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Abstract

Motivation: Understanding the occurrence and regulation of alternative splicing (AS) is a key task towards
explaining the regulatory processes that shape the complex transcriptomes of higher eukaryotes. With the
advent of high-throughput sequencing of RNA (RNA-Seq), the diversity of AS transcripts could be measured
at an unprecedented depth. Although the catalog of known AS events has grown ever since, novel transcripts
are commonly observed when working with less well annotated organisms, in the context of disease, or
within large populations. Whereas an identification of complete transcripts is technically challenging and
computationally expensive, focusing on single splicing events as a proxy for transcriptome characteristics is
fruitful and sufficient for a wide range of analyses.

Results: We present SplAdder, an alternative splicing toolbox, that takes RNA-Seq alignments and an
annotation file as input to i) augment the annotation based on RNA-Seq evidence, ii) identify alternative
splicing events present in the augmented annotation graph, iii) quantify and confirm these events based on
the RNA-Seq data, and iv) test for significant quantitative differences between samples. Thereby, our main
focus lies on performance, accuracy and usability.

Availability: Source code and documentation are available for download at
http://github.com/ratschlab/spladder. Example data, introductory information and a small tutorial
are accessible via http://bioweb.me/spladder.

Contact: andre.kahles@ratschlab.org, gunnar.ratsch@ratschlab.org

1 Introduction

Alternative splicing (AS) is an mRNA processing
mechanism that cuts and re-joins maturing mRNA in
a highly regulated manner, thereby increasing tran-
scriptome complexity. Depending on the organism,
up to 95% of expressed genes are transcribed into
multiple transcript variants (Pan et al., 2008; Wang
et al., 2008), where various transcripts with differ-
ing exon composition can arise from the same gene
locus. (Throughout this text, we will use the term
transcript to identify a variant of a gene that was
generated through transcriptional processing.) Al-
though these transcripts might never coexist at the
same time and place, each one of them can be essen-
tial for cell differentiation, development or play an
important role within signaling processes (Kornbli-
htt et al., 2013). Thus, the two major challenges in
computational transcriptome analysis are complexity
and completeness. In SplAdder, we leverage evidence
from RNA-Seq data to compute a more complete rep-
resentation of the splicing diversity within a sample
and tackle the complexity with a reduction to alter-

native splicing events instead of full transcripts. We
provide open source implementations for SplAdder
in MATLAB and Python that contain all features
described below and produce the same results. How-
ever, future development will focus on the Python im-
plementation for reasons of accessibility. All inputs
follow the standardized formats for alignments and
annotation such as BAM and GFF. For complete ex-
amples, use cases and information regarding the user
interface, we provide a supplementary website. User
documentation is available in the wiki section of the
source code repository.
In Section 2 we will give a brief overview on related
approaches that also focus on the analysis and quan-
tification of alternative splicing based on RNA-Seq
data. Our main focus will be on methods that are
able to characterize alternative splicing events. In
the subsequent Section 3, we give an outline of the
SplAdder methodology and the algorithmic details of
its main compute phases. To show how SplAdder
compares to other strategies for RNA-Seq based al-
ternative splicing analysis, we have compiled a set
of different evaluations and comparisons to existing
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methods. Our experimental design will be described
in Section 4 and the main results are discussed in
Section 5. Lastly, Section 6 summarizes this work.

