
MMR: A tool for Read Multi-Mapper Resolution
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Abstract

Motivation:

Mapping high throughput sequencing data to a reference genome is an essential step for most
analysis pipelines aiming at the computational analysis of genome and transcriptome sequencing
data. Breaking ties between equally well mapping locations poses a severe problem not only
during the alignment phase, but also has significant impact on the results of downstream analy-
ses. We present the multimapper resolution (MMR) tool that infers optimal mapping locations
from the coverage density of other mapped reads.

Results:

Filtering alignments with MMR can significantly improve the performance of downstream anal-
yses like transcript quantitation and differential testing. We illustrate that the accuracy (Spear-
man correlation) of transcript quantification increases by 17% when using reads of length 51. In
addition, MMR decreases the alignment file sizes by more than 50% and this leads to a reduced
running time of the quantification tool. Our efficient implementation of the MMR algorithm
is easily applicable as a post-processing step to existing alignment files in BAM format. Its
complexity scales linearly with the number of alignments and requires no further inputs.

Supplementary Material:

Source code and documentation are available for download at github.com/ratschlab/mmr.
Supplementary text and figures, comprehensive testing results and further information can be
found at bioweb.me/mmr.

Contact

akahles@cbio.mskcc.org and raetsch@cbio.mskcc.org

1 Introduction

Addressing the increasing need for fast and accurate mapping of high throughput sequencing data
to a reference sequence, many different software tools have been developed over the past years, many
of which are frequently updated and improved [10, 6, 3, 7]. While numerous challenges have been
addressed by the developers, e.g., the consideration of gaps and mismatches or the spliced alignment
of RNA-Sequencing data, the problem of ambiguous read mapping still remains unresolved for many
of the most popular alignment tools. Depending on factors like read length, alignment sensitivity,
and repetitiveness of the target genome, a large fraction of reads aligns uniquely to the target
and exactly one mapping location is reported. However, for the remaining, still significantly large,
fraction of reads (≈10–20%, depending on alignment sensitivity), several possible mapping locations
exist. Currently, different strategies are employed to deal with these reads in downstream analyses,
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most of which have unfavorable side effects: Discarding reads with ambiguous alignments from
the alignment result leads to a systematic underestimation of abundance in genomic regions with
multi-mapper ambiguities, whereas picking a random alignment or distributing weight across all
alignments uniformly does not have a proper biological justification.

Here, we present a simple, yet powerful tool, called the Multi-Mapper Resolution tool (MMR),
that assigns each read to a unique mapping location in a way that the overall read coverage across
the genome is as uniform as possible. MMR makes use of the critical fraction of unambiguously
aligned reads and iteratively selects the alignments of ambiguously mapping reads in a way the
overall coverage becomes more uniform. We show that this strategy has a positive influence on
downstream analyses, such as transcript quantification and prediction.

2 Approach

2.1 Outline of Algorithm

Our approach to resolve ambiguous mapping locations is based on the simple assumption that,
besides all existing biases from library preparation and sequencing, the alignment coverage should
generally be uniform within a region (RNA-seq or whole exome-seq) or the whole genome (WGS-
seq). Based on this assumption, we can evaluate the fit of an alignment of a read to its current
mapping location relative to other locations, by assessing the local coverage of the candidate regions.
For each read the algorithm jointly evaluates all available alignments with the goal of selecting the
alignment/mapping that results in the smoothest overall coverage. At the beginning, for each read
one alignment is selected based on either best alignment score, the given input order or random
choice. The set of all initially picked alignments as well as alignments of uniquely mapped reads
define a global coverage map. Based on this map, we can evaluate the quality of an alignment
in its coverage context. To choose the locally optimal alignment for each read, we perform a
comparison of all alignments a with respect to a loss function `+(a) of placing a relative to not
placing it (`−(a)). In the simplest case the loss function is defined as the empirical variance of the
read coverage within window around the alignment (see Suppl. Material). This quantity can be
computed efficiently since we keep track of the global coverage map, which is updated when the
selected alignment changes. Given the currently selected alignment a and an alternative alignment
b, we update our choice, if the overall loss across the genome would be reduced by choosing the
alternative alignment. This is the case when `−(a) + `+(b) < `+(a) + `−(b). This is repeated for all
reads with ambiguous mapping locations. Several iterations over the whole alignment file improve
the results. However, the most striking improvements are achieved within the first three iterations
and only slight changes can be observed after that. A more detailed description is provided in the
Suppl. Methods section.

