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Abstract

Motivation

Deep sequencing based ribosome footprint profiling can provide novel insights into the regulatory
mechanisms of protein translation. However, the observed ribosome profile is fundamentally
confounded by transcriptional activity. In order to decipher principles of translation regulation,
tools that can reliably detect changes in translation efficiency in case-control studies are needed.

Results

We present a statistical framework and analysis tool, RiboDiff, to detect genes with changes in
translation efficiency across experimental treatments. RiboDiff uses generalized linear models to
estimate the over-dispersion of RNA-Seq and ribosome profiling measurements separately, and
performs a statistical test for differential translation efficiency using both mRNA abundance
and ribosome occupancy.

Availability

Source code and documentation are available at http://github.com/ratschlab/ribodiff.
Supplementary Material can be found at http://bioweb.me/ribodiff.

Contact

zhongy@cbio.mskcc.org and raetsch@cbio.mskcc.org.

1 Introduction

The recently described ribosome profiling technology [6] allows the identification of RNA fragments
that were bound by the ribosome complex. It provides valuable information on ribosome occupancy
and, thereby indirectly, on protein synthesis activity. This technology can be leveraged by combin-
ing the measurements from RNA-Seq expression estimates in order to determine a gene’s translation
efficiency (TE): TE = ARF /AmRNA, where AmRNA and ARF are the mRNA and ribosome footprint
(RF) read counts, respectively [7, 5, 13]. The normalization by mRNA abundance is designed to
remove transcriptional activity as a confounder of RF abundance. The TEs in treatment/control
experiments can then be compared to identify genes most affected w.r.t. translation efficiency; for
instance, [13] considered a ratio (a.k.a. fold-change) of the TEs of treatment and control. However,
what these initial approaches and analyses only take into account partially, is that one typically
only obtains uncertain estimates of the mRNA and ribosome abundance. In particular for lowly
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Figure 1: (A) Graphical model representing RidoDiff (Gray circle: observable variables; empty
circle: unobservable variables; black square: functions; r denotes biological replicates; G is the
number of genes). The dash lined denotes the relationship that we aim to test (see main text for
details). (B) Receiver operating characteristic (ROC) curve of RiboDiff and Babel using simulated
data. (C) Comparison of results from z-score based analysis and RiboDiff. Blue, | z-score |> 1.5;
Red, FDR < 0.05 (data from GEO accession GSE56887).

expressed genes, the error bars for the ratio of two TE values can be very large. As in proper
RNA-Seq analyses, one should consider the uncertainty in these abundance measurements when
making statements about differentiality. For RNA-Seq, this has been described in various ways
often based on generalized linear models taking advantage of dispersion information from biological
replicates (for instance, [11, 2, 3]). In [14, 16]i, a way to adopt an approach for RNA-Seq analysis
for this problem was described, which had several conceptual and practical limitations. Here, we
describe a novel statistical framework that also uses generalized linear model to detect effects of a
treatment on RNA translation. Additionally, our approach accounts for the fact that two different
sequencing protocols with distinct statistical characteristics are used. We compare it to a recently
published tool Babel [10].

2 Methods

In sequencing-based ribosome footprint profiling, the RF read count is naturally confounded by
mRNA abundance (Fig. 1A). We seek a strategy to compare RF measurements taking mRNA
abundance into account, in order to accurately discern the translation effect in case-control exper-
iments. We model the vector of mRNA and RF read counts yimRNA and yiRF, respectively, and
for gene i with Negative Binomial (NB) distributions, as described before (for instance, [11, 8, 3]):
yi ∼ NB(µi, κi), where µi is the expected count and κi is the estimated dispersion across (biologi-
cal) replicates. Formulating the problem as a generalized linear model (GLM) with the logarithm as
link function, we can express expectations on read counts as a function of latent quantities related
to mRNA abundance βC in the two conditions (C = {0, 1}), a quantity βmRNA that relates mRNA
abundance to RNA-Seq read counts, a quantity βRF that relates mRNA abundance to RF read
counts and a quantity β∆,C that captures the effect of the treatment on translation. In particular,
the expected mRNA read count µimRNA,C is given by the equation µimRNA,C = log(βiC + βiRNA).