2 Related Work

Prior to the advent of high throughput RNA-Seq,
methods based on expressed sequence tags (ESTs)
were developed to elucidate the complex patterns of
alternative splicing in higher organisms (Modrek and
Lee, 2002). Although designed for a much lower data
throughput, the algorithmic ideas presented for ESTs
have had a strong influence to the field in the fol-
lowing years. One central idea is the representation
of splicing variation at a gene locus as a graph that
encodes exon segments as nodes and the intron seg-
ments as connecting edges (Heber et al., 2002; Eich-
ner et al., 2011; Kianianmomeni et al., 2014). Similar
to SplAdder, numerous tools are based on such splic-
ing graph representations; however, none of the exist-
ing approaches combines all aspects of the SplAdder
workflow: the augmentation of existing annotation
information, the detection and quantification of al-
ternative splicing events, differential testing of events
between two given sets of samples and detailed visu-
alization of the splicing variation. There exist several
approaches that cover at least a subset of the steps
in the SplAdder pipeline. The most notable ones
are JuncBase (Brooks et al., 2011), rMATS (Shen
et al., 2014) and SpliceGrapher (Rogers et al., 2012).
JuncBase utilizes third party prediction tools such
as Cufflinks (Trapnell et al., 2010) to allow for the
detection of novel exon nodes in the splicing graph.
It then extracts and quantifies splicing events of the
most common AS types and reports them in a cus-
tom format. Further, JuncBase provides basic dif-
ferential analyses and basic visualizations of the test
results. However, the pipeline consists of 10 differ-
ent steps, including building a Cufflinks output based
database, which is quite laborious to generate, has a
long running-time and is thus not ideal for larger scale
studies. SpliceGrapher directly integrates informa-
tion from RNA-Seq or EST data into a splicing graph
and can display splicing events in the graph visual-
izations. Unfortunately, it does not provide an easy
method to explicitly generate and quantify alterna-
tive splicing events and does not allow for differential
analysis. rMATs focuses on the differential analysis
of splicing between RNA-Seq samples. It can detect
the most common AS events from either RNA-Seq
alignments or from a set of reads by applying a third
party mapping algorithm. Based on the RNA-Seq
evidence, it will also fill in some missing information

to call events not present in the provided annotation
but has a limited capacity to do so.

Other methods, such as Scripture (Guttman
et al., 2010), Cufflinks (Trapnell et al., 2010) or
MISO (Katz et al., 2010) also use graphs internally
and allow for novel splice variants based on RNA-
Seq evidence but focus on the prediction of full tran-
scripts instead of single events. These tools aim to
solve a much harder problem and thereby miss poten-
tial local variability for AS studies. These tools are
also computationally more expensive, limiting their
applicability in the context of thousands of samples.
Another popular tool that is focused on the extrac-
tion of alternative splicing events from a given an-
notated locus is the Astalavista toolbox (Foissac and
Sammeth, 2007). Although many splicing events are
covered in the detection phase, the tool relies on a
complete annotation as input and does not provide
any quantification values for the events However, the
authors introduce a logical representation of splice
events (the splicing code) that we will utilize later on.
The software SpliceTrap (Wu et al., 2011) is able to
generate quantification values for the most common
AS types, but recognizes much fewer transcripts than
Astalavista. For both tools no novel splice variants
are considered.

In our evaluation on simulated data, we will show
that SplAdder is more accurate in detecting novel
events and shows better performance in differential
analysis than any of the tested competitors. We
have chosen to compare SplAdder against JuncBase,
rMATS and SpliceGrapher as these methods are clos-
est to the presented SplAdder pipeline. We discuss
further details regarding the comparisons in Section 4
and Suppl. Section D.

3 Approach

The SplAdder algorithm consists of multiple steps
that convert a given annotation into a splicing graph,
enrich that graph with splicing evidence from RNA-
Seq samples, identify splicing events from the aug-
mented graph and use the given RNA-Seq data to
quantify the single events (Figure 1). Optionally, the
quantifications can then be used for differential anal-
ysis. We find this distinction important, as differ-
ential analysis between samples is only one of many
possible applications of AS event phenotypes. Other
examples may include generating of sample specific
splicing profiles or using AS phenotypes in genome-
wide association studies.
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Figure 1: SplAdder Analysis Flowchart The main steps of the SplAdder workflow consist of (1) inte-
grating annotation information and RNA-Seq data, (2) generating an augmented splicing graph from the
integrated data, (3) extraction of splicing events from that graph, (4) quantifying the extracted events, and
optionally (5) the differential analysis between samples and producing visualizations.

3.1 Preliminaries

Here, we will introduce our notation and make def-
initions that will be used throughout the following
descriptions of the algorithm.

Coordinates All positions used in the following de-
scriptions are in a genomic coordinate system. We
begin by defining the genome G as a string of consec-
utive positions G = g1g2 . . . gn. When addressing any
range x within these positions, e.g., to define a gene
x, we describe this as the pair of the first and the last
position of x : (gx,start, gx,end). When addressing a
specific entity xi, we will write (gxi,start, gxi,end). For
simplicity, we ignore chromosomes and assume the
genome to be one continuous string.

