
Genetic variability under the seed bank coalescent

Jochen Blath1, Bjarki Eldon1,∗, Adrián González Casanova1,

Noemi Kurt1, Maite Wilke-Berenguer1

March 27, 2015

Author a�liations:

1: TU Berlin, Institut für Mathematik, 10623 Berlin, Germany

*: corresponding author

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2015. ; https://doi.org/10.1101/017244doi: bioRxiv preprint 

https://doi.org/10.1101/017244


Running title: Genetic variability under the seed bank coalescent

Keywords: Wright-Fisher model, seed bank coalescent, dormancy, site frequency spec-

trum, distance statistics

Corresponding author:

Dr. Bjarki Eldon

TU Berlin, Institut für Mathematik

Straÿe des 17. Juni 136

10623 Berlin, Germany

Email: eldon@math.tu-berlin.de

Phone: +49 30 314 25762

Fax: +49 30 314 21695

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2015. ; https://doi.org/10.1101/017244doi: bioRxiv preprint 

https://doi.org/10.1101/017244


Abstract

We analyse patterns of genetic variability of populations in the presence of a large

seed bank with the help of a new coalescent structure called the seed bank coalescent.

This ancestral process appears naturally as scaling limit of the genealogy of large popu-

lations that sustain seed banks, if the seed bank size and individual dormancy times are

of the same order as the active population. Mutations appear as Poisson processes on

the active lineages, and potentially at reduced rate also on the dormant lineages. The

presence of `dormant' lineages leads to qualitatively altered times to the most recent

common ancestor and non-classical patterns of genetic diversity. To illustrate this we

provide a Wright-Fisher model with seed bank component and mutation, motivated

from recent models of microbial dormancy, whose genealogy can be described by the

seed bank coalescent. Based on our coalescent model, we derive recursions for the expec-

tation and variance of the time to most recent common ancestor, number of segregating

sites, pairwise di�erences, and singletons. Estimates (obtained by simulations) of the

distributions of commonly employed distance statistics, in the presence and absence of

a seed bank, are compared. The e�ect of a seed bank on the expected site-frequency

spectrum is also investigated using simulations. Our results indicate that the presence

of a large seed bank considerably alters the distribution of some distance statistics, as

well as the site-frequency spectrum. Thus, one should be able to detect the presence of

a large seed bank in genetic data.
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Introduction

Many microorganisms can enter reversible dormant states of low (resp. zero) metabolic ac-

tivity, for example when faced with unfavourable environmental conditions; see e.g. Lennon

and Jones (2011) for a recent overview of this phenomenon. Such dormant forms may stay

inactive for extended periods of time and thus create a seed bank that should signi�cantly

a�ect the interplay of evolutionary forces driving the genetic variability of the microbial

population. In fact, in many eco-systems, the percentage of dormant cells compared to the

total population size is substantial, and sometimes even dominant (for example roughly 20%

in human gut, 40% in marine water, 80% in soil, cf. Lennon and Jones (2011)[Box 1, Table

a]). This abundance of dormant forms, which can be short-lived as well as staying inactive

for signi�cant periods of time (decades or century old spores are not uncommon) thus creates

a seed bank that bu�ers against environmental change, but potentially also against classical

evolutionary forces such as genetic drift, mutation, or selection.

In this paper, we investigate the e�ect of large seed banks (that is, comparable to the size

of the active population) on the patterns of genetic variability in populations over macro-

scopic timescales. In particular, we extend a recently introduced mathematical model for

the ancestral relationships in a Wright-Fisherian population of size N with geometric seed

bank age distribution (cf. Blath et al. (2015)) to accommodate di�erent mutation rates for

`active' and `dormant' individuals, as well as a positive death rate in the seed bank. The

resulting genealogy, measured over timescales of order N , can then be described by a new

universal coalescent structure, the `seed bank coalescent with mutation', if the individual

initiation and resuscitation rates between active and dormant states as well as the individual

mutation rates are of order 1/N . Measuring times in units of N and mutation rates in units

of 1/N is of course the classical scaling regime in population genetic modeling; in particular,

the classical Wright-Fisher model has a genealogy that converges in precisely this setup to

the usual Kingman coalescent with mutation (Kingman (1982a,c,b); see Wakeley (2009)

for an overview).

We will provide a precise description of these (seed bank) coalescents and corresponding
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population models, in part motivated by recent research in microbial dormancy Jones and

Lennon (2010); Lennon and Jones (2011), in the next section below. We argue that

our seed bank coalescent is universal in the sense that it is robust to the speci�cs of the

associated population model, as long as certain basic features are captured.

Our explicit seed bank coalescent model then allows us to derive expressions for several

important population genetic quantities. In particular, we provide recursions for the expec-

tation (and variance) of the time to the most recent common ancestor (TMRCA), the total

number of segregating sites, average pairwise di�erences and number of singletons in a sam-

ple (under the ini�nitely-many sites model assumptions). We then use these recursions, and

additional simulations based on the seed bank coalescent with mutation, to analyse Tajima's

D and related distance statistics in the presence of seed banks, and also the observed site-

frequency spectrum.

We hope that this basic analysis triggers further research on the e�ect of seed banks in

population genetics, for example concerning statistical methods that allow one to infer the

presence and size of seed banks from data, to allow model selection (e.g. seed bank coalescent

versus (time-changed) Kingman coalescent), and �nally to estimate evolutionary parameters

such as the mutation rate in dormant individuals, or the inactivation and reactivation rates

between the dormant and active states.

It is important to note that our approach is di�erent from a previously introduced math-

ematical seed bank model in Kaj et al. (2001). There, the authors consider a population of

constant size N where each individual chooses its parent a random amount of generations in

the past and copies its genetic type from there. The number of generations that separate each

parent and o�spring can be interpreted as the time (in generations) that the o�spring stays

dormant. The authors show that if the maximal time spent in the seed bank is restricted

to �nitely many {1, 2, . . . ,m}, where m is �xed, then the ancestral process induced by the

seed bank model converges, after the usual scaling of time by a factor N, to a time changed

(delayed) Kingman coalescent. Thus, typical patterns of genetic diversity, in particular the

normalised site frequency spectrum, will stay (qualitatively) unchanged. Of course, the point
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here is that the expected seed bank age distribution is not on the order of N , but uniformly

bounded by m, so that for the coalescent approximation to hold one necessarily needs that m

is small compared to N , which results a `weak' seed bank e�ect. This model has been applied

in Tellier et al. (2011) in the analysis of seed banks in certain species of wild tomatoes.

A related model was considered in Vitalis et al. (2004), which shares the feature that the

time spent in the seed bank is bounded by a �xed number independent of the population

size. For a more detailed mathematical discussion of such models, including previous work

in Blath et al. (2014), see Blath et al. (2015). The choice of the adequate coalescent

model (seed bank coalescent vs. (time-changed) Kingman coalescent) will thus also be an

important question for study design, and the development of corresponding model selection

rules will be part of future research.
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Coalescent models and seed banks

Before we discuss the seed bank coalescent, we brie�y recall the classical Kingman coalescent

for reference - this will ease the comparison of the underlying assumptions of both models.

The Kingman coalescent with mutation

The Kingman coalescent (Kingman, 1982a,c,b) describes the ancestral process of a large

class of neutral exchangeable population models including theWright-Fisher model (Wright,

1931; Fisher, 1930), the Moran model (Moran, 1958) and many Cannings models (Can-

nings, 1974). See e.g.Wakeley (2009) for an overview. If we trace the ancestral lines (that

is, the sequence of genetic ancestors at a locus) of a sample of size n backwards in time, we

obtain a binary tree, in which we see pairwise coalescences of branches until the most-recent

common ancestor is reached. Kingman proved that the probability law of this random tree

can be describe as follows: Each pair of lineages (there are
(
n
2

)
many) has the same chance to

coalesce, and the successive coalescence times are exponentially distributed with parameters(
n
2

)
,
(
n−1
2

)
, . . . , 1 until the last remaining pair of lines has coalesced. This elegant structure

allows one to easily determine the expected time to the most recent common ancestor of a

sample of size n, which is well known to be

En[TMRCA] = 2
(
1− 1

n

)
. (1)

Not surprisingly, we will essentially recover (1) for the seed bank coalescent de�ned below if

the relative seed bank size becomes small compared to the `active' population size.

As usual, mutations are placed upon the resulting coalescent tree according to a Poisson-

process with rate θ/2, for some appropriate θ > 0, so that the expected number of mutations

of a sample of size 2 is just θ.

The underlying assumptions about the population for a Kingman coalescent approxima-

tion of its genealogy to be justi�ed are simple but far-reaching, namely that the di�erent

genetic types in the population are selectively neutral (i.e. do not exhibit signi�cant �tness
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di�erences), and that the population size of the underlying population is essentially con-

stant in time. If the population can be described by the (haploid) Wright-Fisher model

(of constant size, say N), then, in order to arrive at the described limiting genealogy, it

is standard to measure time in units of N , the coalescent time scale, and to assume that

the individual mutation rates per generation are of order θ/(2N). The exact time-scaling

usually depends on the reproductive mechanism and other particularities of the underlying

model (it di�ers already among variants of the Moran model), but the Kingman coalescent

is still a universally valid limit for many a priori di�erent population models (including e. g.

all reproductive mechanisms with bounded o�spring variance, dioecy, age structure, partial

sel�ng and to some degree geographic structure), when these particularities exert their in�u-

ence over time scales much shorter than the coalescent time scale, cf. e.g. Wakeley (2013).

This is also the reason, why the Kingman coalescent still appears as limiting genealogy of

the `weak' seed bank model of Kaj et al. (2001) mentioned in the introduction.