2.2 Paired-end Reads

Handling paired-end reads in our framework is straightforward: Instead of evaluating two individual
mapping locations, the same principle is used to compare two pairs of alignments. After generating a
list of proper pairs, where feasibility is determined through orientation, chromosome and reasonable
proximity, the list is evaluated the same way as the list of possible mapping locations for single-end
reads. This approach is easily adaptable to n-tuple of mates for n > 2.
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2.3 Limiting Ambiguity

To find a good trade-off between mapping sensitivity and the number of possible mapping locations,
we allow to restrict the list of possible mapping locations. This is achieved by thresholding the
difference in edit operations between the best hit and any other alignment. For instance, a filter of
0 would only include alignments as possible mapping locations that have as few edit operations as
the best mapping.

2.4 Implementation

The MMR approach is implemented in C++ and its source code is publicly available for download
under http://github.com/ratschlab/mmr. Although it has been tested and optimized for Linux
based systems, it can be compiled on other platforms. Parsing of alignment files in BAM format
requires samtools [9]. We also provide a multi-threaded implementation that keeps the coverage
information in common memory, requiring no additional memory if multiple threads are used. The
single threaded running time depends on the number of possible mapping locations per read but
is on average 30–45 seconds per one million alignments per iteration. Thus, running MMR for
three iterations on 100 million alignments takes ≈20 minutes using 10 threads (Intel Xeon E5-2665
CPU).

3 Application

As a proof of principle, we tiled the A. thaliana genome with overlapping 50-mers and aligned
these 50nt reads back to the genome. This resulted in a non-uniform coverage, in particular near
repetitive regions (see Fig. 1A ; Suppl. Fig. 3). Using MMR, we could fully resolve mapping
ambiguities, resulting in the expected uniform coverage of 50 almost everywhere.

We further tested our approach on a set of 3 million artificial RNA-Seq reads that were gen-
erated with FluxSimulator [5] based on a subset of 5, 000 genes randomly drawn from the human
ENSEMBL annotation. We simulated 51nt and 76nt reads, resulting in an average coverage of 18×
and 25×, respectively. The reads were then mutated using an empirical error model that led to a
native error rate of 2.7%. Three levels of random noise (+1%, +2, +3%) were applied in addition.
We aligned the reads with TopHat2 (v2.0.2; [7]) and PALMapper (v0.5; [6]), allowing for up to 6 edit
operations, with no annotation provided. Further information is provided in the Suppl. Material.
To investigate the effect of MMR on downstream analyses, we performed transcript quantification
using Cufflinks [12] (v1.3) and rQuant [2] on the MMR-filtered alignments, the best alignments only
(the alignment ranked highest by aligner) and on completely unfiltered alignments. For TopHat2
as well as PALMapper the quantifications based on the MMR-filtered alignments showed a consis-
tently better correlation to the ground truth than both the best-hit and unfiltered alignments sets.
The shorter reads of length 51nt (Fig. 1B) showed larger improvements compared to unfiltered
(Cufflinks: 14.8%, rQuant: 16.6%) and best-hit set (Cufflinks: 3.2%, rQuant: 3.0%) than the longer
reads of length 76nt, that showed consistent but smaller improvements (Suppl. Fig. 4 & 5).