Representation of Genes as Transcript Graphs
A given gene annotation can be represented as a set
of linear directed graphs. Assume gene G as given,
that has k different transcripts j1, . . . , jk ∈ JG , where
JG is the set of all transcripts of gene G. As we con-
sider each gene G independently, we will omit the
index G wherever possible in order to keep the no-
tation uncluttered. Each transcript consists of a set
of exons that are connected by introns. Each exon
can be uniquely identified by its start and end. We
thus represent all exons as coordinate pairs of their
genomic start and end position:

v = (start, end) = (gv,start, gv,end) ∈ N2,

where gv,start and gv,end are the first and last posi-
tion of exon v in genomic coordinates, respectively.
Although further coordinate information like chromo-
some and strand are used in the program implemen-
tation, we will limit this description to an identifica-
tion by start and end for simplicity. The exons of

each transcript ji can then be represented as a node
set Vi := {vi,1, . . . , vi,mi

} with 1 ≤ i ≤ k and mi as
the number of exons in transcript ji. As transcripts
have a direction (the exons within a transcript fol-
low a strict order), we require, that the index of the
nodes reflects the order of the exons in the transcript.
As no two exons in a transcript overlap by definition,
this order is implied by gv,start and gv,end. We then
define the edge set of transcript ji as

Ei :=
⋃

1≤s<mi

{(vi,s, vi,s+1) | vi,s, vi,s+1 ∈ Vi} ⊂ Vi×Vi

with 1 ≤ i ≤ k. The pair (Vi, Ei) forms the directed
transcript graph of transcript ji.

Definition of Splicing Graphs We define the set
of exons occurring in any transcript ji as V . As the
single exons are uniquely identified by their coordi-
nates, we can write V :=

⋃k
i=1 Vi. Hence, we define

the set of all edges as

E :=
k⋃

i=1

Ei ⊂ V × V.

Note, that only already existing edges are merged,
preserving the preexisting order of nodes. The pair
G = (V,E) is a directed acyclic graph and is called
the splicing graph representation of a gene. Figure S-
2 illustrates how a set of five transcripts is collapsed
into a splicing graph. The key concept is, that when
multiple transcripts contain the same exon, this will
be represented by a single node in the splicing graph.

We define the in-degree and the out-degree of a
node as the number of its incoming and outgoing
edges, respectively. We further define a node to
be start-terminal, if its in-degree is zero and end-
terminal if its out-degree is zero. Each transcript can
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now be represented as a path through the splicing
graph, beginning at a start-terminal node and end-
ing at an end-terminal node.

Note, that although the splicing graph representa-
tion resolves many redundancies and efficiently stores
large numbers of different but mostly overlapping
transcripts, this comes at the cost of information loss.
Long range dependencies between single exons are
not preserved. An example of this is provided in Fig-
ure S-2. Although exon T2E1/T3E1 exclusively oc-
curs in transcripts that end in exon T2E3/T3E3, this
relationship is lost in the graph, where E2 can con-
nect to both E6 and E7. Our approach is not severely
affected by this limitation as we only extract local in-
formation about alternative exon- or intron-usage.

Definition of Segment Graphs Following the
splicing graph definition, two or more nodes in the
graph may overlap. Thus, when collecting expression
information for each node from a given alignment,
the same genomic positions may be queried multiple
times. To overcome this inefficiency, we use the con-
cept of breaking down each node into non-overlapping
exon segments, similarly used in (Reyes et al., 2012;
Behr et al., 2013).

The same principle that is applied when collaps-
ing different transcripts that share the same exons
into a graph structure can also be applied to collapse
exon segments that are shared by several nodes of
the splicing graph. Following this idea, we divide
each exon into non-overlapping segments. Analogous
to an exon, a segment is uniquely identified by its
genomic coordinate pair and the same order as on
exons can be applied: s = (gs,start, gs,end). We say an
exon vi is composed from segments si,q through si,r,
if vi = si,q ◦si,r, with q < r and where ·◦· denotes the
concatenation of segment positions. Thus, the set of
all segments can be defined as

S =
⋃

vi∈V
(si,q, . . . , si,r | si,q ◦ si,r = vi).