This robustness has turned the Kingman coalescent into an extremely useful tool in popu-

lation genetics. In fact, it can be considered the standard null-model for neutral populations.

Its success is also based on the fact that it allows a simple derivation of many population

genetic quantities of interest, such as a formula for the expected number of segregating sites

E[S] =
θ

2

n−1∑
i=1

1

i
=:

θ

2
a(n) (2)

or the expected average number of pairwise di�erences π (Tajima, 1983), the expected

values of the site-frequency spectrum, cf. Fu (1995), when one assumes the in�nite-sites

model of Watterson (1975). This analytic tractability has allowed the construction of

a sophisticated statistical machinery for the inference of evolutionary parameters. We will

investigate the corresponding quantities for the seed bank coalescent below.
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The seed bank coalescent with mutation

Similar to the Kingman coalescent, the seed bank coalescent, mathematically introduced in

Blath et al. (2015), describes the ancestral lines of a sample taken from a population with

seed bank component. Here, we distinguish whether an ancestral line belongs to an `active'

or `dormant' individual for any given point backward in time. The main di�erence to the

Kingman coalescent is that as long as an ancestral line corresponds to a dormant individual

(in the seed bank), it cannot coalesce with other lines, since reproduction and thus �nding

a common ancestor is only possible for `active' individuals.

The dynamics is now easily described as follows: If there are currently n active and m

dormant lineages at some point in the past, each `active pair' may coalesce with the same

probability, after an exponential time with rate
(
n
2

)
, entirely similar to a classical Kingman

coalescent with currently n lineages. However, each active line becomes dormant at a positive

rate c > 0 (corresponding to an ancestor who emerged from the seed bank), and each dormant

line resuscitates, at a rate cK, for some K > 0. The parameter K re�ects the relative size

of the seed bank compared to the active population, and will be explained below in terms of

an explicit underlying population model. Since dormant lines are prevented from merging,

they signi�cantly delay the time to the most recent common ancestor. This mechanism is

reminiscent of a structured coalescent with two islands (Herbots, 1997; Notohara, 1990),

where lineages may only merge if they are in the same colony. Of course, if one samples

a seed bank coalescent backwards in time, one need not only specify the sample size, but

actually the number of sampled individuals from the active population (say n), and from the

dormant population (say m).

In this paper, we also consider mutations along the ancestral lines. As in the Kingman

case we place them along the active line segments according to a Poisson process with rate

θ1, and along the dormant segments at a rate θ2 ≥ 0. Depending on the concrete situation,

one may want to choose θ2 = 0. To determine the mutation rate in dormant individuals

will be an interesting inference question. In Figure 1, we illustrate a realisation of the seed

bank coalescent with mutations: Dormant segments are dotted and do not take part in
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coalescences.
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Figure 1: Realisation of a seed bank coalescent with all n = 8 sampled lines assumed active.
Mutations are only allowed on active segments (lines); dormant segments are dotted and are
not allowed to take part in coalescence events

1 2 3 4 5 6 7 8
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A formal mathematical de�nition of this process as partition-valued Markov chain can

be found in Blath et al. (2015); it is straightforward to extend their framework to include

mutations.

The parameters c and K can be understood as follows: c describes the proportion of

individuals that enter the seed bank per (macroscopic) coalescent time-unit. It is thus the

rate at which individuals become dormant. If the ratio of the size of the active population

and the dormant population in the underlying population is K : 1 (that is, the active

population is K times the size of the dormant population), and absolute (and thus also

relative) population sizes are assumed to stay constant, then, in order for the relative amount

of active and dormant individuals to stay balanced, the rate at which dormant individuals

resuscitate and return to the active population is necessarily of the form cK, see also Figure

2. It is important to note that in this setup, the average coalescent time that an inactive

individual stays dormant is of the order N/(cK). We will later also include a positive

mortality rate for dormant individuals, this will lead to a reduced `e�ective' relative seed

bank K̃.

Robustness and underlying assumptions of the seed bank coalescent

As for the Kingman coalescent, it is important to understand the underlying assumptions

that make the seed bank coalescent a reasonable model for the genealogy of a population:

Again, we assume the types in the population to be selectively neutral, so that there are

no signi�cant �tness di�erences. Further, we assume the population size N and the seed

bank size M to be constant, and to be of the same order, that is there exists a K > 0 so

that N = K ·M , i.e. the ratio between active and dormant individuals is constant equal

to K : 1. Finally, the rate at which an active individual becomes dormant should be c (on

the macroscopic coalescent scale), so that necessarily the average time (in coalescent time

units) that an individual stays dormant before being resuscitated becomes 1/(cK). If one

includes a positive mortality rate in the seed bank, this will lead to a modi�ed parameter

K̃, see below.
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We will provide below an example of a concrete seed bank population model, the `Wright-

Fisher model with geometric seed bank component', including mutation and mortality in the

seed bank, for which it can be proved that the seed bank coalescent with mutation governs

the genealogy if the population size N (and thus necessarily also seed bank size M) gets

large, and coalescent time is measured in units of the population size N . This is the same

scaling regime as in the case of the Kingman coalescent corresponding to genealogy of the

classical Wright-Fisher model.

The seed bank coalescent with mutation should be robust against small alterations � such

as in the transition or reproduction mechanism, or in the population or seed bank size � of

the underlying population, similar to the robustness of the Kingman coalescent. Especially

if these alterations occur on time scales that are much shorter than the coalescent time scale

(which is N for the haploid Wright-Fisher model). For example, one can still obtain this

coalescent in a Moran model with seed bank component, as long as the seed bank is on

the same order as the active population, and if the migration rates between seed bank and

active population scale suitably (as well as the mutation rate) with the coalescent time scale.

As mentioned above, this is an important di�erence to the model considered by Kaj et al.

(2001), where the time an individual stays in the seed bank is negligible compared to the

coalescent time scale, thus resulting merely in a (time-change) of a Kingman coalescent - a

`weak' seed bank e�ect.
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A Wright-Fisher model with geometric seed bank distri-

bution

We now introduce a Wright-Fisher type population model with mutation and seed bank in

which individuals stay dormant for geometrically distributed amounts of time. The model

is very much in line with classical probabilistic population genetics thinking (in particular

assuming constant population size), but also captures several features of microbial seed banks

described in Lennon and Jones (2011), in particular reversible states of dormancy and

mortality in the seed bank. We assume that the following (idealised) aspects of (microbial)

dormancy can be observed:

(i) Dormancy generates a seed bank consisting of a reservoir of dormant individuals.

(ii) The size of the seed bank is comparable to the order of the total population size, say

in a constant ratio K : 1 for some K > 0.

(iii) The size of the active population N and of the seed bank M = M(N) stays constant

in time; combined with (ii) we get N = K ·M .

(iv) The model is selectively neutral so that reproduction is entirely symmetric for all

individuals; for concreteness we assume reproduction according to the Wright-Fisher

mechanism in �xed generations. That means, the joint o�spring distribution of the

parents in each generation is symmetric multinomial. We interpret 0 o�spring as the

death of the parent, one o�spring as mere survival of the parent, and two or more

o�spring as successful reproduction leading to new individuals created by the parent.

(v) Mutations may happen in the active population, at constant probability of the order

θ1/(2N), but potentially also in the dormant population (at the same, or a reduced,

or vanishing, probability θ2/(2N)).

(vi) There is bi-directional and potentially repeated switching from active to dormant

states, which appears essentially independently among individuals (`spontaneous switch-
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ing'). The individual initiation probability of dormancy per generation is of the order

c/N , for c > 0.

(vii) Dormant individuals may die in the seed bank (due to maintenance and energy costs).

If mortality is assumed to be positive, the individual probability of death per generation

is of order d/N .

(viii) For each new generation, all these mechanisms occur independently of the previous

generations.

We schematically visualise this mechanism in Figure 2, which is similar to Figure 1 in

Jones and Lennon (2010). Whether these assumptions are met of course needs to be

determined for the concrete underlying real population. In this theoretical paper, we use the

above assumptions to construct an explicit mathematical model that leads, measuring time

in units of N , to a seed bank coalescent with mutation. Still, we wish to emphasise that, as

dicussed in the previous section, the seed bank coalescent is robust as long as certain basic

assumptions are met.

We now turn the above features into a formal mathematical model that can be rigorously

analysed, extending the Wright-Fisher model with geometric seed bank component in Blath

et al. (2015) by additionally including mortality in the seed bank and potentially di�erent

mutation rates in the active and dormant populations.
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Figure 2: Dynamics of reversible microbial dormancy, according to Jones and Lennon
(2010)
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De�nition 0.1 (Seed bank model with mutation and mortality). Let N ∈ N, and let

c,K, θ1 > 0 and θ2, d ≥ 0. The seed bank model with mutation is obtained by iterating the

following dynamics for each discrete generation k ∈ N0 (with the convention that all occuring

numbers are integers; if not one may enforce this using appropriate Gauss brackets):

• The N active individuals from generation k = 0 produce N − c = N(1 − c
N
) active

individuals in generation k = 1 by multinomial sampling with equal weights.

• Additionally, c dormant individuals, sampled uniformly at random without replacement

from the seed bank of size M := N/K in generation 0, reactivate, that is, they turn

into exactly one active individual in generation k = 1 each, and leave the seed bank.

• The active individuals from generation 0 are thus replaced by these (N − c) + c = N

new active individuals, forming the active population in the next generation k = 1.

• In the seed bank, d individuals, sampled uniformly at random without replacement from

generation k = 0, die.

• To replace the c+d vacancies in the seed bank, the N active individuals from generation

0 produce c+d seeds by multinomial sampling with equal weights, �lling the vacant slots

of the seeds that were activated.

