variance shrinkage22. Thus, for each gene there are 26 linear 
model coefficients and associated p values for each tissue, quantifying the comparison to all 
other tissues. For each gene in each tissue, we then capture the overall difference in expression 
from all other tissues as the sum of these coefficients. To reduce noise, only coefficients with p 
< 0.0019 (p < 0.05 with Bonferroni correction for 26 tissues) are considered. Rescaling all 
coefficient sums across all genes values to the range [-1,1] gives us a final preferential 
expression score. Intuitively, a gene highly expressed in only one tissue would get a high 
positive enrichment score in that tissue, as it is differentially expressed compared to all other 
tissues. The score is directional, strong negative values indicate very low expression in one 
tissue compared to all others. We partition the overall distribution into deciles and define 
preferential expression in a tissue if a gene has a score > 0.1. 
 
Scoring subnetwork tissue specificity 
To score the tissue specific expression of a subnetwork, we detect which genes in the 
subnetwork are preferentially expressed in each tissue of our expression atlas and assess the 
joint probability of this observation. To do so correctly we must account for the connections 
between genes and the pattern of preferential expression of each gene across the tissue atlas. 
Formally, we consider the subnetwork as a Markov random field with a particular configuration 
of preferentially expressed nodes in each atlas tissue. We compute a score for each 
configuration using a standard scoring function23: 
 

𝑃   𝑥!  ,… , 𝑥! =
1
𝑍

Φ 𝑥! , 𝑥!
!,! ∈!"#$%

 

 
The partition function Z is defined as: 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2015. ; https://doi.org/10.1101/017277doi: bioRxiv preprint 

https://doi.org/10.1101/017277
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝑍 = Φ(𝑥! , 𝑥!)
!,! ∈!"#$%!!  ,…,!!

 

 
where 𝑥!   (𝑖 = 1,… , 𝑛) represents a binary tissue specificity of the genes in the subnetwork for a 
given tissue with values either 1 (expressed) or 0 (not expressed). The Φ(𝑥! , 𝑥!) factor lists the 
co-occurrence of two connected nodes across tissues. This is calculated from the thresholded 
preferential expression data, and each pair of connected nodes is assigned exactly one 
configuration in each tissue, so that 
 

Φ 𝑥! = 0, 𝑥! = 0   + Φ 𝑥! = 1, 𝑥! = 0   +   Φ 𝑥! = 0, 𝑥! = 1   +   Φ 𝑥! = 1, 𝑥! = 1   = 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑡𝑖𝑠𝑠𝑢𝑒𝑠 
 
We assess the significance of these scores using two conservative permutation approaches. 
First we assess how likely we are to see each observed configuration (i.e. each pattern of 
detected/not detected nodes) in each tissue of the atlas. We do this by permuting the 
preferential expression scores across tissues for each gene independently and rescoring the 
configuration found in each tissue. This alters the co-expression structure across genes and 
empirically assesses how likely we are to see a particular configuration of a specific subnetwork 
by chance. Second, we estimate the probability of observing the extent of tissue specificity in 
each tissue. We construct the null expectation by scoring the resampled subnetworks generated 
by permutation above in each tissue and compute the empirical significance from this 
distribution of scores.  
 
To ensure our results are not artifacts of a specific preferential expression threshold, we repeat 
this analysis across a spectrum of preferential expression thresholds (See Table S3). 
 
Pathway analysis 
To test if any biological pathways are over represented in a subnetwork, we use the Gene Set 
Enrichment Analysis (GSEA) approach 24. We obtained the full list of curated canonical 
pathways from the GSEA website (http://www.broadinstitute.org/gsea/msigdb/collections.jsp) 
and mapped the 9729 genes to each pathway using HUGO IDs. We then test for enrichment of 
subnetwork members over background using the hypergeometric test. 
 