To explicitly define the set of all segments, first we
define the set VS of all node-starts in V and the set
VT of all node ends in V . The set of all segments S
can then be defined as

S =
⋃

gs,start,gs,end∈VTS

{(gs,start, gs,end) | ∃v ∈ V :

gv,start ≤ gs,start < gs,end ≤ gv,end},

where VST = VS ∪ VT. The computation of S from
V is straightforward. Let P be a sorted array con-
taining all genomic positions that are either start or
end positions of an exon in V . We denote the i-th

element of the array as P [i]. Let LS and LE be two
binary label-arrays with the same length as P , where
LS [i] is 1 if P [i] is start of an exon in V and 0 oth-
erwise. Correspondingly, LE [i] is 1 if P [i] is the end
of an exon in V and 0 otherwise. Let further CS and
CE be two arrays with the same length as P , where
CS [i] =

∑i
j=1 LS [i] and CE =

∑i
j=1 LE [i] are the

cumulative starts and ends up to position i. We can
then determine the set of all segments as

S =

|P |−1⋃
i=1

{(P [i], P [i + 1]) | CS [i] > CE [i]} .

Similar to the definition of the edges for the splicing
graph, we define

T =
⋃

su,sw∈S
{(su, sw) |∃vi ∈ V, sr ∈ S : vi = (gsr,start, gsu,end) and

∃vj ∈ V, st ∈ S : vj = (gsw,start, gst,end) and

(vi, vj) ∈ E}

to be the set of segment pairs that are connected by
an intron. We then denote the pair R = (S, T ) to be
the segment graph of a gene. For practical reasons,
we store an additional matrix that relates each node
in the splicing graph to the segments it is composed
of. Supplemental Figure S-5 illustrates the relation-
ship between splicing graph and segment graph.

We will use the splicing graph representation to
incorporate new information based on RNA-Seq evi-
dence as well as for the extraction of alternative splic-
ing events. We will use the segment graph represen-
tation for event quantification, as this is computa-
tionally much more efficient.

3.2 Construction of an Augmented
Splicing Graph

As a preprocessing step, the input annotation is
transformed into the initial splicing graph G accord-
ing to the definitions above, thereby collapsing exons
shared by multiple transcripts into single nodes of the
graph. In the following, we describe how G is trans-
formed into an augmented graph Ĝ using information
from RNA-Seq data, thereby introducing new nodes
and edges. This is an integral part of the SplAdder
workflow that enables the discovery of novel splicing
variation based on RNA-Seq data.

The augmentation of G is a four-step algorithm:

1. build initial graph
2. add novel cassette exons
3. add novel intron retentions
4. while novel edges can be added
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4.1. insert novel intron edges

When a newly added node shares one boundary
with an existing node, the existing edges are inher-
ited by the new node. Following, we will provide a
detailed explanation for each step.

Given an RNA-Seq sample and a gene G =
(gG,start, gG,end), we extract all intron junctions from
the alignment that overlap G and show sufficient
alignment support. Whether an intron junction is
sufficiently well supported is based on a set of given
confidence criteria (cf. Supplemental Table C) We
define the list of RNA-Seq intron junctions R as

R = {(gi, gj) | gG,start ≤ i < j ≤ gG,end},

where (gi, gj) describes the intron starting at gi and
ending at gj . Further, let v = (gv,start, gv,end), with
v ∈ V , be an existing node in the splicing graph.
The augmentation process will transform the exist-
ing splicing graph G = (V,E) into an augmented
graph Ĝ = (V̂ , Ê). We initialize Ĝ with G.

Adding Novel Cassette Exons In the first aug-
mentation step, new cassette exon structures are
added to the splicing graph. For this, the algorithm
iterates over all non-overlapping pairs of R. For each
pair (gi1 , gj1) and (gi2 , gj2), two conditions need to
be fulfilled. Briefly, both intron ends need to be at-
tached to existing exons and the cassette exon must
not already exist. Formally, we check for the follow-
ing conditions:

Intron ends ∃vi ∈ V̂ : gvi,end = gi1 − 1

and ∃vj ∈ V̂ : gvj ,start = gj2 + 1 and vi < vj

New exon 6 ∃vh ∈ V̂ : gvh,start =
gj1 and gvh,end = gi2 .

If both conditions are met, a new node vn =
(gj1 + 1, gi2 − 1) is added to the node set V̂ and

two new edges (vi, vn) and (vn, vj) are added to Ê.
Figure S-1, Panel A, schematically describes the ad-
dition of a cassette exon. The criteria for adding a
cassette exon are listed in Supplemental Table A.