• The remaining M − c − d = N
K
− c − d seeds from generation 0 remain inactive and

stay in the seed bank.

• During reproduction, each newly created individual copies its genetic type from its

parent.

• In each generation, each active individual is a�ected by a mutation with probability

θ1/N, and each dormant individual mutates with probability θ2/N (where θ2 may be 0).

This model is an extension of the model in Blath et al. (2015) to additionally include

mortality in the seed bank and incorporate (potentially distinct) mutation rates in the ac-

tive and dormant population. It appears to be a rather natural extension of the classical
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Wright-Fisher model. Note that the model has a geometric seed bank age distribution, since

every dormant individual in each generation has the same probability to become active resp.

die in the next generation, so that the time that an individual is in the dormant state is

geometrically distributed. The parameter of this geometric distribution is given by

c

M
=
cK

N
resp.

c+ d

M
=

(c+ d)K

N

in the absence resp. presence of mortality in the seed bank. With mathematical arguments

similar to those applied in Blath et al. (2015), it is now standard to show that the ancestral

process of a sample taken from the above population model converges, on the coalescent

time scale N , to the seed bank coalescent with parameters c and K, resp.

K̃ :=
c+ d

c
K,

and mutation rates θ1, θ2. It is interesting to see that mortality leads to a decrease of the

relative seed bank size in a way that depends on the initiation rate c, which is of course

rather intuitive. In this sense K̃ gives the `e�ective' relative seed bank size.

The type-frequencies in the bi-allelic seed bank population model

In this paper, we will mostly consider the in�nite sites model (Watterson, 1975), where

it is assumed that each mutation generates an entirely new type. However, before turning

to the in�nite-site model, we brie�y discuss the bi-allelic case, say with types {a,A}. Given

initial type con�gurations ξ0 ∈ {a,A}N and η0 ∈ {a,A}M , denote by

ξk :=
(
ξk(i)

)
i∈[N ]

, and ηk :=
(
ηk(j)

)
j∈[M ]

, k ∈ N,

the genetic type con�guration of the active individuals (ξ) and the dormant individuals (η)

in generation k (obtained from the above mechanism). We assume that each mutation causes
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a transition from a to A or from A to a. Let

XN
k :=

1

N

∑
i∈[N ]

1{ξk(i)=a} and Y M
k :=

1

M

∑
j∈[M ]

1{ηk(j)=a}, k ∈ N0. (3)

We call the discrete-time Markov chain (XN
k , Y

M
k )k∈N0 the Wright-Fisher frequency process

with mutation and seed bank component. It can be seen from a generator computation that

under our assumptions it converges as N →∞ to the two-dimensional di�usion (XNt, YNt)t≥0

that is the solution to the system of stochastic di�erential equations

dXt =
θ1
2
(1−Xt)dt−

θ1
2
Xtdt+ c(Yt −Xt)dt+

√
Xt(1−Xt)dBt,

dYt =
θ2
2
(1− Yt)dt−

θ2
2
Ytdt+ (c+ d)K(Xt − Yt)dt. (4)

Here, (Bt)t≥0 denotes standard one-dimensional Brownian motion. An alternative way to

represent this stochastic process is via its Kolmogorov backward generator, cf. e. g. Karlin

and Taylor (1981), which is given by

Lf(x, y) = ∂f(x, y)

∂x

[θ1
2
(1− x)− θ1

2
x+ c(y − x)

]
+

1

2

∂2f(x, y)

∂x2
x(1− x)

+
∂f(x, y)

∂y

[θ2
2
(1− y)− θ2

2
y + (c+ d)K(x− y)

]
,

for functions f ∈ C2([0, 1]2). Note that it this is reminiscent of the backward generator of

the structured coalescent with two islands (Herbots, 1997; Notohara, 1990); however,

its qualitative behaviour is very di�erent. Its relation to the structured coalescent with two

islands will be investigated in future research.

Population genetics with the seed bank coalescent

In contrast to Lennon and Jones (2011), who use a deterministic population dynamics

approach to study seed banks, we are interested in probabilistic e�ects of seed banks on

genetic variability. Thus our methods are genealogical and sample based, and we use a
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coalescent approach to study the genealogy of a sample. In order to better understand how

seed banks shape genealogies, we consider genealogical properties, such as time to most

recent common ancestor, total tree size, and length of external branches.

Genealogical tree properties

We �rst discuss some classical population genetic properties of the seed bank coalescent

when viewed as a random tree without mutations. For the results that we derive below, it

will usually be su�cient to consider the block-counting process (Nt,Mt)t≥0, of our coalescent,

where Nt gives the number of lines in our coalescent that are active and Mt denotes the

number of dormant lines t time units in the past. Then, (Nt,Mt)t≥0 is the continuous time

Markov chain started in (N0,M0) ∈ N0 × N0 with transitions

(n,m) 7→


(n− 1,m+ 1), at rate cn,

(n+ 1,m− 1), at rate (c+ d)K = cK̃,

(n− 1,m), at rate
(
n
2

)
.

(5)

Again, introducing mutation can be done in the usual way, by superimposing independent

Poisson processes with rate θ1 on the active lines, and at rate θ2 on the dormant lines. If the

block-counting process is currently in state (Nt,Mt) = (n,m), then a mutation in an active

line happens at rate nθ1, and a mutation in a dormant line at rate mθ2. The total jump rate

from state (n,m) of the backward process with mutation is thus given by

rn,m :=

(
n

2

)
+ cn+ (c+ d)Km+ θ1n+ θ2m. (6)

Time to the most recent common ancestor

It has been shown in Blath et al. (2015) [Theorem 4.6] that the expected time to the most

recent common ancestor (En,0[TMRCA]) for the seed bank coalescent, if started in a sample of

active individuals of size n, is O(log log n), in stark contrast to the corresponding quantity
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for the classical Kingman coalescent, which is bounded by 2, uniformly in n, cf. (1). This

already indicates that one should expect elevated levels of (old) genetic variability under

the seed bank coalescent, since more (old) mutations can be accumulated. While the above

result shows the asymptotic behaviour of the En,0[TMRCA] for large n, it does not give precise

information for the exact absolute value, in particular for `small to medium' n. Here, we

provide recursions for its expected value and variance that can be computed e�ciently. First,

we introduce some notation.

We de�ne the time to the most recent common ancestor of the seed bank coalescent

formally to be

TMRCA := inf{t > 0 : Nt +Mt = 1}.

If the sample consists in an active and bn dormant individuals, for some a, b ∈ R+, then

the expected time to the most recent common ancestor is log(bn + log an), (Blath et al.,

2015). Here, it is interesting to note that the time to the most recent common ancestor of

the Bolhausen-Sznitman coalescent is also O(log log n) (Goldschmidt andMartin, 2005).

The Bolthausen-Sznitman coalescent is often used as a model for selection, cf. e.g. Neher

and Hallatschek (2013).

One can compute the expected time to most recent common ancestor recursively as follows.

For n,m ∈ N0 let

tn,m := En,m[TMRCA], (7)

where En,m denotes expectation when started in (N0,M0) = (n,m), ie. with n active lines

and m dormant ones. Observe that we need to consider both types of lines in order to

calculate tn,m. Write

λn,m :=

(
n

2

)
+ cn+ (c+ d)Km, (8)

and abbreviate

αn,m :=

(
n
2

)
λn,m

, βn,m :=
cn

λn,m
, γn,m :=

(c+ d)Km

λn,m
. (9)
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Then we have the following recursive representation

En,m[TMRCA] = tn,m = λ−1n,m + αn,mtn−1,m + βn,mtn−1,m+1 + γn,mtn+1,m−1, (10)

with initial conditions t1,0 = t0,1 = 0. The proof of (10) and a recursion for the variance

of TMRCA is given in Section S1. Since the process Nt + Mt is non-increasing in t, these

recursions can be solved iteratively. In fact,

t2,0 =
(c+ (c+ d)K)2

(c+ d)2K2
, (11)

which in the case without mortality (d = 0) reduces to

t2,0 = 1 +
2

K
+

1

K2
. (12)

Notably, t2,0 is constant for sample size 2 (see Eq. 11) as c varies (Table 1) if d = 0, and in

particular does not converge for c → 0 to the Kingman case. This e�ect is similar to the

corresponding behaviour of the structured coalescent with two islands if the migration rate

goes to 0, cf. Nath and Griffiths (1993). However, the Kingman coalescent values are

recovered as the seed bank size decreases (e.g. for K = 100 in Table 1).

The fact that t2,0 = 4 for K = 1, d = 0 can be understood heuristically if c is large: In that

situation, transitions between active and dormant states happen very fast, thus at any given

time the probability that a line is active is about 1/2, and therefore the probability that

both lines of a given pair are active (and thus able to merge) is approximately 1/4. We can

therefore conjecture that for d = 0, K = 1 and c→∞ the genealogy of a sample is given by

a time change by a factor 4 of Kingman's coalescent.

Tables 1 and 2 show values of tn,0 obtained from (10) for various parameter choices and

sample sizes. The relative size of the seed bank (K) has a signi�cant e�ect on En,0 [TMRCA];

a large seed bank (K small) increases En,0 [TMRCA], while the e�ect of c is to dampen the

increase in En,0 [TMRCA] with sample size (Table (1)). The e�ect of the seed bank death rate

d on En,0 [TMRCA] is to dampen the e�ect of the relative size (K) of the seed bank (Table 2).
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Table 1: The expected time to most recent common ancestor (En,0 [TMRCA]) of the seed bank
coalescent, obtained from (10), with seed bank size K, sample size n, dormancy initiation
rates c as shown, and d = 0. All sampled lines are from the active population (sample
con�guration (n, 0)). For comparison, E(n) [TMRCA] = 2(1 − 1/n) when associated with the
Kingman coalescent (K =∞). The multiplication ×104 only applies to the �rst table with
K = 0.01.