Online Mendelian Inheritance in Man (OMIM) analysis 
To test if genes in the subnetwork are more likely to harbor pathogenic mutations causing 
Mendelian diseases than expected by chance, we retrieved OMIM records for all 9729 genes 
using the biomaRt package in BioConductor20. We then tested whether the proportion of 107 
subnetwork genes with OMIM entries was higher than the background proportion of the full set 
of 9729 in our analysis using Fisher’s exact test (Table S4). We then mapped all OMIM entries 
to Medical Subject Headings (MeSH) disease categories using the Comparative 
Toxicogenomics Database (CTD) MEDIC disease vocabulary25 and assessed enrichment in any 
disease category, again using Fisher's exact test (Table S6). 
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Figure legends 
Figure 1: the Protein Interaction Network Tissue Search (PINTS) workflow. We project 
gene-wise selective constraint scores4 onto the InWeb protein-protein interaction dataset10 and 
use a heuristic version of the prize-collecting Steiner Tree algorithm11,18 to detect clusters of 
interacting constrained genes. We assess significance empirically, by randomly assigning the 
scores to genes 1000 times and calibrating detected subnetwork parameters. We then test any 
significant subnetwork for usual patterns of preferential expression21 across the Roadmap 
Epigenome Project expression data8, a cosmopolitan tissue atlas, using a Markov random field 
approach. The approach is flexible and modular, so gene interaction and tissue expression 
reference datasets can be altered according to the application. 
 
Figure 2: selectively constrained genes form a 72-member network, preferentially 
expressed in fetal brain, heart and immune cell populations.  A: constrained genes form a 
connected subnetwork of genes in the extreme of the constraint score distribution. B: the 
constrained subnetwork contains more genes (node p < 0.001), has more connections (edge p 
< 0.001), is more densely connected (clustering coefficient p = 0.008) and explains more total 
constraint (sum p < 0.001) than expected by chance (orange dots) compared to networks 
discovered in 1000 permutations of the constraint data (boxplots and black dots). C: the 
constrained subnetwork is preferentially expressed in a subset of Roadmap Epigenome Project 
tissues, including fetal brain. D: The most consistent preferential expression signal is seen in 
fetal brain, which is robust to stringency of preferential expression threshold.  
 
Figure 3: the 72-member selectively constrained gene subnetwork is active in early brain 
development, particularly in the hippocampus. A: the constrained subnetwork shows 
elevated signatures of preferential expression in early stages of brain development. B: the 
signature is most robust in the hippocampus and its ancestral structures (orange), with some 
enrichment in ventral forebrain and parietal cortical wall structures very early in development (8-
9 post-conception weeks). C: The constrained subnetwork shows significant preferential 
expression in early developmental stages, with patterns of expression losing this enrichment 
signature by mid-gestation. Overall, these data suggest the constrained subnetwork is 
specifically active in very early stages of hippocampal formation. 
 
Table legends 
Table 1: a 72-member constrained gene subnetwork. We find that 67/107 significantly 
constrained genes form a single protein-protein interaction subnetwork.  Five additional genes 
are also included (gray shading), as our cluster detection algorithm by design looks for a 
backbone of null nodes connected to many signal nodes. As shown in Figure 2, the subnetwork 
is significantly larger and more densely connected than expected by chance, and is 
preferentially expressed in a subset of early-stage neural and immune tissues. 
 
Table 2: the 72-member constrained gene subnetwork is enriched for canonical pathways 
reflecting neuronal and immune functionality and basic aspects of cell cycle control. We 
tested pathways from two sources (the Reactome database and KEGG, the Kyoto Encyclopedia 
of Genes and Genomes), assessing how many genes are in each pathway (All), how many map 
onto the 9729 inteconnected genes in our analysis (Mapped), and how many are present in the 
constrained subnetwork (Subnetwork). We assess significance using both the GSEA approach 
of a Kolmogorov-Smirnov (KS) test and a simple hypergeometric (HG) test of expected 
overlaps. 
 
Table 3: the 72-member constrained gene subnetwork is preferentially expressed in a 
range of tissues and brain structures. We find strong enrichment in a variety of tissues, 
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predominantly neural and immune-derived samples sourced from the Roadmap Epigenome 
Project (REP) and the BrainSpan Atlas. We report only tissues passing significance with two 
conservative independent empirical approaches: random permutation of preferential expression 
values for the subnetwork across tissues (permutation); and comparison to the largest 
subnetworks detected when we permute constraint scores for all 9729 InWeb genes.  
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Gene 
Constraint 