4 Conclusion

We presented MMR, a post-processor for BAM files, resolving ambiguous alignment locations. We
showed its easy applicability to the output of different alignment methods and illustrated that MMR
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Figure 1: MMR Results on Simulated Read Data: A MMR effect on artificial A. thaliana
genome tiling data. Distribution of unfiltered coverage values (left) and MMR-filtered values (right).
B Quantification results on 3 million simulated 51nt reads aligned with PALMapper, using rQuant
and Cufflinks. Accuracy was measured as Spearman correlation to ground truth. Unfiltered read
sets are shown in dark, best-hit read sets in medium and MMR-filtered in light gray. Native error
rate is 2.7%, additional noise levels 1%, 2% & 3%.

can greatly improve accuracy of downstream quantification methods. Whereas the improvements
seem moderate on a global scale, the effect on single genes can be much larger. Given its lean
implementation and the short running time, MMR is very well suited for large-scale genome-,
exome- and RNA-sequencing efforts. It may also be useful for post-processing alignments in meta-
genome projects for improved selection of taxa.
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A Methods

A.1 Description of Algorithm

Following the ideas described in the main manuscript and using the assumption of locally smooth
coverage, MMR evaluates the whole set of possible alignments for a each given read. The goal is to
identify the one alignment for each read that results in the locally smoothest coverage. There are
multiple ways to express our prior knowledge in what the coverage should look like. We assume
that this prior knowledge is encoded in a global loss function ` that computes the global amount
of non-smoothness for a set of chosen alignments. In the simplest case, we measure smoothness as
the empirical variance of the position-wise coverage in a window of a given length (see (1) below).
Other options are discussed in Suppl. Section A.4. The algorithm then minimizes the loss function
over all possible alignment choices and chooses the alignment with the smallest overall loss (i.e.,
greatest “smoothness”). For this, an iterative procedure is applied. Given an input of k different
alignments for a given read, one alignment is designated as the currently selected one. Depending
on user preference this is either an arbitrary alignment or the mapping with the highest alignment
quality (see user documentation). The currently selected mapping is then compared to each of
the remaining mapping possibilities. For a single comparison of two alignments a and b, four loss
function values are computed: the loss with alignment a placed vs not placed and alignment b
placed vs not placed. Given two possible alignments a and b to the genomic start locations pa and
pb, respectively, the score `+a computes the local loss around genomic location la if a is chosen and
`−a if it is not chosen (i.e., the read is aligned somewhere else); `+b and `−b are defined analogously
using the alignment b to position pb.

In the simplest case the loss function is defined as the empirical variance over the genomic
coverage of all window positions

`a =
1

La − 1

La−1∑
i=0

a[i] − 1

La

La−1∑
j=0

a[j]

2

(1)

where La is the length of the window around alignment (influenced by option -w), a[i] indicates the
read coverage at position i relative to the start pa of the alignment a. If an alignment is present
within the window, it influences the coverage and thus the local variance or more generally the loss
function. After computing all four values, alignment a is chosen if

`+a + `−b < `+a + `−b ,

otherwise alignment b is chosen. Figure 2 shows a schematic of the MMR principle. We discuss
other loss functions in Suppl. Section A.4.

A.2 Overlapping Alignment Locations

A major complication arising during the computation of `+a , `−a , `+b and `−b is the special case
that occurs when the windows of a and b share common positions. In this situation, two different
scenarios can occur:

1. the windows share positions but the alignments do not share positions,

2. the alignments share positions.
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Figure 2: Schematic of the MMR Principle — Schematic overview of the principle to resolve
ambiguous read-mappings. The candidate read-pair in gray has two possible alignments a starting at position
pa (left) and b starting at position pb (right). Loss measures (yellow) are computed for both locations, with
and without the read-pair. Loss values from the text have following correspondents in the schema: `−a –
location a (top), `+a – location a (bottom), `+b – location b (top), `−b – location b (bottom). The evaluation
windows are shown in red and the coverage of placed reads as black solid lines.

As the read is placed at either the one or the other location, in case 1) the computation of `−a needs
to consider coverage contributed by b as this will be placed instead of a and `−b needs to consider
coverage contributed by a. Case 2) causes a subset of positions that are shared by a and b to not
be altered by the decision. These positions can be masked for analysis and left out in computation,
as they contribute to both locations not changing the result.