K = 0.01, ×104
sample size n

c 2 10 100
0.01 1.02 2.868 5.185
0.1 1.02 2.731 4.487
1 1.02 2.187 2.666
10 1.02 1.878 2.085
100 1.02 1.84 2.026

K = 1
sample size n

c 2 10 100
0.01 4 10.21 17.18
0.1 4 9.671 14.97
1 4 8.071 10.02
10 4 7.317 8.221
100 4 7.212 7.954

K = 100
sample size n

c 2 10 100
0.01 1.02 1.846 2.052
0.1 1.02 1.838 2.026
1 1.02 1.836 2.02
10 1.02 1.836 2.02
100 1.02 1.836 2.02
K =∞ 1 1.80 1.98
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Table 2: The expected time to most recent common ancestor (En,0 [TMRCA]) of the seed-bank
coalescent, obtained from (10), with all n = 100 sampled lines assumed active, c, K, and d
as shown. For comparison, E(n) [TMRCA] = 2(1 − 1/n) (1.98 for n = 100) when associated
with the Kingman coalescent.

c = 1, n = 100, parameter d
K 0.01 0.1 1 10 100
0.01 2.614e+04 2.208e+04 6814 270.7 9.91
0.1 315.6 270.7 96.2 9.04 2.442
1 9.91 9.04 5.201 2.4 2.02
10 2.442 2.4 2.197 2.017 1.984
100 2.02 2.017 2 1.984 1.98

K = 1, n = 100, parameter d
c 0.01 0.1 1 10 100
0.01 8.281 2.893 2.051 1.985 1.98
0.1 13.39 7.215 2.617 2.025 1.984
1 9.91 9.04 5.201 2.4 2.02
10 8.213 8.138 7.477 4.556 2.361
100 7.953 7.946 7.875 7.245 4.466
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Total tree length and length of external branches

In order to investigate the genetic variability of a sample, in terms e.g. of the number of

segregating sites and the number of singletons, it is useful to have information about the

total tree length and the total length of external branches. Let L(a) denote the total length

of all branches while they are active, and L(d) the total lenght of all branches while they are

dormant. Their expectations

l(a)n,m := En,m[L(a)], l(d)n,m := En,m[L(d)]. (13)

may be calculated using the following recursions for n,m ∈ N0, and with λn,m given by (8),

l(a)n,m = nλ−1n,m + αn,ml
(a)
n−1,m + βn,ml

(a)
n−1,m+1 + γn,ml

(a)
n+1,m−1, (14)

l(d)n,m = mλ−1n,m + αn,ml
(d)
n−1,m + βn,ml

(d)
n−1,m+1 + γn,ml

(d)
n+1,m−1. (15)

Similar recursions hold for their variances as well as for the corresponding values of the

total length of external branches, which can be found in the Supplementary Information

together with the respective proofs. From (14) and (15) one readily obtains

l
(a)
2,0 =

2(c+ (c+ d)K)

(c+ d)K
, l

(d)
2,0 =

2c(c+ (c+ d)K)

(c+ d)2K2
. (16)

We observe that l
(d)
2,0 and l

(a)
2,0 given in (16) are independent of c if d = 0 as also seen for t2,0

cf. (11). We will use (16) to obtain closed-form expressions for expected average number of

pairwise di�erences.

The numerical solutions of (14) and (15) indicate that for n ≥ 2,

l
(a)
n,0 =

(c+ d)K

c
· l(d)n,0 = K̃ · l(d)n,0. (17)

Hence the expected total lenght of the active and the dormant parts of the tree are propor-

tional, and ratio is given by the e�ective relative seed bank size.
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Recursions for the expected total length of external branches are given in Prop. S1.3 in

Supporting Information. Let e
(a)
n,m and e

(d)
n,m denote the expected total lengths of active and

dormant external branches, respectively, when started with n active and m dormant lines.

The numerical solutions of the recursions indicate that the ratio of expected values e
(a)
n,0 and

e
(d)
n,0 is also given by (17).

Recursions for expected branch lengths associated with any other class than singletons are

more complicated to derive, and we postpone those for further study. Simulation results (not

shown) suggest that the result (17) we obtained for relative expected total length of active

branches, and active external branches, holds for all branch length classes; if B
(a)
i

(
B

(d)
i

)
denotes the total length of active (dormant) branches subtending i ∈ {1, 2, . . . , n−1} leaves,

then, if all our sampled lines are active, we claim that
E
[
B

(a)
i

]
E
[
B

(a)
i

]
+E

[
B

(d)
i

] is given by (17).

Table S1 shows values of r10,10 := e
(a)
10,10/

(
e
(a)
10,10 + e

(d)
10,10

)
, ie. the relative expected total

length of external branches when our sample consists of ten active lines, and ten dormant

ones. In contrast to the case when all sampled lines are active, c clearly impacts r10,10 when

d is small. In line with previous results, d reduces the e�ect of the relative size (K) of the

seed bank.

Table S2 shows the expected total lengths of active and dormant external branches e
(a)
n,0

and e
(d)
n,0 for values of c, K, and d as shown. When the seed bank is large (K small), e

(a)
n,0

and e
(d)
n,0 can be much longer than the expected length equal to 2 when associated with the

Kingman coalescent (Fu, 1995) . However, as noted before, the e�ect of K depends on d.

The e�ect of c also depends on d; changes in c have bigger e�ect when d is large.

One can gain insight into the e�ects of a seed bank on the site frequency spectrum by

studying the e�ects of a seed bank on relative branch lengths. Let R
(a)
i :=

B
(a)
i

B(a) denote

the relative total length of active branches subtending i leaves (B
(a)
i ), relative to the total

length of active branches B(a) = B
(a)
1 + · · · + B

(a)
n−1, and we only consider the case when

all n sampled lines are active. Thus, if one assumes that the mutation rate in the seed

bank is negligible compared to the mutation rate in the active population, En,0
[
R

(a)
1

]
should
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be a good indicator of the relative number of singletons, relative to the total number of

segregating sites. In addition, we investigate En,0
[
R

(a)
i

]
to learn if and how the presence of

a seed bank a�ects genetic variation, even if no mutations occur in the seed bank. Figure S1

shows estimates of En,0
[
R

(a)
i

]
(obtained by simulations) for values of c, K, and d as shown

(all n = 100 sampled lines assumed active). The main conclusion is that a large seed bank

reduces the relative length of external branches, and increases the relative magnitude of the

right tail of the branch length spectrum. Thus, one would expect to see a similar pattern

in neutral genetic variation: a reduced relative count of singletons, and relative increase of

polymorphic sites in high count.

Neutral genetic variation

In this subsection we derive and study several recursions for common measures of DNA

sequence variation in the in�nite sites model (ISM) of Watterson (1975). We will also

investigate how these quantities di�er from the corresponding values under the Kingman

coalescent, in an e�ort to understand how seed bank parameters a�ect genetic variability.

Segregating sites

First we consider the number of segregating sites S in a sample, which, assuming the ISM,

is the total number of mutations that occur in the genealogy of the sample until the time

of its most recent common ancestor. In addition to being of interest on its own, S is a key

ingredient in commonly employed distance statistics such as those of Tajima (1989) and Fu

and Li (1993). We let mutations occur on active branch lengths according to independent

Poisson processes each with rate θ1/2, and on dormant branches with rate θ2/2. The expected

value of S can be expressed in terms of the expected total tree-lengths as

En,m[S] =
θ1
2
l(a)n,m +

θ2
2
l(d)n,m. (18)
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The proof of this, as well as a similar expressions for the variance of the number of segregating

sites can be found in the supplementary material.

Table 3 shows the expected number of segregating sites En,0[S] = sn,0 in a sample of

size n taken from the active population for values of c and K as shown. The size of the

seed bank K strongly in�uences the number of segregating sites. If there is no mutation

in the seed bank, it roughly doubles for K = 1 and approaches the normal value of the

Kingman coalescent for small seed banks (K = 100). The parameter K seems to have a

more signi�cant in�uence than the parameter c.
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Table 3: The expected total number of segregating sites (sn,0), with values of K, c, d as
shown, and sample size n = 100 (all lines from the active population); with θ1 = 2, and
θ2 = 0. When associated with the Kingman coalescent, with θ = 2, and s(100) = 10.35.

values of K, d = θ2 = 0
c 0.01 0.1 1 10 100
0.01 1035 112.8 20.6 11.38 10.46
0.1 958.3 105.3 19.98 11.36 10.46
1 790.6 90.37 19.4 11.38 10.46
10 884 99.92 20.16 11.39 10.46
100 1010 110.8 20.61 11.39 10.46

values of K, d = 100, θ2 = 0
c 0.01 0.1 1 10 100
0.01 10.46 10.37 10.36 10.35 10.35
0.1 11.36 10.46 10.37 10.36 10.35
1 19.32 11.37 10.46 10.37 10.36
10 91.97 19.3 11.29 10.45 10.36
100 510.3 60.83 15.51 10.87 10.41
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Average pairwise di�erences

Average pairwise di�erences are a key ingredient in the distance statistics of Tajima (1983)

and Fay and Wu (2000). Expected value and variance for average pairwise di�erences in

the Kingman coalescent were �rst derived in Tajima (1983). Here, we give an expression

for the expectation in terms of the expected total tree lengths. Denote by π the average

number of pairwise di�erences

π =
1(

N0+M0

2

)K, (19)

where K =
∑

(i,j):i<jKij is the total number of pairwise di�erences, with Kij denoting the

number of di�erences observed in the pair of DNA sequences indexed by (i, j).We abbreviate

dn,m := En,m[K] and obtain

En,m [π] =
1(

n+m
2

)dn,m
which can be calculated using

En,m [π] =
1(

n+m
2

) [(n
2

)(
θ1
2
l
(a)
2,0 +

θ2
2
l
(d)
2,0

)
+ nm

(
θ1
2
l
(a)
1,1 +

θ2
2
l
(d)
1,1

)
+

(
m

2

)(
θ1
2
l
(a)
0,2 +

θ2
2
l
(d)
0,2

)]
(20)

where l
(a)
n,m and l

(d)
n,m are de�ned in (13).

