
SplAdder: Identification, quantification and testing of

alternative splicing events from RNA-Seq data

André Kahles,1 Cheng Soon Ong,2 and Gunnar Rätsch1

1Computational Biology Center, Sloan-Kettering Institute, 1275 York Ave, New York, NY 10065, USA
2NICTA, Canberra Research Laboratory, Tower A, 7 London Circuit, Canberra ACT 2601, Australia

Abstract

Motivation

Understanding the occurrence and regulation of alternative splicing (AS) is a key task towards
explaining the regulatory processes that help to shape the complex transcriptomes of higher
eukaryotes. With the advent of high-throughput sequencing of RNA, the diversity of AS tran-
scripts could be measured at an unprecedented depth. Although the catalog of known AS events
has ever grown since, novel isoforms are commonly observed when working with less annotated
organisms, in the context of diseases, or within large populations. Whereas an identification of
complete isoforms is technically challenging or expensive, focussing on single splicing events as
a proxy for transcriptome characteristics is fruitful for differential analyses.

Results

We present SplAdder, an alternative splicing toolbox, that takes RNA-Seq alignments and an
annotation file as input to i) augment the annotation based on RNA-Seq evidence, ii) identify
alternative splicing events present in the augmented annotation graph, iii) quantify and confirm
these events based on the RNA-Seq data, and iv) test for significant quantitative differences.

Availability

Source code and documentation are available for download at github.com/ratschlab/spladder.
Example data, introductory information and a small tutorial are accessible at bioweb.me/spladder.

Contact

akahles@cbio.mskcc.org, raetsch@cbio.mskcc.org

1 Introduction

Alternative splicing (AS) is an mRNA processing mechanism that cuts and re-joins maturing mRNA
in a highly regulated manner, thereby increasing transcriptome complexity. Depending on the or-
ganism, up to 95% of expressed genes are transcribed in multiple isoforms [6, 8]. Although these
isoforms might never coexist at the same time and place, each one of them can be essential for
cell differentiation, development or within signaling processes. Thus, the two major challenges in
computational transcriptome analysis are complexity and completeness. In SplAdder, we leverage
evidence from RNA-Seq data to compute a more complete representation of the splicing diversity
within a sample and tackle the complexity with a reduction to alternative splicing events instead
of full transcripts. We provide implementations for SplAdder in Matlab and Python that con-
tain all features described below and produce identical results. However, future development will

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

http://github.com/ratschlab/spladder
http://bioweb.me/spladder
mailto:akahles@cbio.mskcc.org
mailto:raetsch@cbio.mskcc.org
https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

Annotation

Alignment
Data Augment

Splicing
Graph

Detect
Splicing
Events

Quantify
Splicing
Events

Differential
Analysis/

Visualization

20x

200x

20x

200x

400x

100x

vs.

1 2 3 4

5

S p l A d d e r P i p e l i n eI n p u t O u t p u t

Figure 1: SplAdder Analysis Flowchart The main steps of the SplAdder workflow consist of
the integration of annotation information and RNA-Seq data (1) into an augmented splicing graph
(2), the extraction of splicing events from that graph (3), the quantification of the extracted events
(4) and, optionally, the differential analysis between samples and visualization (5).

focus in the Python implementation for reasons of accessibility. All input formats follow the stan-
dardized formats for alignments and annotation such as BAM and GFF. For examples, uses cases
and information regarding the user interface we refer to the supplementary website and the user
documentation.

2 Approach

The SplAdder pipeline consists of multiple steps that convert any given annotation into a splicing
graph, enrich that graph with splicing evidence from RNA-Seq samples, identify splicing events from
the augmented graph and use the given RNA-Seq data to quantify the single events (Figure 1).
Optionally, the quantifications can then be used for differential analysis.

2.1 Construct Augmented Splicing Graph

From a given annotation, all transcript isoforms of a gene are parsed into a single splicing graph
representation, where exons are represented as nodes and introns as edges. Exons, identified a
combination of start and end position, that are shared by several isoforms will be represented as
a single node. By breaking up long range dependencies in the transcripts the splicing complexity
is drastically reduced, speeding up any further processing. Once the annotation is parsed, we
add additional nodes and edges to the graph, if we find sufficient evidence in the given RNA-Seq
alignment data. In successive steps, different types of AS elements are added to the graph. For
a summary of all augmentations and their respective support criteria we refer to Section A in the
Supplementary Material. Furthermore, to reduce false positive edges in the graph, SplAdder allows
for various strategies for removing edges based on evidence in multiple RNA-Seq samples.