A.3 Paired-end Reads

The approach described above can be easily extended to also work for paired-end alignments. In
this case, a preprocessing step iterates through all possible valid pairs of alignments of the two
mates (see option -p). An alignment pair is valid, if the corresponding alignments do not overlap
in a conflicting manner. For instance, a conflict would occur, if the first read-mate is aligned into
the intronic portion of the second read-mate, if both reads are aligned in the same direction, if the
reads align to different chromosomes, or if both alignments have a distance outside of a user-defined
maximum range (see option -i). After this preprocessing-step, each alignment pair is treated as
single alignment possibility ak and the algorithm above is applied. As the number of possible pairs
is quadratic in the number of alignments in the worst case, the number of allowed pairs can be
limited by the user (see option -A).

A.4 Loss Functions based on Segment Annotations

For RNA-seq data, one limitation of the straight-forward strategy described so far is that known
transcripts are not taken into account. Especially the exon–intron boundaries show steep changes
in coverage, but also within exons a change in coverage can often be explained by a mixed signal
from several transcript isoforms that superimpose each other. If the transcripts are (approximately)
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known, this effect can be accounted for during the optimization process. To include structural in-
formation into MMR, we devised a strategy that takes transcript annotations and quantifications
produced by another tool into account. This method can be applied in an iterative scheme. It
starts with transcript isoform prediction/quantifications on the alignments using the best hit. Am-
biguous alignments can then be re-evaluated based on the intermediate transcript structure and the
estimated transcript expression. The improved alignments can then be used to generate improved
isoform predictions and quantifications. This can be repeated a fixed number of times or until
convergence of the predicted quantifications. MMR allows to input transcript annotations together
with transcript quantifications (see option -s).

To reposition an ambiguous alignment if transcript structures are given, we devised a strategy
for an iterative application of MMR and MiTie [1], a tool for the prediction and quantification of
transcript isoforms. If the exon boundaries of all transcript isoforms of a gene are projected to
genomic coordinates, the gene can be cut into a set of non-overlapping exonic segments. Thus,
each isoform can be built from a subset of these segments. Several isoforms can share the same
segment. The expression value of a single segment is the sum of the segment’s expression values
over all transcript-isoforms containing that segment (for a more formal description we refer to the
publication of MiTie [1]).

The segments as well as corresponding expression estimates provided by MiTie or other tools can
be used as input for MMR (option -s). These segments imply a segmentation for the whole genome.
Each given segment is associated with a predicted expression value. The empty genomic regions in
between any segments are implicitly turned into segments with a predicted coverage of 0. Instead
of minimizing the local variance, we now minimize the difference between the observed coverage in
an exonic segment with and without the alignment of question and the predicted coverage of the
segment.

Again taking the example of the two alignments a and b, for each alignment we can now
identify all genomic segments it overlaps with. Let alignment a overlap the m genomic segments
ga,1, . . . , ga,m. We can then compute two coverage values for each segment. The value c+a,i that

contains the coverage of segment ga,i if alignment a is mapped to segment i and c−a,i that contains
the coverage of the same segment if a is mapped to a different location. For each segment we
can then compute the difference between observed and predicted coverage, using the expression
estimates ea,i corresponding to the respective genomic segments ga,i (i = 1, . . . ,m). Thus, the total
loss of alignment a is

`−a =
m∑
i=1

(ea,i − c−a,i)
2/m and `+a =

m∑
i=1

(ea,i − c+a,i)
2/m.

Analogously, for alignment b we define the total loss of overlapping genomic segments gb,i with
expression estimates eb,i (i = 1, . . . , n) as

`−b =
n∑

i=1

(eb,i − c−b,i)
2/n and `+b =

n∑
i=1

(eb,i − c+b,i)
2/n.

Besides the different calculation of `+a , `
−
a , `

+
b and `−b , all other steps are identical to the steps

described before. Although slightly different adaptations need to be made in order to account for
overlapping alignment locations, the same general principles apply.
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A.4.1 Hybrid Strategy

We also implemented a hybrid-strategy that does not rely on predicted expression values for the
segments and therefore makes MMR much more practical. Instead it uses the minimization of
the coverage-variance on a segment-basis and computes the sum over all segments an alignment
overlaps, to determine a total variance value. All other other steps are the same as described before
(see option -M).