Hence, given a sample con�guration (n, 0), i.e. our n sampled lines are all active, (20),

together with (16), gives

En,0 [π] =
c+ (c+ d)K

(c+ d)K

(
θ1 +

cθ2
(c+ d)K

)
. (21)

If now d = 0, the dependence on c disappears again, since we have

En,0 [π] = θ1 +
θ1
K

+

(
1 +

1

K

)
θ2
K
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which is obviously highly elevated compared to θ1 if the seed bank is large (K small). For

comparison, E(n) [π] = θ1 when associated with the usual Kingman coalescent, which we

recover in the absence of a seed bank (K →∞) in (21).

The site-frequency spectrum (SFS)

The site frequency spectrum (SFS) is one of the most important summary statistics of

population genetic data in the in�nite sites model. Suppose that we can distinguish between

mutant and wild-type, e.g. with the help of an outgroup. As before, we distinguish between

the number of samples taken from the active population (say n) and the dormant population

(say m). Then, the SFS of an (n,m)-sample is given by

ξ(n,m) :=
(
ξ
(n+m)
1 , . . . , ξ

(n+m)
n+m−1

)
, (22)

where the ξ
(n+m)
i , i = 1, . . . , n+m− 1 denote the number of sites at which variants appear

i-times in our sample of size n + m. For the Kingman coalescent, the expected values,

variances and covariances of the SFS have been derived by Fu (1995). Expected values and

covariances can be computed in principle extending the theory in Fu (1995) resp. Griffiths

and Tavaré (1998), however, are far more involved than the previous recursions and will be

treated in future research. We derive recursions for the expected number of singletons, and

investigate the whole SFS by simulation.

Number of singletons

The number of singletons in a sample is often taken as an indicator of the kind of historical

processes that have acted on the population. By `singletons' we mean the number of derived

(or new) mutations which appear only once in the sample, which in the in�nite sites model,

are equal to the number of mutations occurring on external branches. Thus we can relate the

expected number of singletons, denoted by ξ
(n+m)
1 , to the total length of external branches

in the same way as we related the number of segregating sites to the total tree length. Let

e
(a)
n,n′,m,m′ denote the expected total length of external branches when our sample consists of
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n active external lines, n′ active internal lines, m dormant external lines, and m′ dormant

internal lines. De�ne e
(d)
n,n′,m,m′ similarly as the expected total length of dormant external

branches. Recursions for e
(d)
n,n′,m,m′ and e

(a)
n,n′,m,m′ are given in the supplementary material.

For n,m ∈ N0 we have that the expected number of singletons is given by

ξ
(n+m)
1 =

θ1
2
e
(a)
n,0,m,0 +

θ2
2
e
(d)
n,0,m,0.

Thus, one can compute the expected number of singtetons by solving the recursions for

external branch lenghts. By way of example, Table S2 gives values of e
(a)
n,0,m,0 and e

(d)
n,0,m,0 for

a sample of 10 active lines (n = 10, m = 0).

The whole site-frequency spectrum

Figure 3 shows estimates of the normalised expected frequency spectrum E
[
ξ
(n,0)
i

]
/E
[
|ξ(n,0)|

]
,

where |ξ(n,0)| = ξ
(n,0)
1 + · · · + ξ

(n,0)
n−1 denotes the total number of segregating sites. Figure 3

shows that if the relative size of the seed bank is small (say, K = 100), then the SFS is almost

una�ected by dormancy, in line with intuition. If the seed bank is large (say K = 0.1) and

the transition rate c = 1 is comparable to the mutation rate θ1/2 = 1 then the spectrum dif-

fers signi�cantly, in particular the number of singletons is reduced by about one-half, which

should be signi�cant, and the right-tail is much heavier.

This can be understood as follows: if the seed bank leads to an extended time to the most

recent common ancestor, then the proportion of old mutations should increase, and these

should be visible in many sampled individuals, strengthening the right tail of the spectrum.

It is interesting to see that even in the presence of a large seed bank (say K = 0.1), large

transitions rates (say c = 100) do not seem to a�ect the normalised spectrum. Again, this

can be understood intuitively, since by the arguments presented in the discussion after (12)

large c should lead to a constant time change of the Kingman coalescent (with a time change

depending on K). Such a time change does not a�ect the normalised spectrum.

One reason for considering the SFS is naturally that one would like to be able to use

the SFS in inference, to determine, say, if a seed bank is present, and how large it is. If
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one has expressions for the expected SFS under some coalescent model, one can use the

normalised expected SFS in an approximate likelihood inference (see eg. Eldon et al.,

2015). The normalised spectrum is also appealing since it is quite robust to changes in

the mutation rate (Eldon et al., 2015). For comparison, Figure S2 shows estimates of the

expected normalised spectrum E
[
ζ
(n)
i

]
where ζ

(n)
i :=

ξ
(n)
i

|ξ(n)| , and shows a similar pattern as

for the normalised expected spectrum in Figure 3.
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Figure 3: Estimates of the normalised site-frequency spectrum ϕ
(n)
i = E

[
ξ
(n)
i

]
/E
[
|ξ(n)|

]
with

all n = 100 sampled lines assumed active, and values of c and K as shown (d = 0). The
mutation rate in the active population is �xed: θ1 = 2, and there is no mutation in the
dormant states (θ2 = 0). All estimates based on 105 replicates.
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Distance statistics

Rigorous inference work is beyond the scope of the current paper. However, we can still con-

sider (by simulation) estimates of the distribution of various commonly employed distance

statistics. Distance statistics for the site-frequency spectrum are often employed to make

inference about historical processes acting on genetic variation in natural populations. Com-

monly used statistics include the ones of Tajima (1989) (DT), Fu and Li (1993) (DFL), and

Fay and Wu (2000) (DFW). These statistics contrast di�erent parts of the site-frequency

spectrum (cf. eg. Zeng et al., 2006).

The `2 distance

Arguably the most natural distance statistic to consider is the `2-distance (or sum of squares)

of the whole SFS (or some lumped version thereof) between the observed SFS and an ex-

pected SFS based on some coalescent model. The `
(n)
2 statistic (n denotes sample size) is

given by

`
(n)
2 =

n−1∑
i=1

(
ξ
(n)
i − E

[
ξ
(n)
i

])2
Var

[
ξ
(n)
i

]


1/2

, (23)

where, in our case, expectation and variance are taken with respect to the Kingman coalescent

(Fu, 1995). Estimates of the distribution of `
(n)
2 are shown in Figure 4. As the size of the

seed bank increases (K decreases), one observes worse �t of the site-frequency spectrum with

the expected SFS associated with the Kingman coalescent.
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Figure 4: Estimates of the distribution of the `
(n)
2 statistic (23), with all n = 100 sampled

lines assumed active, c and K as shown, θ1 = 2, θ2 = 0. The vertical broken lines are the
5%, 25%, 50%, 75%, 95% quantiles and the black square (�) denotes the mean. The entries
are normalised to have unit mass 1. All estimates are based on 105 replicates.
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Tajima's D

Tajima's statistic (DT) for a sample of size n, with a(n) =
∑n−1

j=1 j
−1, is de�ned as

DT =
π − S

a(n)√
V[π − S

a(n)
]
, (24)

(Tajima, 1989) where the variance V[π − S
a(n)

] depends on the mutation rate θ which is

usually estimated from the data. Under the Kingman coalescent, E[DT] = 0. Deviations

from the Kingman coalescent model become signi�cant at the 5% level if they are either

greater than 2 or smaller than −2. Negative values of DT should appear if there is an

excess of either low- or high-frequency polymorphisms and de�ciency of middle frequency

polymophisms (see e.g. Wakeley (2009) for further details). Positive values of DT are to

be expected if variation is common with moderate frequencies, for example in presence of a

recent population bottleneck, or balancing selection.

The empirical distribution of DT was investigated by simulation for di�erent seed bank

parameters (Figures 5, S3), assuming that mutations do not occur in the seed bank (θ2 = 0).

If the seed bank is large (K = 1/10, 1/100), then the median of D becomes signi�cantly

positive. For c = K = 1, there is very little deviation from the Kingman coalescent. Again

D seems to be more sensitive to small values of K than changes in c. This is in line with our

results on the En,0 [TMRCA], with highly elevated times for small K. In the latter case, old

variation will dominate, thus resembling a population bottleneck, producing positive values

of DT.

In conclusion, DT might not be a very good statistic to detect seed banks.

Fu and Li's D

Fu and Li (1993) statistic DFL is de�ned as

DFL =
S − a(n)ξ1√
unS + vnS2

(25)
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with S being the total number of segregating sites, ξ1 the total number of singletons, a(n) =∑n−1
j=1 j

−1, and un and vn as in Fu and Li (1993) (see also Durrett 2008). As with DT,

E[DFL] = 0 under the Kingman coalescent.

Figure 6 shows estimates of the distribution of DFL assuming θ2 = 0. When the seed bank

is large (K small), the distribution of DFL becomes highly skewed, with most genealogies

resulting in low number of singletons compared with the total number of polymorphisms,

resulting in positive DFL. This is in line with our observations about the relative number

of singletons associated with a large seed bank (Figures 3, S2), and the relative length of

external branches (Figure S1).