2.2 Detect Alternative Splicing Events

Based on the augmented splicing graph, it is effortless to extract various classes of AS events as
subsets of connected nodes. SplAdder currently supports the following event types: exon skip,
intron retention, alternative 3’ and alternative 5’ splice sites as well as multiple exon skips. Each

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

event is then represented as a “mini-gene” consisting of two isoforms minimally describing the
alternatives of the event. Overlapping events that share the same intron coordinates and do only
differ in the flanking exon ends are merged into a short common representation.

2.3 Quantify Splicing Events

The event set identified from the splicing graph is then quantified using the given read alignment
data. For each node (exon) the mean coverage and for each edge (intron) the number of supporting
spliced alignments is reported. How an alignment is used for quantification depends on user ad-
justable filter criteria that ensure that only alignments of sufficient confidence are counted. To speed
up the counting process, the splicing graph is internally represented as graph of non-overlapping
exonic segments that are then quantified. Thus, no exonic position needs to be quantified twice.

2.4 Differential Analysis and Visualization

If the set of input samples can be separated into two groups representing different conditions
are sample types, differential testing can be applied to the counts generated from these samples.
SplAdder does not implement a differential testing routine itself, but employs rDiff [2]. SplAdder
also provides means for rich visualization of the RNA-seq read coverage of exonic positions and of
intron junctions. Visualization allows for effective visual inspection of identified alternative splicing
events in light of primary read data.

3 Evaluation and Applications

The SplAdder approach has been successfully used in various biological studies in Arabidopsis
thaliana [1, 3] as well as in the context of large-scale cancer projects with several thousand RNA-
seq libraries [9]. Here, we will provide an evaluation based on simulated data to give an accurate
measure of performance. Briefly, we have used FluxSimulator [4] to simulate RNA-Seq reads
from 5, 000 randomly selected human genes. Only the first annotated transcript was provided to
SplAdder with the task to recover the omitted information based on the read data. SplAdder
predicts both exons and introns with very high accuracy (cf. Figure 2). Details regarding data
simulation and evaluation of results as well as different ways to visualize the splicing data can be
found in Section C of the Supplemental Material.

4 Conclusion

We present SplAdder, a versatile tool for the large-scale analysis of alternative splicing events based
on RNA-Seq data. It is straightforward to use and can be easily deployed in a high performance
computing framework. SplAdder has been successfully applied to splicing analysis in various or-
ganisms, can be readily applied to datasets of thousands of samples and shows high accuracy in an
evaluation on simulated data.

Acknowledgements

The authors are grateful to Vipin T Sreedharan for providing code to convert annotation files and
to Andreas Wachter for valuable discussions and feedback to the software. Funding was provided

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

Figure 2: SplAdder Evaluation Results Result of the performance evaluation based on simulated

read data. Precision levels for nodes and edges of the graph for the four SplAdder confidence levels.

by the Max Planck Society, Memorial Sloan Kettering Cancer Center and by the German Research
Foundation (RA1894/2-1) and the Lucille Castori Center for Microbes, Inflammation, and Cancer
(No. 223316).

A Splicing Graph Augmentation

A.1 Definitions and Notation

A given gene annotation can be represented as a set of linear directed graphs. Assume gene g is
given and has k different isoforms j1, . . . , jk ∈ Jg, where Jg is the set of all isoforms of gene g. As
we consider each gene g individually, we will omit the index g wherever possible in order to keep the
notation uncluttered. Each isoform consists of a set of exons that are connected by introns. Each
exon can be uniquely identified by its start and its end. We thus represent all exons as coordinate
pairs of their start end stop position:

v = (start, stop) = (vstart, vstop) ∈ N2.

Although further coordinate information like chromosome and strand are used in the program
implementation, we will limit this description to an identification by start and stop for simplicity.
The exons of each isoform ji can then be represented as a node set Vi := {vi,1, . . . , vi,mi} with
1 ≤ i ≤ k and mi as the number of exons in isoform ji. As transcripts have a direction (the exons
within a transcripts follow a strict order), we require, that the index of the nodes reflects the order
of the exons in the transcript. As no two exons in a transcript overlap by definition, this order is
implied by vstart and vstop. We then define the edge set of isoform ji as

Ei :=
⋃

1≤s<mi

{(vi,s, vi,s+1) | vi,s, vi,s+1 ∈ Vi} ⊂ Vi × Vi

with 1 ≤ i ≤ k. The pair (Vi, Ei) forms the directed isoform graph of isoform ji.
Next, we define the set of exons occurring in any isoform ji as V . As the single exons are

uniquely identified by their coordinates, we can write V :=
⋃k

i=1 Vi. Hence, we define the set of all
edges as

E :=
k⋃

i=1

Ei ⊂ V × V.