We assume that transcription and translation are successive cellular processing steps and that
abundances are linearly related. The expected RF read count, µiRF,C , is given by µiRF,C = log(βiC +
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βiRF + βi∆,C). A key point to note is that βiC is revealed to be a shared parameter between the
expressions governing the expected mRNA and RF counts. It can be considered to be a proxy for
shared transcriptional/translation activity under condition C in this context. Then, βi∆,C indicates

the deviation from that activity under condition C, with βi∆,C = 0 for C = 0 and free otherwise.‡

Fitting the GLM consists of learning the parameters βi and dispersions κi given mRNA and RF
counts for the two conditions C = {0, 1}. We perform alternating optimization of the parameters
βi given dispersions κi and the dispersion parameters κi given βi, similar to the EM algorithm:

βi = arg max
βi

`glm(βi|yi, κi) and κi = arg max
κi

`NB(κi|yi, µi).

As experimental procedures for measuring mRNA counts and RF counts differ, we enable the
estimating of separate dispersion parameters for the data sources of RNA-Seq and RF profiling to
account for different characteristics. As in [2], we use the mean-dispersion relationship κ = f(µ) =
λ1/µ + λ0 and a Gamma distribution to obtain the function f(µ). We perform empirical Bayes
shrinkage [8] to shrink κi towards f(µ) to stabilize estimates. See Section D in Supplementary
Material for details.

In a treatment/control setting, we can then evaluate whether a treatment (C = 1) has a signifi-
cant differential effect on translation efficiency compared to control (C = 0), which is equivalent to
determining whether the inferred parameter β∆,1 differs significantly from 0. This is whether the
relationship denoted by the dashed line in Fig. 1A is needed or not. We can compute significance
levels based on the χ2 distribution by analyzing log-likelihood ratios of the Null model (βi∆,1 = 0)

and the alternative model (βi∆,1 6= 0).

3 Results and Discussion

We simulated data to illustrate the performance of RiboDiff and to compare it with a recently
published tool Babel. For details on data simulation see Section F in Supplementary Material.
Fig. 1B shows the receiver operating characteristic curve of RiboDiff and Babel, indicating su-
perior quantitative performance of RiboDiff. We also re-analyzed previously released ribosome
footprint data (GEO accession GSE56887). After multiple testing correction, RiboDiff detected
601 TE down-regulated genes and 541 up-regulated ones with FDR < 0.05, which is about twice
as many as reported in [14]. The new TE down set includes 92.4% genes identified in the previous
study, whereas the TE up set contains 94.7% previously identified ones. The result of RiboDiff is
also compared to TE fold change analysis, which classifies genes with the most extreme ∆TE as
candidates (Fig. 1C). We run RiboDiff on a machine with 1.7 GHz CPU and 4GB RAM, it took
23 mins of computing time to finish (10, 474 genes having both RF and mRNA counts).

In summary, we propose a new statistical model and analysis tool to analyze the effect of a
of a treatment on RNA translation. It assumes a rich model of data generation and can be used
accurate differential testing. A major advantage of this method is facilitating comparisons of RF
abundance by taking mRNA abundance variability as a confounding factor. Moreover, RiboDiff
is specifically tailored to produce robust dispersion estimates for different sequencing protocols
measuring gene expression and ribosome occupancy that have different statistical properties. The

‡We described the model in an easy to follow way. It turns out that one variable is linearly dependent and in the
implementation we omit βi

RF .
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described approach is statistically sound and identifies a similar set of genes from a less developed
method that was used in [14]. The release of this tool is expected to enable proper analyses of data
from many future RF profiling experiments.