Fay and Wu's H

The distance statistics DFW of Fay and Wu (2000) is de�ned as

DFW =
H − π√

Var(H − π)
(26)

where

H =
2

n(n− 1)

n−1∑
i=1

ξ
(n)
i i2 (27)

and π is the average number of pairwise di�erences. A formula for the variance of DFW was

obtained by Zeng et al. (2006). Figure 7 holds estimates of the distribution of DFW with

n = 100, d = 0, and c and K as shown. As the seed bank size increases (K decreases) high

frequency variants, as captured by H, become dominant over the middle-frequency variants

captured by π. In conclusion, Fu and Li's DFL, or Fay and Wu's DFW may be preferrable

over Tajima's statistic DT to detect the presence of a seed bank. A rigorous comparison

of di�erent statistics (including the E statistic of Zeng et al. (2006)), and their power to

distinguish between absence and presence of a seed bank, must be the subject of future

research.

The C code written for the computations is available at http://page.math.tu-berlin.

de/~eldon/programs.html.
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Figure 5: Estimates of the distribution of Tajima's DT (24) with all n = 100 sampled lines
assumed active, θ1 = 2, θ2 = 0. The vertical broken lines are the 5%, 25%, 50%, 75%,
95% quantiles and the black square (�) denotes the mean. The entries are normalised to
have unit mass 1. The histograms are drawn on the same horizontal scale. Based on 105

replicates.
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Figure 6: Estimates of the distribution of Fu and Li's DFL (25) with all n = 100 sampled
lines assumed active, θ1 = 2, θ2 = 0. The vertical broken lines are the 5%, 25%, 50%, 75%,
95% quantiles and the black square (�) denotes the mean. The entries are normalised to
have unit mass 1. The histograms are drawn on the same horizontal scale. Based on 105

replicates.
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Figure 7: Estimates of the distribution of Fay and Wu's DFW (26) with all n = 100 sampled
lines assumed active, θ1 = 2, θ2 = 0. The vertical broken lines are the 5%, 25%, 50%, 75%,
95% quantiles and the black square (�) denotes the mean. The entries are normalised to
have unit mass 1. The histograms are drawn on the same horizontal scale. Based on 105

replicates.
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Discussion

In the previous sections, we have presented and analysed an idealised model of a population

sustaining a large seed bank, as well as the resulting patterns of genetic variability, with the

help of a new coalescent structure, called the seed bank coalescent (with mutation). This

ancestral process appeared naturally as scaling limit of the genealogy of large populations

producing dormant forms, in a similar way as the classical Kingman coalescent arises in

conventional models, under the following assumptions: the seed bank size is of the same

order as the size of the active population, the population and seed bank size is constant over

time, and individuals enter the dormant state by spontaneous switching independently of

each other, in a way that individual dormancy times are comparable to the active population

size. We begin with a discussion of these modeling assumptions.

The assumption that the seed bank is of comparable size to the active population is based

on Lennon and Jones (2011), where it is shown in Box 1, Table a, that this is often the

case in microbial populations.

Assuming constant population size is a very common simpli�cation in population genetics,

and can be explained with constant environmental conditions. We claim that `weak' �uctua-

tions (of smaller order than the active population size) still lead to the seed bank coalescent

model, as is the case for the Kingman coalescent. However, seed banks are often seen as

a bet hedging strategy against drastic environmental changes, which is not yet covered by

our models. We see this as an important task for future research, which will require serious

mathematical analysis. In the case of weak seed bank e�ects, �uctuating population size has

been considered in �ivkovi¢ and Tellier (2012), where the presence of the seed bank was

observed to leading to an increase of the e�ective population size.

Assuming spontaneous switching of single individuals between active and dormant state is

also based on Lennon and Jones (2011) [p. 122/124]. This is somewhat restricting the

scope of the model because it will not capture major environmental changes that may trigger

a simultaneous change of state of a large proportion of individuals (e.g. due to sudden lack
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of nutrients). This e�ect is closely related to drastic changes in population size, and again

may lead to serious alterations of our predictions. Hence, including such large switching

events will also be an important part of our future work (and will again require substantial

mathematical work). In Vitalis et al. (2004) a whole proportion of the dormant population

becomes active in every generation, but this should be seen in conjunction with the fact that

dormancy is of limited duration, which excludes drastic alterations on a long time scale.

Assuming that the time spent in the seed bank is of the order of the population size is one

of the main features that distinguishes our model from previous models of weak seed bank

e�ects as previously investigated in Kaj et al. (2001); Vitalis et al. (2004). Statistical

inference will be needed to support or reject this assumption, and to distinguish between

weak and strong seed banks. One distinguishing feature of weak and strong seed banks is

the behaviour of the normalised site frequency spectrum. Since weak seed banks lead to

a genealogy which is a constant time change of Kingman's coalescent Kaj et al. (2001);

Blath et al. (2013) the normalised frequency spectrum of weak seed banks will be similar

to those corresponding to the Kingman coalescent, while under our model we observe (at

least for large seed banks) a reduction in the number of singletons (Figure S2). The model

of Kaj et al. (2001) was used in Tellier et al. (2011), where Tajima's D was used in order

to detect seed banks.

We now discuss our results for the behaviour of classical quantities describing genetic vari-

ability under our modeling assumptions, that is, when the genealogy of a sample can be

described by the seed bank coalescent. In particular, we used it to derive recursions for

quantities such as the time to the most recent common ancestor, the total tree length or the

length of external branches. We investigated statistics of interest to genetic variability such

as the number of segregating sites, the site frequency spectrum, Tajima's D, Fu and Li's D

and Fay and Wu's H by numerical solution of our recursions and by simulation. It turns

out that the seed bank size K leads to signi�cant changes for example in the site frequency

spectrum, producing a positive Tajima's D, indicating the presence of old genetic variability,

in line with intuition. Interestingly, the the in�uence of c seems to be less pronounced. For
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K → ∞ we observe convergence towards the Kingman coalescent regime, while c → ∞

seems to lead to a constant time change of Kingman's coalescent.

We are con�dent that our results so far have the potential to open up many interesting

research questions, both on the modeling and on the statistical inference side, as well as in

data analysis. For example, it should be interesting to derive a test to distinguish between

the presence of strong vs. weak (resp. negligible) seed banks. Another important task in

future research will be to infer parameters of the model. While the relative seed bank size

K can in principle be directly observed by cell counting (Lennon and Jones, 2011), the

parameter c seems to be di�cult to observe, in particular because we have seen that many

statistics we calculated are independent of or at least not very sensitive with respect to c.

On the other hand, this shows that our results are fairly robust under alterations of c, such

that estimations or tests may be applied to some extent without prior knowledge on c. The

mortality rate d may for many practical purposes be included into the parameter K or K̃

measuring the �e�ective� relative seed bank size.

Estimating the mutation rates θ1 and θ2 is another goal for the future. In particular, in view

of an ongoing debate on the possibility of mutations in dormant individuals (Maughan,

2007), it would be important to devise a test to determine if θ2 > 0.
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Supporting Information

Genetic variability under the seed bank coalescent

J. Blath, B. Eldon, A. Gonzalez Casanova, N. Kurt, M.

Wilke-Berenguer

S1 Proofs and further recursive formulas

Expectation and variance of the TMRCA

For n,m ∈ N0, let tn,m := En,m [TMRCA] and vn,m := Vn,m[TMRCA].

Proposition S1.1. Let n,m ∈ N0. Then we have the following recursive representations

En,m[TMRCA] = tn,m = λ−1n,m + αn,mtn−1,m + βn,mtn−1,m+1 + γn,mtn+1,m−1, (S1)

Vn,m[TMRCA] = vn,m = λ−2n,m + αn,mvn−1,m + βn,mvn−1,m+1 + γn,mvn+1,m−1

+ αn,mt
2
n−1,m + βn,mt

2
n−1,m+1 + γn,mt

2
n+1,m−1

−
(
αn,mtn−1,m + βn,mtn−1,m+1 + γn,mtn+1,m−1

)2
, (S2)

with initial conditions t1,0 = t0,1 = v1,0 = v0,1 = 0.

Proof of Proposition S1.1. Let τ1 denote the time of the �rst jump of the process (Nt,Mt)t≥0.

If started at (n,m), this is an exponential random variable with parameter λn,m. Applying

the strong Markov property we obtain

tn,m =En,m[τ1] + En,m
[
ENτ1 ,Mτ1

[TMRCA]
]

=λ−1n,m + αn,mtn−1,m + βn,mtn−1,m+1 + γn,mtn+1,m−1.

Similarly, the strong Markov property (telling us that τ1 is independent of the time to

the most recent common ancestor of the (random) sample (Nτ1 ,Mτ1)) and the law of total
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variance yields

vn,m =Vn,m[τ1] + En,m
[
VNτ1 ,Mτ1

[TMRCA]
]
+ Vn,m

[
ENτ1 ,Mτ1

[TMRCA]
]

=λ−2n,m + En,m
[
VNτ1 ,Mτ1

[TMRCA]
]
+ Vn,m

[
ENτ1 ,Mτ1

[TMRCA]
]
.

We have

En,m
[
VNτ1 ,Mτ1

[TMRCA]
]
=αn,mvn−1,m + βn,mvn−1,m+1 + γn,mvn+1,m−1

and

Vn,m

[
ENτ1 ,Mτ1

[TMRCA]
]
= En,m

[
ENτ1 ,Mτ1

[TMRCA]
2
]
− En,m

[
ENτ1 ,Mτ1

[TMRCA]
]2

= αn,mt
2
n−1,m + βn,mt

2
n−1,m+1 + γn,mt

2
n+1,m−1

−
(
αn,mtn−1,m + βn,mtn−1,m+1 + γn,mtn+1,m−1

)2
.