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

T1E1 T1E2 T1E3 T1E4

T2E1 T2E2 T2E3

T3E1 T3E2 T3E3

E1 E3 E4 E6

E2 E5

T4E1 T4E2

A

B

Figure 3: Example case for the construction of the splicing graph. A: Set of four different transcript isoforms.
Exons are depicted as gray boxes and introns as solid lines. Labels TiEj denote exon j in transcript i. B:
Splicing graph representation of the same four isoforms. Exons occurring in multiple isoforms are collapsed
into a single exon in the graph.

Note that only already existing edges are merged, preserving any existing order of nodes. The pair
G = (V,E) is a directed acyclic graph and is called splicing graph representation of a gene. Figure 3
illustrates how a set of four isoforms is collapsed into a splicing graph.

We define the in-degree and the out-degree of a node as the number of its incoming and outgoing
edges, respectively. We further define a node to be start-terminal, if its in-degree is zero and end-
terminal if its out-degree is zero. Each isoform can now be represented as a path through the
splicing graph, beginning at a start-terminal node and ending at an end-terminal node.

Although the splicing graph representation resolves many redundancies and thus can efficiently
store large numbers of different but mostly overlapping isoforms, this comes at the cost of infor-
mation loss. Long range dependencies between single exons are not preserved. An example of this
is provided in Figure 3, Panel B. Although exon T2E1 exclusively occurs in transcripts that end
in exon T2E3, this relationship is lost in the graph, where E2 can connect to both E5 and E6. As
will be discussed later, our approach does not suffer from this shortcoming, since we only extract
local information about alternative exon- or intron-usage.

The same principle that was applied when collapsing different isoforms that share the same
exons into a graph structure, can be applied again to collapse exonic segments that are shared
by several exons/nodes of the splicing graph. Following this idea, we divide each exon into non-
overlapping segments. Analog to an exon, a segment is uniquely identified by its coordinate pair
and the same order as on exons can be applied: s = (sstart, sstop). We say an exon vi is composed
from segments si,q through si,r, if vi = si,q ◦si,r, with q < r and where ·◦· denotes the concatenation
of segment positions. Thus, the set of all segments can be defined as

S =
⋃
vi∈V

(si,q, . . . , si,r | si,q ◦ si,r = vi).

To explicitly define the set of all segments, at first we define the set VS of all node-starts in V and

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

the set VT of all node stops in V . The set of all segments S can then be defined as

S =
⋃

sstart,sstop∈VS∪VT

{(sstart, sstop) | ∃v ∈ V : vstart ≤ sstart < sstop ≤ vstop}.

The computation of S from V is straightforward. Let P be a sorted array containing all genomic
positions that are either start or end of an exon in V . We denote the ith element of the array
as P [i]. Let LS and LE be two binary label-arrays with the same length as P , where LS [i] is 1
if P [i] is start of an exon in V and 0 otherwise. Analogously, LE [i] is 1 if P [i] is end of an exon
in V and 0 otherwise. Let further CS and CE be two arrays with the same length as P , where
CS [i] =

∑i
j=1 LS [i] and CE =

∑i
j=1 LE [i] are the cumulative starts and ends up to position i. We

can then determine the set of all segments as

S =

|P |−1⋃
i=1

{(P [i], P [i + 1]) | CS [i] > CE [i]} .

Analog to the definition of the edges for the splicing graph, we define

T =
⋃

su,sv∈S
{(su, sv) |∃vi ∈ V, sr ∈ S : vi = (sr,start, su,stop) and

∃vj ∈ V, st ∈ S : vj = (sv,start, st,stop) and

(vi, vj) ∈ E}

to be the set of segment pairs that are connected by an intron. We then denote the pair R = (S, T)
to be the segment graph of a gene. For practical reasons, we store an additional matrix, that relates
each node/exon in the splicing graph to the segments it is composed of.

We will use the splicing graph representation to incorporate new information based on RNA-
Seq evidence as well as for the extraction of alternative splicing events. However, we will use
the segment graph representation for event quantification, as this is computationally much more
efficient.