Acknowledgements This work was funded by the Marie Curie ITN framework (Grant # PITN-
GA-2012-316861), MSKCC, the National Cancer Institute (R01-CA142798-01 to H.-G.W.) and the
Experimental Therapeutics Center (H.-G.W.).

A Sequencing library size and normalization

The sequencing library sizes of RNA-Seq and Ribosome footprinting (RF) counts are normalized
separately. We calculate the library size S similar to [8] with modifications:

SrT = median
yi,jT >0

(
yi,jT + 1

n
√∏n

j=1(yi,jT + 1)

)
, (1)

where T denotes data type (mRNA or RF); j indexes the replicates (or samples); yi,jT is the
observed count of type T for gene i in replicate j. For all genes in all replicates, we add one to the
count value to avoid the geometric mean across all replicates in the denominator equals to zero.
The ratios of gene read counts in a given replicate to the geometric means are calculated, and we
take the median of these ratios whose count is greater than one as the library size. The read counts
are normalized by the library size before being used in the next step.

B The explanatory matrix of GLM

To control the observed read counts fitting into the GLM system as we described in the main text,
an explanatory matrix X is designed. Here we show it in the context of linear predictor η of GLM:

η =



C 0 C 1 mRNA ∆Eff.

1 0 1 0
1 0 1 0
0 1 1 0
0 1 1 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 1
0 1 0 1
0 1 0 1


×


βiC=0

βiC=1

βimRNA
βi∆


T

. (2)

In this X matrix example, the first four rows absorb mRNA count with two replicates for each
condition. The last six rows absorb RF count with three replicates for each condition. Please note
the first and second columns in X are shared between mRNA and RF counts, where we couple
the two different data set. The linear predictor then are linked with negative binomial distributed
mean µiRF,C and µimRNA,C through logarithm as the link function.
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C Negative binomial likelihood function

The probability mass function of negative binomial distribution is given by

Pr(yi,j) =

(
yi,j + 1/κi,j − 1

yi,j

)(
1/κi,j

1/κi,j + µi,j

)1/κi,j(
1− 1/κi,j

1/κi,j + µi,j

)yi,j
, (3)

where yi,j is the observed RF or mRNA read count of jth replicate of gene i; κi,j is the dispersion
parameter of the NB distribution where yi,j is drawn from; µi,j is the estimated count of jth

replicate. Thus the logarithmic likelihood of negative binomial of gene i is given by

log `NB =
n∑
j=1

log(Pr(yi,j))− 1

2
log(det(X ′ · diag(

µi

1 + µiκi
) ·X)). (4)

Note that the likelihood function is adjusted by Cox-Reid term as suggested by Robinson et al.
[12] to compensate bias from estimating coefficients in fitting GLM step. Here, X is the explanatory
matrix with dimension of n × 4 or n × 5, depending on H0 or H1, where n is the total number of
replicates of RF and mRNA data; µi is the vector of estimated counts; κi is the dispersion vector.

D Empirical Bayes shrinkage for obtaining final dispersion

We follow the approach published recently [8] to get the final dispersion κiS . Assumption is based
on the observation that the dispersion follows a log-normal prior distribution [15] centered at the
fitted dispersion κiF which is obtained from the dispersion-mean relationship κ = f(µ) = λ1/µ+λ0

(see in the main text). The κiS can be estimated by maximizing the following equation:

κiS = arg max
κiS

(
`NB(κiS |yi, µi)−

(log κiS − log κiF )2

2σ2
p

)
, (5)

where σ2
p is the variance of the logarithmic residual between prior and the fitted dispersion

κiF . Moreover, the variance (σ2
w) of the logarithmic residual between raw dispersion κiR and κiF is

comprised of 1) the variance of sampling distribution of the logarithmic dispersion σ2
x and 2) σ2

p.
The σ2

x can be approximately obtained from a trigamma function:

σ2
x = ψ(

m− d
2

), (6)

where m is the number of samples and d is the number of coefficients. Whereas, the σ2
w is

calculated as the median absolute deviation (mad) of logarithmic residuals between pairs of κiR and
κiF :

σ2
w = mad

i
(log κiR − log κiF ). (7)

Therefore, we can get the σ2
p by

σ2
p = σ2

w − σ2
x, (8)

and obtain the final dispersion κiS by maximizing the posterior in equation 5.
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E Estimating dispersion for different sequencing protocols sepa-
rately

As experimental procedures for representing mRNA and RF abundances can vary, such as the sam-
ples are sequenced in different platforms, we enable RiboDiff uses separate dispersion parameters
κ for different data sources. Here we show an example that estimating κ separately is needed. The
example data are from a recent publication [4].

The empirical dispersion for RNA-Seq and RF counts are calculated from the following equation
[8, 11, 1, 9]:

σ2 = µ+ κµ2. (9)

Fig. 2 shows the mean-dispersion relationship. It demonstrates the deviation of empirical disper-
sion of RNA-Seq and ribosome footprint data in this experimental setting. The deviation between
these two data sets becomes small while the count increases.

F Data simulation

We simulated the RF and mRNA read count for 2,000 genes with 500 genes showing translational
efficiency down regulated and 500 genes showing up regulated. There are three replicates for each of
the two treatments in both “ribosome profiling” and “RNA-Seq” counts. Therefore, the dimension
of count matrix is 2,000 × 12.

We first generated the mean counts for two treatments of both RF and mRNA across all 2K
genes assuming they are randomly drawn from a negative binomial distribution with parameter
n and p, where n = 1/κ and p = n/(n + µ). Then, for each mean count µi, we generated three
count values as three replicates, from a negative binomial distribution with parameter µi and κi,
where κi is calculated as κi = f(µi) = λ1/µ

i + λ0. To simulate the genes with TE changes in
two treatments, we add fold difference to the mean count of the target genes, assuming the fold
changes follow a gamma distribution that is observed from real data (GEO accession GSE56887).
The gamma distribution has a shape parameter α and a scale parameter s, and its mean µG = α ·s.
In the following simulation, we fix the s, only specify different α to make genes having different
fold changes on their means. The fold increase FI is obtained by

FI = XG(α, s) + 1, (10)

where XG is a random vector containing 500 elements generated from a gamma density function.
And the fold decrease FD is obtained as

FD =
1

FI
. (11)

Here, we simulated five groups of count data, in every group 1,000 out of 2,000 genes showing
TE changes:

• mean count has fold change only for RF count, with α = 0.8;

• mean count has fold change only for mRNA count, with α = 0.6;
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RF

RF

Figure 2: Scatter plot of empirical dispersions. The X-axis is split into several bins and the median
κ in each bin is highlighted and connected. The empirical κ smaller than zero are plotted at the
bottom of the figure.
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Figure 3: Sensitivity and specificity of RiboDiff on simulated data.

• mean count has fold change only for RF count, with α = 1.5;

• mean count has fold change only for mRNA count, with α = 1.5;

• mean count has fold change for RF with α = 0.8 AND for mRNA with α = 0.6, referred as
“combined” in Fig. 3.

Note that in the last group, if the gene has fold increase in RF, it must has fold decrease in
mRNA. By doing this, the effect at mRNA level is added to the TE change outcome instead of
offsetting the effect caused by RF. Other parameters for simulating are as follow: for all RF and
mRNA, n = 1, β1 = 0.1, β2 = 0.0001, s = 0.5. The parameter p controls the scale of the count.
We use 0.008 for RF and 0.0002 for mRNA. We run RiboDiff with the five groups of data set to
estimate the sensitivity and specificity (Fig. 3). We also compared the performances of RiboDiff
with Babel [10] using the simulated data of the combined setting.
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