Combining the observations proves the result.

Expectation and variance of the total tree length

Let l
(a)
n,m := En,m[L(a)] and l

(d)
n,m := En,m[L(d)] denote the expectations, and w

(a)
n,m := Vn,m[L

(a)]

and w
(d)
n,m := Vn,m[L

(d)] the variances of the total tree lengths, and de�ne the mixed second

moment, w
(a,d)
n,m := En,m[L(a)L(d)].

Proposition S1.2 (Recursion: Total tree length). For n,m ∈ N we have

l(a)n,m = nλ−1n,m + αn,ml
(a)
n−1,m + βn,ml

(a)
n−1,m+1 + γn,ml

(a)
n+1,m−1 (S3)

l(d)n,m = mλ−1n,m + αn,ml
(d)
n−1,m + βn,ml

(d)
n−1,m+1 + γn,ml

(d)
n+1,m−1, (S4)
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and

w(a)
n,m = n2λ−2n,m + αn,mw

(a)
n−1,m + βn,mw

(a)
n−1,m+1 + γn,mw

(a)
n+1,m−1

+ αn,m(l
(a)
n−1,m)

2 + βn,m(l
(a)
n−1,m+1)

2 + γn,m(l
(a)
n+1,m−1)

2

−
(
αn,ml

(a)
n−1,m + βn,ml

(a)
n−1,m+1 + γn,ml

(a)
n+1,m−1

)2
, (S5)

w(d)
n,m = m2λ−2n,m + αn,mw

(d)
n−1,m + βn,mw

(d)
n−1,m+1 + γn,mw

(d)
n+1,m−1

+ αn,m(l
(d)
n−1,m)

2 + βn,m(l
(d)
n−1,m+1)

2 + γn,m(l
(d)
n+1,m−1)

2

−
(
αn,ml

(d)
n−1,m + βn,ml

(d)
n−1,m+1 + γn,ml

(d)
n+1,m−1

)2
, (S6)

w(a,d)
n,m = 2nmλ−2n,m + αn,mw

(a,d)
n−1,m + βn,mw

(a,d)
n−1,m+1 + γn,mw

(a,d)
n+1,m−1. (S7)

Proof of Proposition S1.2. The result can easily be obtained observing that each stretch of

time of length τ in which we have a constant number of n active blocks and m dormant

blocks contributes with nτ to the total active tree length, and with mτ to the total dormant

tree length. Thus we have

l(a)n,m = nEn,m[τ1] + En,m
[
ENτ1 ,Mτ1

[L(a)]
]
,

and we proceed as in the proof of Proposition S1.1. From these quantities we easily obtain

the expected total tree length as l
(a)
n,m + l

(d)
n,m. Moreover,

Covn,m(L
(a), L(d)) = w(a,d)

n,m − w(a)
n,mw

(d)
n,m.
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Expectation of total length of external branches

To derive recursions for the total length of external branches in either of the two states is a

little more involved, since obviously a coalescence can happen between either two external

active branches, two internal active branches, or an external and an internal active branch.

We use indices (n, n′,m,m′) to denote the number of external active branches, internal

active branches, external dormant branches, and internal dormant branches, respectively.

Abbreviate

α
(1)
n,n′,m,m′ :=

(
n
2

)
λn+n′,m+m′

, α
(2)
n,n′,m,m′ :=

(
n′

2

)
λn+n′,m+m′

, α
(3)
n,n′,m,m′ :=

nn′

λn+n′,m+m′
,

β
(1)
n,n′m,m′ :=

cn

λn+n′,m+m′
, β

(2)
n,n′m,m′ :=

cn′

λn+n′,m+m′
,

γ
(1)
n,n′m,m′ :=

cKm

λn+n′,m+m′
, γ

(2)
n,n′,m,m′ :=

cKm′

λn+n′,m+m′
.

Let E(a) denote the total lenght of external branches in the plant state, and E(d) the total

lenght of external branches in the seed state. Then we have

Proposition S1.3 (Recursion: Total length of external branches). For n,m ∈ N, we have

the representation

En,m[E(a)] = e
(a)
n,0,m,0, En,m[E(d)] = e

(d)
n,0,m,0,

where e
(a)
n,n′,m,m′ and e

(d)
n,n′,m,m′, n, n′,m,m′ ∈ N0 satisfy the recursions

e
(a)
n,n′,m,m′ =nλ

−1
n+n′,m+m′

+ α
(1)
n,n′,m,m′e

(a)
n−2,n′+1,m,m′ + α

(2)
n,n′,m,m′e

(a)
n,n′−1,m,m′ + α

(3)
n,n′,m,m′e

(a)
n−1,n′,m,m′

+ β
(1)
n,n′,m,m′e

(a)
n−1,n′,m+1,m′ + β

(2)
n,n′,m,m′e

(a)
n,n′−1,m,m′+1

+ γ
(1)
n,n′,m,m′e

(a)
n+1,n′,m−1,m′ + γ

(2)
n,n′,m,m′e

(a)
n,n′+1,m,m′−1

and
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e
(d)
n,n′,m,m′ =mλ

−1
n+n′,m+m′

+ α
(1)
n,n′,m,m′e

(d)
n−2,n′+1,m,m′ + α

(2)
n,n′,m,m′e

(d)
n,n′−1,m,m′ + α

(3)
n,n′,m,m′e

(d)
n−1,n′,m,m′

+ β
(1)
n,n′,m,m′e

(d)
n−1,n′,m+1,m′ + β

(2)
n,n′,m,m′e

(d)
n,n′−1,m,m′+1

+ γ
(1)
n,n′,m,m′e

(d)
n+1,n′,m−1,m′ + γ

(2)
n,n′,m,m′e

(d)
n,n′+1,m,m′−1

Observing that e
(a)
0,n′,0,m′ = e

(d)
0,n′,0,m′ = 0 for all n′,m′, and e

(a)
1,0,0,0 = e

(d)
1,0,0,0 = 0, and that

the total number n+n′+m+m′ is non-increasing, these recursions can be solved iteratively.

Proof of Proposition S1.3. This follows by a similar �rst-step analysis as in Proposition S1.2,

taking into account the transitions for internal and external branches, and observing that at

each coalescence event between two external branches, the number of external plant branches

is reduced by two and the number of internal branches is increased by one, in a coalescence

of an external and an internal branch, the number of external plant branches is reduced by

one and the number of internal plant branches stays the same, and in a coalescence of two

internal branches, their number is reduced by one.

Obviously, the expected total length of external branches is then given by e
(a)
n,0,m,0+e

(d)
n,0,m,0.

Note that proceeding as in Proposition S1.2, we could also give recursions for the variances

of these quantities.

Expectation and variance of the number of segregating sites

Proposition S1.4. For n,m ∈ N0 we have

En,m[S] =
θ1
2
l(a)n,m +

θ2
2
l(d)n,m,

and

Vn,m[S] =
θ1
2
l(a)n,m +

θ2
2
l(d)n,m +

θ1
4

2

w(a)
n,m +

θ2
4

2

w(d)
n,m +

θ1θ2
2

(wa,dn,m − l(a)n,ml(d)n,m),
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where l
(a)
n,m, l

(d)
n,m, w

(a)
n,m, w

(d)
n,m and w

(a,d)
n,m are given by Proposition S1.2.

Proof of Proposition S1.4. Observe that conditional on the total lengths L(a), L(d), the num-

ber of segregating sites is the sum of two independent Poisson random variables with param-

eters θ1L
(a)/2 and θ2L

(d)/2, respectively. Hence, if an ancestral line is in the plant state for a

period of time of length L > 0, the expected number of mutations that occur in this period

is Lθ1/2. Similarly, in a period of length L when the ancestral line is a seed, the expected

number of mutations is Lθ2/2. Thus the �rst result follows directly from Proposition S1.2.

For the second result, we apply the law of total variance and obtain similarly that

Vn,m(S) = En,m[V(S | L(a), L(d))] + Vn,m(E[S | L(a), L(d)])

= En,m
[
θ1
2
L(a) +

θ2
2
L(d)

]
+ Vn,m

(
θ1
2
L(a) +

θ2
2
L(d)

)
=
θ1
2
l(a)n,m +

θ2
2
l(d)n,m +

θ1
4

2

w(a)
n,m +

θ2
4

2

w(d)
n,m + 2

θ1
2

θ2
2
Covn,m(L

(a), L(d)).

It is possible to directly derive a recursion for the number of segregating sites without

explicitly passing through calculating the tree lengths. Since it may be of use we state it

here. Let

sn,m := En,m[S], and zn,m := Vn,m(S).

Proposition S1.5 (Alternative recursion). Let n,m ∈ N0. Then

sn,m =

(
θ1
2
n+

θ2
2
m

)
λ−1n,m + αn,msn−1,m + βn,msn−1,m+1 + γn,msn+1,m−1 (S8)

zn,m =

(
θ1
2
n+

θ2
2
m

)
λ−1n,m +

(
θ1
2
n+

θ2
2
m

)2

λ−2n,m

+ αn,mzn−1,m + βn,mzn−1,m+1 + γn,mzn+1,m−1

+ αn,ms
2
n−1,m + βn,ms

2
n−1,m+1 + γn,ms

2
n+1,m−1

−
(
αn,msn−1,m + βn,msn−1,m+1 + γn,msn+1,m−1

)2
. (S9)
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Proof of Proposition S1.5. Let σ1 denote the number of mutations that occur until time τ1,

which was de�ned in the proof of Proposition S1.1. Given τ1 = t, we know that σ1 is the sum

of two independent Poisson random variables with parameters θ1nt and θ2mt, respectively.