A.2 Splicing Graph Augmentation

The augmentation of the splicing graph G is a step-wise heuristic. In each step, either a new node
or a new edge is added to the graph. If a newly added node shares one boundary with an existing
node, the existing edges are inherited by the new node. We will formalize this procedure in the
following. We begin by defining the genome G as a string of consecutive positions G = g1g2 . . . gn.
Given an RNA-Seq sample and the start gs and end ge of a gene, we extract all intron junctions
from the alignment, that overlap this region and show sufficient alignment support. Whether an
intron junction is sufficiently well supported, is based on a set of given confidence criteria. These
criteria will be discussed later in this section. We define the list of RNA-Seq intron junctions R as

R = {(gi, gj) | s ≤ i < j ≤ e},

where (gi, gj) describes the intron starting at gi and ending at gj . An existing node in the splicing
graph v ∈ V will be represented as the tuple of its genomic coordinates v = (gx, gy). If we directly
access the coordinate tuple of a node, this is denoted by, vstart and vend, thus vstart = gx and
vend = gy. The augmentation process will transform the existing splicing graph G = (V,E) into an
augmented version Ĝ = (V̂ , Ê). We initialize Ĝ with G.

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

A.3 Adding Cassette Exons

In the first round of augmentation, new cassette exon structures are added to the splicing graph.
For this, the algorithm iterates over all non-overlapping pairs of R. For each pair (gi1 , gj1) and
(gi2 , gj2), the following conditions need to be fulfilled, such that a new cassette exon will be added
to the graph:

• ∃vi ∈ V̂ : vi,end = gi1 − 1 and ∃vj ∈ V̂ : vj,start = gj2 + 1 and vi < vj

• 6 ∃vh ∈ V̂ : vh,start = gj1 and vh,end = gi2

Briefly, both introns need to be attached to existing exons and the cassette exon must not already
exist. If all conditions are met, a new node vn = (gj1 + 1, gi2 − 1) is added to the node set V̂ and
two new edges (vi, vn) and (vn, vj) are added to Ê. Figure 4, Panel A, shows schematically how a
cassette exon is added. The criteria for added cassette exons are listed in Table 1.

Criterion Value

min exon coverage 5
min fraction of covered positions in exon 0.9
min relative coverage difference to flanking exons 0.05

Table 1: Settings for accepted cassette exons

A.4 Adding Intron Retentions

The second augmentation round adds intron retention events to the splicing graph. For each edge
(vs, vt) ∈ Ê, the algorithm decides if there is enough evidence from the given RNA-Seq sample for
expression inside the intron, to consider the intronic sequence as exonic. Again, heuristic confidence
criteria are applied that are listed in Table 2. Briefly, the central criteria for adding a new intron
retention are the number of sufficiently covered positions within the intron as well as the differences
in mean coverage between intronic and exonic part of that regions. In case of sufficient evidence
for a retention, a new node vn = (vs,start, vt,end) is added to V̂ . The new node inherits all incoming
edges from vs and all outgoing edges from vt, thus we get the set of newly added edges

En =
{

(x, vn) | ∀x : (x, vs) ∈ Ê
}
∪
{

(vn, x) | ∀x : (vt, x) ∈ Ê
}
.

Then, the set of edges is updated with Ê := Ê ∪ En. Figure 4, Panel B, illustrates this case.

Criterion confidence level
0 1 2 3

min intron cov. 1 2 5 10
min fraction of cov. positions in intron 0.75 0.75 0.9 0.9
min intron cov. rel. to flanking exons 0.1 0.1 0.2 0.2
max intron cov. rel. to flanking exons 2 1.2 1.2 1.2

Table 2: Settings for accepted intron retentions

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

coverage

split alignments

A New cassette exon

coverage

B New retained intron

split alignments

C New intron

split alignments

D Alternative splice sites on both intron ends

split alignments

E New start-terminal node / New end-terminal node

split alignments

F Alternative 3’ splice site / New end-terminal node

split alignments

G Alternative 5’ splice site / New start terminal node

split alignments

H New exon skip

Figure 4: Overview of the different classes of splicing graph augmentation. Panels A–H show all possibilities
how the splicing graph can be augmented within SplAdder, based on evidence from RNA-Seq alignment data.
In cases where no coverage evidence is shown, only junction confirmations by split alignments are used.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

A.5 Handle Introns

The last augmentation step iterates another time over the list of RNA-Seq supported intron junc-
tions R that has been generated during the first step. Based on start and end position of the intron,
we can test if any existing nodes end or start at these positions, respectively. We have to distinguish
four different basic cases: 1) neither start nor stop coincide with any existing node boundary, 2)
the intron-start coincides with an existing node end, 3) the intron end coincides with an existing
node-start, 4) both the intron-start coincides with an existing node end and the intron-end coin-
cides with an existing node-start. In the following, we will discuss all four cases in further detail.
The four cases and their respective sub-cases are illustrated in Figure 4, Panels C–H, which provide
a more intuitive explanation and may help the understanding of the following formal definitions.