Adding Novel Intron Retentions The second
augmentation step adds intron retention events to
the splicing graph. For each edge (vs, vt) ∈ Ê, the
algorithm decides whether there is enough evidence
from the given RNA-Seq sample for expression in-
side the intron, to consider the intron sequence as

retained. Again, heuristic confidence criteria are ap-
plied (cf. Supplemental Table B). Briefly, the central
criteria for adding a new intron retention is the num-
ber of sufficiently covered positions within the intron
as well as the differences in mean coverage between
intronic and exonic part of that region. When suf-
ficient evidence for a retention is found, a new node
vn = (vs,start, vt,end) is added to V̂ . The new node
inherits all incoming edges from vs and all outgoing
edges from vt, thus we get the set of newly added
edges

En =
{

(x, vn) | ∀x : (x, vs) ∈ Ê
}
∪
{

(vn, x) | ∀x : (vt, x) ∈ Ê
}
.

Then, the set of edges is updated with Ê := Ê ∪En.
Supplemental Figure S-1, Panel B, illustrates this
case.

Insert Novel Intron Edges The last augmenta-
tion makes once more use of the list of RNA-Seq sup-
ported intron junctions R generated during the first
step. Based on start and end position of the intron,
we can test if any existing nodes start or end at these
positions, respectively. We have to distinguish be-
tween four different basic cases: 1) neither start nor
end coincide with any existing node boundary, 2) the
intron-start coincides with an existing node end, 3)
the intron end coincides with an existing node-start,
4) both the intron-start coincides with an existing
node end and the intron-end coincides with an exist-
ing node-start. The four cases and their respective
sub-cases are illustrated in Panels C–H of Supple-
mental Figure S-1. Formal definitions of the different
cases are given in Supplemental Section A. As the ad-
dition of novel intron edges depends on other possibly
novel edges, this addition step is repeated iteratively
until no new edges can be added or a pre-defined
maximum number of iterations is reached.

Splicing Graph Pruning When multiple RNA-
Seq samples are available, SplAdder allows for an op-
tional filtering step to reduce false positive edges. All
edges that are not supported by a given minimum
number of RNA-Seq samples will be pruned from the
graph. Resulting orphan nodes that were not present
in the initial graph will be pruned as well.

3.3 Detect and Quantify Alternative
Splicing Events

Based on the augmented splicing graph, we extract
various classes of AS events as subsets of connected
nodes. SplAdder currently supports the following
event types: exon skip, intron retention, alternative
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3’ and alternative 5’ splice sites, multiple exon skips
as well as mutually exclusive exons. Note, that cur-
rently alternative transcript starts and ends are not
detected, as they are products of alternative tran-
scriptional processing rather then results of alterna-
tive splicing. Each event is then represented as a
“mini-gene” consisting of two splice variants mini-
mally describing the alternatives of the event. Over-
lapping events that share the same intron coordi-
nates and do only differ in the flanking exon ends
are merged into a short common representation. We
refer to Supplemental Section B.1 for the formal def-
initions of all classes of alternative events and a de-
tailed description of the extraction algorithms.

Finally, the event set identified from the splicing
graph is quantified using the given read alignment
data. For each event, we report the mean coverage
of each exon and the number of spliced alignments
supporting each intron. Remember, that to speed up
the quantification process, the read counting is per-
formed on the segment graph representation defined
above. Thus, no exon position needs to be quantified
twice.

3.4 Differential Analysis

If the set of input samples can be separated into two
or more groups representing different conditions, the
splice quantifications produced by SplAdder can be
subjected to differential testing. For this, SplAdder
provides two basic strategies. The first is to use the
SplAdder output files that describe event structure
and quantification as input to other tools dedicated to
analyze differential expression, such as rDiff (Drewe
et al., 2013) or DESeq (Reyes et al., 2012). In previ-
ous studies, we have generally used the combination
of SplAdder and rDiff. In this case, the mini genes
predicted by SplAdder are re-quantified by rDiff and
subjected to a test for differential relative transcript
usage.

The second strategy is to directly use the exon-
intron junction counts generated by SplAdder to ap-
ply a differential test. Briefly, we model junction read
counts with a negative binomial distribution and em-
ploy a generalized linear model (GLM) framework for
testing similar to (Love et al., 2014). Similar to the
previous approach, we use the sample replicate to es-
timate a mean variance relationship to better account
for overdispersion. Details of the GLM based test is
provided in Supplemental Section C. This strategy
can be run as part of the SplAdder pipeline. It di-
rectly accesses the event quantifications and is com-
putationally more efficient than the previous hybrid
approach. We have included both strategies into our

evaluation presented in Section 4.