score Chr Start End Gene 
Constraint 

score Chr Start End 
DYNC1H1 9.977 14 101964528 102050792 UBR4 4.940 1 19074506 19210276 
PRPF8 8.302 17 1650629 1684882 CHD3 4.905 17 7884806 7912760 
HUWE1 7.973 X 53532096 53686729 USP7 4.866 16 8892094 8964514 
SMARCA4 6.604 19 10961001 11065395 PRPF6 4.826 20 63981135 64033100 
POLR2A 6.578 17 7484366 7514618 GNAS 4.806 20 58839718 58911192 
RYR2 6.436 1 237042205 237833988 THOC2 4.791 X 123600561 123733056 
MED12 6.388 X 71118556 71142454 FRY 4.772 13 32031300 32299122 
SNRNP200 6.166 2 96274336 96305515 OGT 4.753 X 71533083 71575897 
CHD4 6.162 12 6570083 6607476 POLR2B 4.729 4 56977722 57031168 
MTOR 5.974 1 11106535 11262507 KCNMA1 4.687 10 76869601 77638595 
GRIN1 5.971 9 137138390 137168762 TAOK1 4.685 17 29390464 29551904 
PPFIA3 5.794 19 49119389 49151026 BRWD3 4.683 X 80670854 80809688 
MLL 5.747 11 118436490 118526832 SPTAN1 4.671 9 128552558 128633665 
UBR5 5.720 8 102253012 102412841 PHIP 4.670 6 78935867 79078236 
ITPR1 5.589 3 4493348 4847840 DDB1 4.670 11 61299451 61342596 
CLTC 5.547 17 59619689 59696956 HSPA2 4.665 14 64535905 64546173 
FLNA 5.541 X 154348524 154374638 SPEG 4.644 2 219434846 219498287 
UPF1 5.514 19 18831938 18868236 SMC3 4.639 10 110567691 110604636 
HCFC1 5.450 X 153947553 153971807 MYH10 4.629 17 8474205 8630761 
DHX30 5.428 3 47802909 47850195 XPO1 4.621 2 61477849 61538626 
SPTBN1 5.423 2 54456285 54671445 CUL3 4.610 2 224470150 224585397 
SF3B1 5.418 2 197389784 197435091 IRS2 4.592 13 109752698 109786568 
SMARCA2 5.387 9 2015219 2193624 ADCY1 4.587 7 45574140 45723116 
CACNA1I 5.363 22 39570753 39689737 APC2 4.564 19 1446302 1473244 
SMC1A 5.360 X 53374149 53422728 ZBTB17 4.547 1 15941869 15976132 
GRIN2B 5.334 12 13537337 13980119 TLN1 4.517 9 35696948 35732395 
GRIN2D 5.211 19 48394875 48444931 MYH9 4.496 22 36281281 36388018 
TAF1 5.178 X 71366239 71532374 EEF2 4.478 19 3976056 3985469 
VCP 5.162 9 35056064 35073249 PDS5A 4.451 4 39822863 39977956 
CNOT1 5.146 16 58519951 58629886 PRKD2 4.438 19 46674275 46717127 
TRIO 5.109 5 14143702 14532128 BRD4 4.436 19 15235519 15332545 
CYFIP2 5.100 5 157266079 157395598 HSPA8 4.364 11 123057489 123063230 
SUPT5H 5.065 19 39436156 39476670 CTNNB1 4.198 3 41194837 41260096 
FZD8 5.028 10 35638249 35642278 UBC 3.997 12 124911604 124917368 
TNPO2 4.993 19 12699194 12724011 PIK3CD 3.858 1 9651732 9729114 
GTF2I 4.945 7 74657667 74760692 PIK3R1 2.170 5 68215720 68301821 