In the following, we formally define all cases to insert new intron edges into the graph.

1. To handle the first case we can split it into three sub-cases:

(a) If the intron (gi, gj) is fully contained within an existing node (∃v ∈ V̂ : gi > vstart and gj <
vend), we can insert a new intron into the node, thus creating two new nodes vn1 =
(vstart, gi − 1) and vn2 = (gj + 1, vend). After adding vn1 and vn2 to V̂ , we update the
edge set to

Ê = Ê ∪ {(vn1 , vn2)}

∪
⋃
x∈V̂

{
(x, vn1) | (x, v) ∈ Ê

}
∪

⋃
x∈V̂

{
(vn2 , x) | (v, x) ∈ Ê

}
(b) If the intron (gi, gj) is fully contained within an existing intron, we can connect it to

the two nodes vs and vt flanking the containing intro, thus introducing two new nodes
vn1 = (vs,start, gi − 1) and vn2 = (gj + 1, vt,end) into V̂ . Again, the new nodes inherit
their edges from vs and vt providing the following update rule for the edge set:

Ê = Ê ∪ {(vn1 , vn2)}

∪
⋃
x∈V̂

{
(x, vn1) | (x, vs) ∈ Ê

}
∪

⋃
x∈V̂

{
(vn2 , x) | (vt, x) ∈ Ê

}
(c) If one of the intron boundaries (gi, gj) is in close proximity (we use ≤ 40 nt as a default

threshold) to a terminal node, this node is extended to a new node vn1 and a new
terminal node vn2 is added to the graph at the other side of the intron. The length k of
the new terminal exon is pre-defined to be 200 nt. If the nearby node v is start-terminal,
vn1 = (gj + 1, vend) and vn2 = (gi − k − 1, gi − 1) and

Ê = Ê ∪ {(vn2 , vn1)} ∪
⋃
x∈V̂

{
(vn1 , x) | (v, x) ∈ Ê

}
.

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

If the nearby node v is end-terminal, vn1 = (vstart, gi − 1) and vn2 = (gj + 1, gj + k + 1)
and

Ê = Ê ∪ {(vn1 , vn2)} ∪
⋃
x∈V̂

{
(x, vn1) | (x, v) ∈ Ê

}
.

2. The second case is similar in its handling to case 1c). If the start of intron (gi, gj) coincides
with the end of an existing node v, we can distinguish two sub-cases.

(a) There exists a node v′ in close proximity to intron-end gj and we can add a new node
vn = (gj + 1, v′end) and update the edge set to

Ê = Ê ∪ {(v, vn)} ∪
⋃
x∈V̂

{
(vn, x) | (v′, x) ∈ Ê

}
.

(b) There is no node in close proximity to intron-end gj , thus we introduce a new end-
terminal node vn = (gj + 1, gj + k + 1) and update the edge set to Ê = Ê ∪ {(v, vn)}.

3. The third case is analog to case 2). If the end of intron (gi, gj) coincides with the start of an
existing node v in the graph, we again can distinguish two sub-cases.

(a) There exists a node v′ in close proximity to gi and we can add a new node vn = (v′start, gi−
1) and update the edge set to

Ê = Ê ∪ {(vn, v)} ∪
⋃
x∈V̂

{
(x, vn) | (x, v′) ∈ Ê

}
.

(b) There is no node in close proximity to intron-start gi, thus we introduce a new start-
terminal node vn = (gi − k − 1, gi − 1) and update the edge set to Ê = Ê ∪ {(vn, v)}.

4. The last case is the most straightforward to handle. If intron (gi, gj) coincides with the end
of node v and the start of node v′, we augment the edge set Ê = Ê ∪ {(v, v′)}, if the edge is
not already present in Ê.