As in the previous proof we obtain

sn,m = En,m[σ1] + En,m
[
ENτ1 ,Mτ1

[S]
]

=

(
θ1
2
n+

θ2
2
m

)
En,m[τ1] + αn,msn−1,m + βn,msn−1,m+1 + γn,msn+1,m−1

and

zn,m = Vn,m(σ1) + En,m
[
VNτ1 ,Mτ1

(S)
]
+ Vn,m

(
ENτ1 ,Mτ1

[S]
)
.

Once more using the law of total variance we obtain

Vn,m[σ1] = En,m
[
Vn,m(σ1 | τ1)

]
+ Vn,m

(
En,m[σ1 | τ1]

)
=

(
θ1
2
n+

θ2
2
m

)
En,m[τ1] +

(
θ1
2
n+

θ2
2
m

)2

Vn,m[τ1]

=

(
θ1
2
n+

θ2
2
m

)
λ−1n,m +

(
θ1
2
n+

θ2
2
m

)2

λ−2n,m. (S10)

The same calculations as in the proof of Proposition S1.1 lead to

En,m
[
VNτ1 ,Mτ1

(S)
]
= αn,mzn−1,m + βn,mzn−1,m+1 + γn,mzn+1,m−1,

and

Vn,m

(
ENτ1 ,Mτ1

[S]
)
= αn,ms

2
n−1,m + βn,ms

2
n−1,m+1 + γn,ms

2
n+1,m−1

−
(
αn,msn−1,m + βn,msn−1,m+1 + γn,msn+1,m−1

)2
.
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Expected value of average pairwise di�erences (π)

Recall the de�nition, given in (19), of π.

Proposition S1.6. For n,m ∈ N0 we have

En,m [π] =
1(

n+m
2

){(n
2

)(
θ1
2
l
(a)
2,0 +

θ2
2
l
(d)
2,0

)
+ nm

(
θ1
2
l
(a)
1,1 +

θ2
2
l
(d)
1,1

)
+

(
m

2

)(
θ1
2
l
(a)
0,1 +

θ2
2
l
(d)
0,1

)}
Proof of Proposition S1.6. By de�nition

En,m [π] =
1(

n+m
2

) ∑
1≤i<j≤n+m

En,m [Ki,j] .

When compairing two individuals their pairwise di�erences in the in�nite sites model coincide

with the number of mutations that occured along the branches of their corresponding sub-tree

and are thus given the product of the mutation rate and length of the branches. Therefore,

En,m[Ki,j] actually only depends on whether i, j are dormant or active individuals. We obtain

En,m [Ki,j] =


θ1
2
l
(a)
2,0 +

θ2
2
l
(d)
2,0 , if i, j are active

θ1
2
l
(a)
1,1 +

θ2
2
l
(d)
1,1 , if i is active and j dormant

θ1
2
l
(a)
0,2 +

θ2
2
l
(d)
0,2 , if i, j are dormant.

Substituting this into the above equation, the result follows.

S2 Solving the recursions numerically

Since all the recursions have the same general form, a generic method for solving them

numerically will now be given. The idea is to use standard linear algebra methods to solve

the standard linear system At = b. Let t = (t0, t1, . . . , tn+m) denote the vector of quantities

we are solving for, where we order them according to number of active lines. For any given

number n of active blocks and m of inactive blocks, so the current total number of blocks is

n +m, write t = (t0, t1, . . . , tn+m) where ti ≡ ti,n+m−i, and write ` := n +m. Let A, B, C
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denote square (`+1)×(`+1) matrices whose rows and columns are enumerated from 0; with

non-zero terms ai−1,i = αi,`−i, bi,i−1 = βi,`−i, ci,i+1 = γi,`−i, and let I denote a (`+1)× (`+1)

identity matrix. Assume, by way of example, we are solving the recursion (10) for expected

time to most recent common ancestor. De�ne the vector k with elements ki = 1/λi,`−i, and

r = (0, r0, r1, . . . , rn+m−1) where rj = tj,n+m−j−1.

The recursion in Proposition (S1.1) can now be written

t = k +Ar + (B +C)t

Assuming we solve for t iteratively, starting from n+m = 2, r is a vector of known constants;

hence

s = (I −B −C)−1(k +Ar)

where I −B −C should be non-singular and (I −B −C)−1 easily computable.

Similar methods may be applied to the other recursions.
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S3 Relative expected lengths of external branches
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Table S1: The relative expected lengths of external branches e
(a)
(n)/

(
e
(a)
(n) + e

(d)
(n)

)
from Prop.

S1.3 with sample con�guration n = (10, 0, 10, 0).
K = 0.01, values of d

c 0.001 0.01 0.1 1 10 100
0.001 0.0161 0.0449 0.0426 0.0195 0.0869 0.338
0.01 0.00973 0.0161 0.0457 0.0521 0.0928 0.338
0.1 0.00914 0.00987 0.0166 0.0519 0.116 0.335
1 0.00955 0.00963 0.0104 0.0183 0.0756 0.289
10 0.00985 0.00986 0.00995 0.0108 0.0194 0.095
100 0.0099 0.0099 0.00991 0.00999 0.0109 0.0196

K = 1, values of d
c 0.001 0.01 0.1 1 10 100
0.001 0.0313 0.02 0.0876 0.338 0.725 0.954
0.01 0.0516 0.0499 0.0984 0.339 0.725 0.954
0.1 0.116 0.12 0.155 0.349 0.723 0.953
1 0.287 0.289 0.301 0.396 0.704 0.946
10 0.449 0.45 0.452 0.471 0.605 0.884
100 0.494 0.494 0.494 0.496 0.517 0.659

c = 1, values of d
K 0.001 0.01 0.1 1 10 100
0.001 0.000996 0.001 0.00109 0.00198 0.0104 0.071
0.01 0.00955 0.00963 0.0104 0.0183 0.0756 0.289
0.1 0.0705 0.071 0.0756 0.115 0.301 0.689
1 0.287 0.289 0.301 0.396 0.704 0.946
10 0.687 0.689 0.704 0.797 0.95 0.994
100 0.945 0.946 0.95 0.971 0.995 0.999

c = 0.01, values of d
K 0.001 0.01 0.1 1 10 100
0.001 0.00109 0.00195 0.00973 0.0442 0.0522 0.0928
0.01 0.00973 0.0161 0.0457 0.0521 0.0928 0.338
0.1 0.0457 0.0539 0.0516 0.0934 0.338 0.725
1 0.0516 0.0499 0.0984 0.339 0.725 0.954
10 0.0984 0.143 0.352 0.726 0.954 0.995
100 0.352 0.449 0.74 0.954 0.995 0.999
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S4 Expected length of external branches

Table S2: The expected total lengths of external branches
(
e
(a)
(n), e

(d)
(n)

)
from Prop. S1.3 with

sample con�guration n = (10, 0, 0, 0), as a function of c and K. The expected length e(n) = 2
when associated with the Kingman coalescent (Fu, 1995).

c = 1, values of d
K 0.001 1 100

0.001 (1.22e+03, 1.22e+06) (610, 3.05e+05) (14.2, 141)
0.01 (124, 1.24e+04) (63, 3.15e+03) (3.4, 3.36)
0.1 (14.3, 143) (8.28, 41.4) (2.18, 0.216)
1 (3.41, 3.4) (2.77, 1.39) (2.02, 0.02)
10 (2.18, 0.218) (2.1, 0.105) (2, 0.00198)
100 (2.02, 0.0202) (2.01, 0.01) (2, 0.000198)

K = 0.01, values of d
c 0.001 1 100

0.001 (56.7, 2.83e+03) (2.03, 0.203) (2, 0.002)
0.01 (102, 9.28e+03) (2.68, 2.65) (2.01, 0.0201)
0.1 (111, 1.1e+04) (11.5, 104) (2.12, 0.211)
1 (124, 1.24e+04) (63, 3.15e+03) (3.4, 3.36)
10 (174, 1.74e+04) (158, 1.44e+04) (17.9, 163)
100 (198, 1.98e+04) (196, 1.94e+04) (100, 5.01e+03)
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S5 Expected normalised branch lengths

Figure S1: Estimates of the expected normalized branch lengths E
[
R

(a)
i

]
, with R

(a)
i :=

B
(a)
i

B(a)

with B
(a)
i denoting the random total length of active branches subtending i leaves, and B(a)

the sum of B
(a)
i ; with all n = 100 sampled lines assumed active, and values of c, K, d as
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S6 Expected normalised site-frequency spectrum

Figure S2: Estimates ζ
(n)

i
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where |ξ(n)| = ξ

(n)
1 + · · · + ξ

(n)
n−1 denotes the total

number of segregating sites, of expected normalized spectra E
[
ζ
(n)
i

]
with all n = 100 sampled

lines assumed active, active mutation rate θ1 = 2, and with c, K, and inactive mutation rate

θ2 as shown. The entries labelled `6+' represent the collected tail ζ
(n)

6+ =
∑

i≥6 ζ
(n)

i . Estimates
are based on 105 replicates.
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S7 Tajima's statistic DT (24)

Figure S3: Estimates of the distribution of Tajima's statistic DT (24) with all n = 100
sampled lines assumed active, θ1 = 2, θ2 = 0. The vertical broken lines are the 5%, 25%,
50%, 75%, 95% quantiles and the black square (�) denotes the mean. The entries are
normalised to have unit mass 1. The histograms are drawn on the same horizontal scale.
Based on 105 replicates.
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