 
Table 1: legend above 
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Name All Mapped Subnetwork KS HG 
Developmental biology (Reactome) 397 344 10 2.53E-19 1.83E-05 
Immune system (Reactome) 934 702 9 4.98E-08 1.96E-02 
Adaptive immune system (Reactome) 540 421 8 3.13E-10 2.08E-03 
Axon guidance (Reactome) 252 220 8 4.62E-16 1.65E-05 
mRNA Processing (Reactome) 162 120 8 9.06E-12 1.05E-07 
Calcium signaling pathway (KEGG) 179 163 7 6.00E-08 1.36E-05 
Spliceosome (KEGG) 129 85 7 5.32E-21 9.60E-08 
mRNA splicing (Reactome) 112 74 7 6.26E-20 3.19E-08 
Processing of capped intron containing pre-mRNA (Reactome) 141 102 7 3.21E-13 3.99E-07 
Pathways in cancer (KEGG) 329 301 6 4.05E-12 4.21E-03 
Regulation of actin cytoskeleton (KEGG) 217 188 6 8.08E-13 2.74E-04 
Cell cycle (Reactome) 422 332 6 7.95E-03 7.12E-03 
mRNA splicing minor pathway (Reactome) 46 20 6 2.90E-05 3.56E-11 
Signalling by NGF (Reactome) 218 191 6 3.04E-21 3.02E-04 
Focal adhesion (KEGG) 202 188 5 9.72E-07 1.70E-03 
Long term potentiation (KEGG) 71 60 5 9.64E-15 2.97E-06 
MAPK signaling pathway (KEGG) 268 233 5 3.02E-15 4.92E-03 
HIV infection (Reactome) 208 163 5 1.32E-06 8.12E-04 
HIV life cycle (Reactome) 126 95 5 1.03E-02 4.27E-05 
Late phase of HIV life cycle (Reactome) 105 85 5 1.36E-02 2.27E-05 
Neuronal system (Reactome) 280 219 5 3.80E-28 3.64E-03 
NGF signalling via TRKa from the plasma membrane (Reactome) 138 120 5 1.09E-14 1.57E-04 
Signaling by GPCR (Reactome) 921 415 5 1.63E-11 6.21E-02 

 
Table 2: Legend above 
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Source  Tissue Developmental stage 
Permutation 
p-value 

Resampled 
p-value 

Tissue-specific 
genes 

REP CD34 Perinatal (cord blood) 0.00100 0.00100 10 

REP Fetal brain Fetal 0.01100 0.00100 16 

REP CD8 Adult (>20 years) 0.01700 0.00100 10 

REP Fetal thymus Fetal 0.04800 0.00100 5 

BrainSpan Caudal ganglionic eminence  2A (8-9 pcw) 0.00125 0.00125 20 

BrainSpan Dorsolateral prefrontal cortex  2A (8-9 pcw) 0.00125 0.00125 16 

BrainSpan Hippocampal anlage  2A (8-9 pcw) 0.00125 0.00125 17 

BrainSpan Lateral ganglionic eminence  2A (8-9 pcw) 0.00125 0.00125 19 

BrainSpan Primary motor-sensory cortex  2A (8-9 pcw) 0.00125 0.00125 20 

BrainSpan Medial frontal cortex 2A (8-9 pcw) 0.00125 0.00125 19 

BrainSpan Orbital frontal cortex  2A (8-9 pcw) 0.00250 0.00125 14 

BrainSpan Parietal neocortex 2A (8-9 pcw) 0.00250 0.00125 18 

BrainSpan Medial ganglionic eminence  2A (8-9 pcw) 0.00375 0.00125 18 

BrainSpan Occipital neocortex 2A (8-9 pcw) 0.00500 0.00125 18 

BrainSpan Hippocampus  2B (10-12 pcw) 0.00625 0.00125 18 

BrainSpan Hippocampus  3A (13-15 pcw) 0.00625 0.00125 19 

BrainSpan Primary somatosensory cortex  3A (13-15 pcw) 0.01250 0.00125 20 

BrainSpan Primary visual cortex  4 (19-24 pcw) 0.01750 0.00125 22 

BrainSpan Posterior superior temporal cortex  3B (16-18 pcw) 0.01875 0.00125 22 

BrainSpan Posteroventral parietal cortex 3A (13-15 pcw) 0.02250 0.00125 19 

BrainSpan Cerebellar cortex 4 (19-24 pcw) 0.02500 0.00125 19 

BrainSpan Primary motor cortex  3A (13-15 pcw) 0.02750 0.00125 19 

BrainSpan Striatum 3A (13-15 pcw) 0.04125 0.00125 17 

BrainSpan Dorsolateral prefrontal cortex 4A (19-24 pcw) 0.04625 0.00250 21 
 
Table 3: Legend above 
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