B Extraction of Alternative Splicing Events

Starting with the augmented splicing graph Ĝ = (V̂ , Ê), we can extract all alternative splicing
events as sub-graphs of the splicing graphs:

Exon Skips are all sub-graphs

(V ′, E′) = ({vi, vj , vk}, {(vi, vj), (vj , vk), (vi, vk)})

with V ′ ⊆ V̂ and E′ ⊆ Ê.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

E1 E3 E4 E6

E2 E5

E1 E3 E4 E6

E2 E5

E1 E3 E4 E6

E2 E5

E1 E3 E4 E6

E2 E5

E1 E3 E4 E6

E2 E5

A

B

C

D

E

Figure 5: Five different types of alternative splicing events are extracted from the splicing graph. The graph
structure is given with nodes as gray boxes and edges as solid/dashed lines. Solid/dark parts show the event
of interest and light/dashed parts the remainder of the graph structure. A: Exon skip, B: Multiple exon
skip, C: Alternative 5’ splice site, D: Intron retention, E: Alternative 3’ splice site.

Intron Retentions are all sub-graphs

(V ′, E′) = ({vi, vj , vk}, {(vi, vj)})

with V ′ ⊆ V̂ and E′ ⊆ Ê and vi,start = vk,start and vj,end = vk,end.

Alternative 3’ Splice Sites are all sub-graphs

(V ′, E′) = ({vi, vj , vk}, {(vi, vj), (vi, vk)})

with V ′ ⊆ V̂ and E′ ⊆ Ê and vj,end = vk,end. This definition assumes the direction of tran-
scription to be positive. For transcripts from the negative strand, the definition for alternative
3’ splice site and alternative 5’ splice site need to be switched.

Alternative 5’ Splice Sites are all sub-graphs

(V ′, E′) = ({vi, vj , vk}, {(vi, vk), (vj , vk)})

with V ′ ⊆ V̂ and E′ ⊆ Ê and vi,start = vj,start. The different strands are handled analogously
to alternative 3’-splice sites.

Multiple Exon Skips are all sub-graphs

(V ′, E′) =({vi, vj1 , . . . , vjs , vk}, {(vi, vj1), (vjs , vk), (vi, vk)}

∪
s−1⋃
l=1

{(vjl , vjl+1
)})

with V ′ ⊆ V̂ and E′ ⊆ Ê.

The same extraction rules would apply analogously, to extract alternative splicing events from the
not augmented graph G. A schematic overview of the extraction process is provided in Figure 5.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

B.1 Event Filtering and Quantification

Alternative splicing events extracted from the graph are filtered at several levels. To remove
redundant events, all events are made unique based on their inner event coordinates. The inner
event coordinates are defined as the start and end positions of all introns of the event. If two events
share the same inner coordinates, they are replaced by a new event with the same inner coordinates
but adapted outer coordinates minimizing the total length of the event. An example for this is
shown in Figure 6. Events in Panel A can be merged, whereas events in Panel B disagree in their
inner coordinates and remain separate.

In the next step we use the RNA-Seq data to quantify each of the extracted events. That is, for
each intron we count the number of alignments supporting it and compute the mean coverage for
each exon. For reasons of computational efficiency, the quantification is performed on the segment
graph. As defined above, each segment can be uniquely identified by its genomic coordinates. Thus,
we extract for each node its mean coverage and for each edge the number of spliced alignments
in the sample confirming this edge. As each exon vi can be formed through a concatenation of
segments sq ◦sr, we can use the segment-lengths and their average coverage to compute the average
coverage of the exon:

vi,coverage =

∑r
j=q(sj,stop − sj,start + 1) · sj,coverage∑r

j=q(sj,stop − sj,start + 1)
,

where sq ◦ sr is the sequence of segments contained in node vi.
In many applications, the splicing graphs can grow very complex, containing alternative events

that are only poorly supported by input data. Thus, we use the quantifications to further filter
the event set and to only retain the most confident events. Each event type has a different set of
criteria it has to fulfill in order to become a valid event. Complete listings of the respective criteria
are provided in Table 3. To determine, if an event is valid, the algorithm checks in which provided
RNA-Seq samples which criteria are met. An event is valid, if all criteria are met in at least one
sample. To create more stringently filtered sets of events, this threshold can be increased.