3.5 Visualization

SplAdder also provides means for publication-ready
visualization of the RNA-seq read coverage of exon
positions and of intron junctions. Visualization al-
lows for effective visual inspection of identified alter-
native splicing events in light of primary read data.
These visualizations provide summarization of mul-
tiple samples as well as the comparison of different
groups of samples to highlight differential splicing
over several replicate groups or conditions. An ex-
ample is provided in Supplemental Figure S-8.

4 Evaluation and Applications

The SplAdder approach has been successfully ap-
plied in various biological studies on Arabidopsis
thaliana (Drechsel et al., 2013; Gan et al., 2011) as
well as in the context of large-scale cancer projects
with several thousand RNA-seq libraries (Weinstein
et al., 2013). Here, we have created several sets of
simulated data to evaluate SplAdder. Simulated data
allows for an accurate measure of performance and
provides a ground truth for a fair comparison against
other existing methods. To allow as little bias as pos-
sible towards our own method, we used an external
data simulator (Griebel et al., 2012). In the follow-
ing, we describe the generated datasets and which
evaluations were performed on them.

4.1 Data simulation

Detection of Novel Events We have used the
FluxSimulator (Griebel et al., 2012) toolbox to sim-
ulate RNA-Seq data sets of sizes 5 million, 10 mil-
lion and 20 million reads, covering 1, 000 genes ran-
domly selected from the human GENCODE annota-
tion (v19) (Harrow et al., 2012) at various depths.
For this analysis, we put our main focus on the sen-
sitive detection of novel alternative splicing events.
Thus, we pre-filtered the annotation to genes that
had at least two transcripts annotated.

All reads were aligned to the human reference
genome using the STAR (Dobin et al., 2013) as well
as the TopHat2 (Kim et al., 2013) aligners to show
the applicability of our pipeline in a general context.
In both cases, we provided the full reference annota-
tion for index creation. TopHat2 implements a 2-pass
alignment mode per default. As this mode is optional
for STAR, we ran it with and without 2-pass mode to
also get a better understanding of its benefits. In ad-
dition to the alignment output, we also transformed
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Figure 2: SplAdder Evaluation Results This matrix of bar charts summarizes the evaluation results for the

comparison of rMATS, SpliceGrapher, JuncBase and SplAdder (see legend) on different sets of simulated RNA-Seq

read data. The metric shown here is the F-Score, defined as the harmonic mean of precision and recall. (Plots of the

same design with details on precision and recall are provided in Supplemental Figures S-6 and S-7.) The rows of the

plot matrix represent four different event types: a) exon skip, b) intron retention, c) alternative 3’ splice site, and d)

alternative 5’ splice site. The columns represent different read set sizes (5 million, 10 million, 20 million). The four

bar groups represent the different aligners used (from left to right: STAR 1-pass, STAR 2-pass, TopHat2, and the

simulated ground truth alignment).

the simulated read alignments into BAM format and
used it as optimal input for the splice prediction tools,

best reflecting ground truth information.

To simulate a realistic scenario of detecting novel
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AS events based on the provided RNA-Seq align-
ments only, we provided only a reduced annotation
to the tools performing the AS event prediction. This
reduced representation contains only the first anno-
tated transcript of a gene, where first is defined as
first occurrence in the complete annotation file.

For further details on data set creation and align-
ment, including all command line parameter settings,
we refer to Supplemental Section D.

Differential Analysis The simulated data for the
analysis of differential testing was taken from the
publication of rDiff (Drewe et al., 2013), a tool for the
detection of differentially expressed transcripts from
RNA-Seq data. The two datasets consist of 5,785
genes each, where half of the genes shows differential
relative transcript expression and the other half does
not. The rDiff publication gives further details on
dataset generation.

4.2 Evaluation

Detection of Novel Events We used the Astalav-
ista toolbox (Foissac and Sammeth, 2007) to extract
all annotated alternative splicing events from the set
of the randomly chosen 1,000 genes that we used for
data simulation. In contrast to the individual pre-
diction tasks, Astalavista had access to all annotated
transcripts of a gene and thus generated our ground
truth set used for evaluation later on. Astalavista
generates output following a well-defined nomencla-
ture (Guigó Serra et al., 2008).