A.4.2 Other Loss Functions

To better account for properties inherent to read-count data, MMR can also make use of more
general loss functions. For instance, in [1] we used a log-likelihood (loss) function based on a
negative binomial distribution. For technical reasons, MiTie uses a piece-wise-linear approximation
to the log-likelihood loss function. MMR supports the specification of an arbitrary piece-wise linear
function to score differences between the observed and the expected read coverage (see option -m).
For further details see user documentation and [1], Suppl. Section K.

B Results

As described in the main text, we evaluated MMR on two different simulated datasets for an
assessment of its properties and performance: a) Whole-Genome Sequencing (WGS) in A. thaliana
and b) RNA-seq in human. All results were obtained using the basic version of MMR and without
any additional inputs, i.e., no annotation or quantification was used for these experiments.

B.1 Post-Processing Alignment of Whole-Genome Sequencing for Improved
Repeat Handling

For the first dataset we tiled the complete A. thaliana TAIR10 reference genome [8] at each position
into a set of overlapping 50-mers, thus generating artificial reads from whole genome sequencing,
including all low-complexity regions of the genome. In this idealized dataset the coverage at each
genomic position (except the 50nt at each end) is exactly 50. We then used PALMapper to realign
the first 1, 000, 000 reads back to the A. thaliana genome, allowing for up to 5 edit operations, thus
generating a high level of additional ambiguity.

B.2 Post-Processing RNA-seq for Accurate Transcript Quantification

As shown in the histograms of coverage distributions in the main text, MMR is able to fully resolve
all read-ambiguities in the genomic DNA dataset. In Figure 3, we show an example for a genomic
region that shows an uneven coverage before MMR filtering and is smoothed after filtering. Notably,
the unfiltered alignments showed single genome positions with a coverage exceeding 1, 700 (these
are contained in the last bin of the histogram in Fig. 1).

The second evaluation dataset, simulation with FluxSimulator [5], consisted of 3 · 106 artificial
RNA-Seq reads sampled from 5,000 randomly selected genes of the human ENSEMBL annota-
tion [4]. We simulated two different read-lengths of 51nt and 76nt, resulting in an average coverage
of 18× and 25×, respectively. The reads were mutated as described before and aligned to the hg19
human reference genome using TopHat (version 2.0.2 [7]) and PALMapper (version 0.5 [6]) allowing
up to 6 edit operations without additional annotation information provided. All other parameters

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017103doi: bioRxiv preprint 

https://doi.org/10.1101/017103
http://creativecommons.org/licenses/by/4.0/


were left at the default.

Based on this dataset, we tested the effect of MMR on downstream analyses. For this, we used
the unprocessed, the MMR-filtered and the best-hit alignment set to perform in silico transcript
quantification using both cufflinks [12] (version 1.3) and rQuant [2], where the best-hit set con-
sisted of those alignments that were ranked highest by the alignment algorithm. Figure 4 shows
the quantification results for a read length of 51nt, for all combinations of the aligners and the
quantification tools used. Figure 5 shows the respective results for a read length of 76nt.
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Figure 3: Effect of MMR Smoothing — IGV [11] snapshot of the unfiltered (top), best-hit (middle)
and MMR-processed (bottom) alignments. Ambiguous mappings causing unequal distributions could be
fully resolved. Missing coverage caused by retaining only the best alignment cannot be observed in the
MMR processed alignments.
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Figure 4: Quantification Results of 51nt reads — A: Accuracy of predicted transcript quantifi-
cations by rQuant (left) and cufflinks (right) measured as rank correlation coefficient (Spearman). Quan-
tification is based on PALMapper alignments. B: Quantification accuracy as measured before but with
quantification based on TopHat2 alignments.
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Figure 5: Quantification Results of 76nt reads — A: Accuracy of predicted transcript quantifi-
cations by rQuant (left) and cufflinks (right) measured as rank correlation coefficient (Spearman). Quan-
tification is based on PALMapper alignments. B: Quantification accuracy as measured before but with
quantification based on TopHat2 alignments.
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