Criterion Confidence Level
0 1 2 3

min segment length d0.1 · re d0.15 · re d0.2 · re d0.25 · re
max mismatches max{2, b0.03 · rc} max{1, b0.02 · rc} max{1, b0.01 · rc} 0
max intron length 350,000 350,000 350,000 350,000
min junction count 1 2 2 2

Table 3: Settings for accepted introns

C Evaluation and Testing

The SplAdder software has been developed in the context of application and has been successfully
used in numerous projects on Arabidopsis thaliana [7, 1, 3] as well as in large scale cancer projects [9].

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

A B

Figure 6: Example case when overlapping events can be merged. A: All inner event coordinates agree and
the events can be successfully merged. B: Both events have only one intron in common, whereas the other
introns disagree. The events cannot be merged and remain separate.

However, to allow for an accurate measure of performance, we have used simulated data in this
work to assess the SplAdder results.

We used the FluxSimulator (in its version 1.1.1-20121103021450) [4] to simulate RNA-Seq reads
generated based on 5,000 genes randomly selected from the human reference annotation (Gencode,
NCBI36). The read simulation produced 76bp paired-end reads using the following parameters:

EXPRESSION_X0 9500

EXPRESSION_K -0.6

TSS_MEAN 50

POLYA_SCALE 300

POLYA_SHAPE 2

FRAG_SUBSTRATE DNA

FRAG_METHOD NB

FRAG_NB_LAMBDA 500

FILTERING YES

SIZE_DISTRIBUTION N-300-50.txt

SIZE_SAMPLING AC

RTRANSCRIPTION YES

PCR_PROBABILITY 0.7

RT_PRIMER PDT

RT_LOSSLESS YES

RT_MIN 500

RT_MAX 5500

PAIRED_END YES

FASTA YES

Where N-300-50.txt contains a random sample, drawn from a normal distribution with mean 300
and standard deviation 50.

In total, we generated 20,000,000 reads from 5,000 genes containing 11,591 transcript isoforms.
These reads were aligned back to the hg19 reference genome sequence using PALMapper [5]. For
the purpose of this evaluation, we removed all but the first isoform from each gene and stored
this as a backbone annotation, which was provided to SplAdder along with the simulated reads.
To assess how much complexity could be restored by SplAdder, we compared the splicing graph
built on the original annotation to the ones that had been created from the SplAdder augmented
backbone annotation. We overlapped three categories: the introns (edges in the graph), the exons
(nodes in the graph) and the inner exons (non-terminal nodes in the graph). The overlap evaluation

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

is summarized in Figure 7. Whereas the precision (middle panel) increases for all graph elements
that have been evaluated with increasing confidence level, the recall (left panel) slightly drops as
input data is more stringently filtered. The F-measure (right panel), computed as the harmonic
mean of precision and recall, is close to 0.8 for all confidence levels and peaks at confidence level 1.

0 1 2 3
Confidence Level

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
ca

ll

Splicing Graph Recall

Exons
Inner Exons
Introns

0 1 2 3
Confidence Level

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

Splicing Graph Precision

Exons
Inner Exons
Introns

0 1 2 3
Confidence Level

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
S
co

re

Splicing Graph F-Score

Exons
Inner Exons
Introns

Figure 7: Results of the performance evaluation based on simulated read data. Precision, recall and F-
measure, shown left, middle and right, respectively, were computed for nodes and edges of the graph for the
three different SplAdder confidence levels.

D Visualizations

Being able to transform the large amount of splicing information available for a gene locus is
an important step towards a better understanding of altered splicing mechanisms or to identify
impaired RNA regulation. To aid with this, SplAdder is able to produce a variety of diagnose
and overview-plots to summarize information at a specific locus or to given an overview on the
distributions of certain characteristics of all identified events.

An illustrative example is the gene-locus overview plot that can summarize the splicing graph
of a gene and align it to the coverage in a set of given samples, thereby highlighting coverage
differences (cf. Figure 8).

The list of available plotting routines is constantly extended. Please refer to the user documen-
tation for a more comprehensive overview.

References

[1] Gabriele Drechsel, André Kahles, Anil K Kesarwani, Eva Stauffer, Jonas Behr, Philipp Drewe,
Gunnar Rätsch, and Andreas Wachter. Nonsense-Mediated Decay of Alternative Precursor
mRNA Splicing Variants Is a Major Determinant of the Arabidopsis Steady State Transcrip-
tome. The Plant Cell, 25(10):3726–3742, 2013.