The single AS event predictors were run on the
limited annotation containing only the first transcript
but had access to the RNA-Seq data generated from
the non-constrained annotation set. We then con-
verted the output of all other tools into the well de-
fined Astalavista format to allow for an easy compar-
ison. For each of the four AS event types (exon skip,
intron retention, alternative 3’ splice site and alter-
native 5’ splice site), we compared the predictions to
the ground truth set and computed precision, recall
and F-score metrics.

For this evaluation we considered JuncBase,
rMATS, SpliceGrapher and SplAdder.

Event Quantification Based on the read data
simulated for the detection of novel events, we were
also able to evaluate the event quantifications pro-
vided by the respective approaches. We based all our
analyses an percent spliced in (PSI) values, as they
are an accepted standard in the community. To gen-
erate the ground truth PSI values, we took the rela-
tive expression of a transcript for each gene as simu-

lated by FluxSimulator. For each alternative splicing
event, we computed its PSI value as the ratio between
the sum of abundances of transcripts that represented
the inclusion (e.g., not skipping the exon in an exon
skip event) over the sum of abundances of all tran-
scripts containing any of the event exons.

The so generated PSI values were then used as
ground truth for comparison of the predicted event
quantifications. Only the correctly detected events
of each approach could be compared to the ground
truth quantifications. We used the Pearson correla-
tion coefficient as a measure of agreement between
predicted and true PSI values.

This evaluation was performed for JuncBase,
rMATs and SplAdder, as SpliceGrapher does not pro-
vide quantification values.

Differential Analysis The two test sets taken
from (Drewe et al., 2013) contain 5,785 genes each
that either do (2,937) or do not (2,938) show dif-
ferential transcript usage. One dataset shows small
variability and the other large variability, which we
will further refer to as the small and large dataset,
respectively. For each dataset, we used the set of
differential genes as ground truth and counted a pre-
diction as a true positive if the tool found at least one
significant AS event in that gene. From this we gen-
erated receiver operating characteristic (ROC) curves
with increasing significance cut-offs to evaluate each
tool’s performance.

For this analysis we compared only rMATS,
JuncBase and SplAdder, as SpliceGrapher does pro-
vide no differential testing functionality.

5 Results

5.1 Detection of Novel Events

Based on the three sets of simulated reads and the
different alignments performed on these read sets, we
evaluated how well the single prediction tools can re-
construct the splicing variability in the sample from
read alignments and limited annotation. In compar-
ison to the ground truth dataset generated by using
Astalavista on the non-restricted annotation file, we
computed precision, recall and F-Score metrics for
four types of AS events (Figures 2, S-6 and S-7).

In general we find varying accuracies across the
different event types, with consistent patterns for all
the tested tools. Intron retentions are the most dif-
ficult to predict and exon skips the easiest. rMATS
was able to detect only two kinds of events on the
data we provided: exon skips and mutual exclusive
exons. Only exon skips were part of our evaluation.
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All event types that were not predicted are shown as
bars of height zero. We also would like to note, that
the simulated data resembles a polyA selected library.
When working with non-polyA selected, rRNA de-
pleted libraries, performance will likely be worse, as
incompletely spliced transcripts will be amongst the
sequenced fragments, diluting the signal.

Across all event types, sample sizes and alignment
methods SplAdder shows the best performance com-
pared to the other tools. Although rMATS shows the
highest precision on the predicted exon skip events
(0.965, cf. Supplemental Fig. S-6), it has a consid-
erably lower recall, thus affecting its overall perfor-
mance. Further, it does not predict any of the other
assessed types. In contrast JuncBase shows a gen-
erally high recall but predicts many false positive
events, resulting in a low precision (cf. Supplemental
Figs. S-6 and S-7).

A high read coverage has, in general, a positive
effect on prediction accuracy with better results for
the samples covered at a higher depth. However, we
observed some instances where high coverage results
in lower performance, most likely due to more false
positives in the predicted set.

5.2 Event Quantification

For all events that were correctly predicted by each
approach, we compared the associated PSI value to
the ground truth computed on the simulated abun-
dances.

In general, we observe good correlation between
predicted and true PSI values (cf. Supplemental Ta-
ble F for a list of all coefficients). Whereas SplAdder
shows the highest correlation for exon skip events,
JuncBase has slightly higher accuracy for the other
event types, although closely followed by the SplAd-
der predictions. As rMATS only predicted exon skip
events, we could only include this one event type into
our comparison.