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

1000 1500 2000 2500 3000 3500
+7.615e6

Splicing graph for AT1G21690

1000 1500 2000 2500 3000 3500
+7.615e6

Annotated Transcripts (TAIR 10)

1000 1500 2000 2500 3000 3500
+7.615e6

0

20

40

60

80

100

120

R
e
a
d
 C

o
v
e
ra

g
e

Expression (Sample 1)

1000 1500 2000 2500 3000 3500
+7.615e6

0

20

40

60

80

100

120

R
e
a
d
 C

o
v
e
ra

g
e

Expression (Sample 2)

1000 1500 2000 2500 3000 3500
+7.615e6

0

20

40

60

80

100

120

R
e
a
d
 C

o
v
e
ra

g
e

Expression all Samples

Figure 8: Visualization of the splicing pattern occurring at a certain gene locus. The example shows real
data taken from the experiments on Arabidopsis thaliana NMD impaired mutants published in [1]. The upper
track shows the splicing graph for the gene AT1G21690 that has been generated by SplAdder. The second
track shows the annotated transcripts isoforms available in the TAIR10 annotation. Note, that none of the
transcripts contains an additional exon identified by SplAdder. When looking at the coverage overview in
the WT (track 3) and double-knockdown (track 4) samples, a clear differential usage of that novel exon is
apparent. Lastly, track 5 shows both samples in a comparative manner.

[2] Philipp Drewe, Oliver Stegle, Lisa Hartmann, André Kahles, Regina Bohnert, Andreas Wachter,
Karsten Borgwardt, and Gunnar Rätsch. Accurate detection of differential RNA processing.
Nucleic Acids Research, 41(10):5189–5198, May 2013.

[3] X Gan, O Stegle, J Behr, J G Steffen, P Drewe, K L Hildebrand, R Lyngsoe, S J Schultheiss,
E J Osborne, V T Sreedharan, A Kahles, R Bohnert, G Jean, P Derwent, P Kersey, E J Belfield,
N P Harberd, E Kemen, C Toomajian, P X Kover, R M Clark, G Rätsch, and R Mott. Multiple

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

reference genomes and transcriptomes for Arabidopsis thaliana. Nature, 108(25):10249–10254,
August 2011.

[4] Thasso Griebel, Benedikt Zacher, Paolo Ribeca, Emanuele Raineri, Vincent Lacroix, Roderic
Guigó, and Michael Sammeth. Modelling and simulating generic RNA-Seq experiments with
the flux simulator. Nucleic Acids Research, 40(20):10073–10083, September 2012.

[5] G Jean, A Kahles, V T Sreedharan, F De Bona, and G Rätsch. RNA-Seq read alignments with
PALMapper. Current Protocols in Bioinformatics, Chapter 11(December):Unit 11.6, December
2010.

[6] Qun Pan, Ofer Shai, Leo J Lee, Brendan J Frey, and Benjamin J Blencowe. Deep surveying
of alternative splicing complexity in the human transcriptome by high-throughput sequencing.
Nature Genetics, 40(12):1413–1415, 2008.

[7] C Rühl, E Stauffer, A Kahles, G Wagner, G Drechsel, G Rätsch, and A Wachter. Polypyrimidine
Tract Binding Protein Homologs from Arabidopsis Are Key Regulators of Alternative Splicing
with Implications in Fundamental Developmental Processes. The Plant Cell, 24(11):4360–4375,
2012.

[8] Eric T Wang, Rickard Sandberg, Shujun Luo, Irina Khrebtukova, Lu Zhang, Christine Mayr,
Stephen F Kingsmore, Gary P Schroth, and Christopher B Burge. Alternative isoform regulation
in human tissue transcriptomes. Nature, 456(7221):470–476, 2008.

[9] John N Weinstein, Eric a Collisson, Gordon B Mills, Kenna R Mills Shaw, Brad a Ozenberger,
Kyle Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M Stuart. The Cancer Genome Atlas
Pan-Cancer analysis project. Nature Genetics, 45(10):1113–1120, October 2013.

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017095doi: bioRxiv preprint

https://doi.org/10.1101/017095
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Approach
	Construct Augmented Splicing Graph
	Detect Alternative Splicing Events
	Quantify Splicing Events
	Differential Analysis and Visualization

	Evaluation and Applications
	Conclusion
	Splicing Graph Augmentation
	Definitions and Notation
	Splicing Graph Augmentation
	Adding Cassette Exons
	Adding Intron Retentions
	Handle Introns

	Extraction of Alternative Splicing Events
	Event Filtering and Quantification

	Evaluation and Testing
	Visualizations