We did not observe large differences between cor-
relation values for the different aligners. Interest-
ingly, a higher read depth led to slightly lower quan-
tification accuracies for all tools, even when using the
unaligned ground truth read data. We speculate that
this is an effect of the simulation tool. However, since
we use the reads only for a relative comparison of the
different approaches, our evaluation should not suffer
from this.

5.3 Differential Analysis

SplAdder can be utilized in two different ways to
compare alternative splicing between samples. One

approach is to use the event mini-genes output by
SplAdder as input to other tools for the analysis of
differential transcript usage. For our experiments, we
use rDiff and refer to this use case as SplAdder+rDiff.
In addition, we recently added a testing module to the
SplAdder core pipeline that uses a Generalized Lin-
ear Model (GLM), which we will refer to as SplAd-
der+GLM in the following evaluations. Based on the
two artificial data sets described above, we find that
SplAdder shows very good performance overall when
compared to other testing approaches (Figure 3).

In the range of a low false positive rate, the per-
formance of SplAdder+rDiff is comparable to rMATS
and slightly inferior to SplAdder+GLM. This is con-
sistent for both the small and large variance dataset.
JuncBase uses a t-test for assessing the different
groups of samples, which appears less well suited for
testing read count data, as it leads to relatively many
false positives at high confidence. The ROC curve
shape directly reflects this.

5.4 Software and Usability

We have taken great care when implementing the
SplAdder approach. It has been developed in Mat-
lab but was translated into Python to improve ac-
cessibility. Both implementations provide the same
functionality, however we will continue future devel-
opment in Python only. When it comes to usability,
SplAdder is a convenient one-stop-shop that provides
all analysis within a single pipeline. With one simple
command line call specifying the parameter set, all
subsequent steps are automatized. In addition, the
pipeline can be broken into single steps if necessary.

All other tested approaches required invocation
of multiple separate tool components and required
custom scripting on the user side to form a coher-
ent pipeline. A single exception is rMATS that is
also well engineered and is quite usable. Most of
this also reflects in the running times of the imple-
mentations (cf. Supplemental Table E). Whereas
rMATS and SplAdder have quite low running times,
JuncBase and SpliceGrapher are considerably slower.
Especially the Cufflinks preprocessing for JuncBase is
very compute intense, with up to 30 hours for some
evaluation samples of the largest size. Thus, we have
excluded this preprocessing time from the running
time table for JuncBase.

We believe that SplAdder’s improved usability is
an important feature that will enable comprehensive
AS analysis on RNA-Seq data for a wider audience
than with previous methods. Our method is partic-
ularly timely, given the ubiquitous precence of avail-
able RNA-seq data, high interest in quantifying splic-
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Figure 3: Differential Testing Evaluation Testing accuracy for four different methods (SplAdder+GLM,

SplAdder+rDiff, rMATS and JuncBase; see legend). Each plot represents a different test set. The plot shown on the

left represents the sample dataset with small biological variance between replicates, whereas the plot on the right is

based on the sample set with increased biological variance between replicates. The dashed line represents the diagonal

and reflects the performance of a random assignment of classes.

ing phenotypes, and scalability to process thousands
of samples.

6 Conclusion

We present SplAdder, a novel approach for the large-
scale analysis of alternative splicing events based on
RNA-Seq data. We also provide a thoroughly engi-
neered software implementation that is straightfor-
ward to use and can be easily deployed in a high per-
formance computing framework. SplAdder has been
successfully applied to splicing analysis in various or-
ganisms, compares favorably to various other state
of the art methods showing an overall high accuracy
and can be readily applied to datasets of thousands of
samples. We are working to further improve SplAd-
der to natively work with high performance compute
clusters and generate more interactive visualizations.

Acknowledgements

The authors are grateful to Vipin T Sreedharan for
providing code to convert annotation files, to Andreas
Wachter for valuable discussions and feedback on the
software and to David Kuo for proofreading. Funding
was provided by the Max Planck Society, Memorial
Sloan Kettering Cancer Center, by the German Re-
search Foundation (RA1894/2-1) and the Lucille Cas-
tori Center for Microbes, Inflammation, and Cancer
(No. 223316).

References

Behr, J., Kahles, A., Zhong, Y., Sreedharan, V. T., Drewe, P.,
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