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Abstract 

How different organs in the body sense growth perturbations in distant tissues to coordinate their 

size during development is poorly understood. Here, we mutated an invertebrate orphan relaxin 

receptor, the Drosophila Lgr3, and found body asymmetries similar to those found in 

insulin/relaxin-like peptide 8 (dilp8) mutants, which fail to coordinate growth with developmental 

timing. Indeed, mutation or RNAi against Lgr3 suppresses the delay in pupariation induced by 

imaginal disc growth perturbation or ectopic Dilp8 expression. By fluorescently-tagging the 

endogenous Lgr3 protein and performing CNS-specific RNAi, we find that Lgr3 is expressed and 

required in a novel subset of CNS neurons to couple growth to developmental timing. Our work 

sheds new light on the function and evolution of relaxin receptors and reveals a novel 

neuroendocrine circuit responsive to growth aberrations. 

 

Main text 

How different organs in the body sense growth perturbations in distant tissues to coordinate their 

size and differentiation status during development is poorly understood (1, 2). We have previously 

discovered a hormone in Drosophila, the insulin/relaxin-like peptide Dilp8, that ensures organ and 

body size coordination (3). In developing larvae, Dilp8 is produced and secreted from abnormally-

growing imaginal discs. Its activity transiently delays the onset of metamorphosis by inhibiting the 

biosynthesis of the major insect molting hormone ecdysone by the prothoracic gland, a part of a 

compound endocrine structure called the ring gland (3, 4; Fig. 1A). Loss of dilp8 uncouples the 

endocrine communication between imaginal discs and the prothoracic gland, making dilp8 mutants 

susceptible to uncoordinated disc growth. This results in an increase in random deviations from 
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bilateral symmetry [fluctuating asymmetry (FA)], measurable at the population level (3). These 

findings have placed Dilp8 as a central player in the interorgan communication system that 

mediates plasticity to promote developmental stability in Drosophila. However, which molecule(s) 

and tissue(s) directly sense and/or transmit this abnormal growth signal to the prothoracic gland 

are unknown. 

Type C1 Leucine-rich repeat-containing G-protein coupled receptors (Lgrs) are a highly 

conserved protein family in metazoans that act as receptors for insulin-like peptides of the relaxin 

subfamily in vertebrates, where they play diverse roles in tissue homeostasis and remodelling, 

behavior and reproduction (5). In invertebrates, however, they are considered orphan receptors 

and their biological function is unknown (5-7). The Drosophila genome encodes two orphan 

receptors, Lgr3 and Lgr4, with clear homologies to vertebrate relaxin receptors [~45% and ~40% 

sequence similarity to human, RXFP1/2, respectively (6, 7)]. To start untangling the function of 

relaxin receptors, we remobilized a MB Minos element (8) to generate a mutant in the Drosophila 

Lgr3 (Fig. 1B). The obtained imprecise excision allele was named Lgr3[ag1]. Three precise 

excisions (Lgr3[+/+]) were also retained and used as genetic background controls. The Lgr3[ag1] 

imprecise excision (fig. S1) consists of a 3.8-kb deletion that completely removes the coding exon 

7 and partially removes coding exon 8 (Fig. 1B). Reverse-transcriptase polymerase chain reaction 

assays followed by Sanger sequencing determined that the Lgr3[ag1] deletion leads to 

readthrough from exon 6 directly into intron 6 and usage of an aberrant splicing donor within intron 

6 directly into exon 8 (Fig. 1B and fig. S2). The resulting transcript therefore has an intron-encoded 

premature termination codon (PTC) that truncates the Lgr3 protein one amino-acid after D326 (Fig. 

1C). We conclude that Lgr3[ag1] encodes a severely compromised protein that is unlikely to bind 

ligand or signal due to a truncated ligand-binding LRR domain (5), and absence of the seven 

transmembrane (7TM) domains and G protein coupling Carboxy terminus (Fig. 1C). 

While Lgr3[ag1] mutants are as viable and fertile as their Lgr3[+/+]  genetic background 

controls (fig. S3), we noticed increased FA in Lgr3[ag1] adults wings. FA indexes (FAi) are 

increased by an order of ~3 when compared to their Lgr3[+/+]  controls [p = 0.002 F-test for wing 

area FAi (Fig. 1D)]. This phenotype is indicative of uncoordinated imaginal disc growth during the 

larval stage, when wing size is determined, and is reminiscent of the increased FA phenotype of 

animals lacking the insulin/relaxin-like peptide Dilp8 (3). We thus hypothesized that Lgr3 and Dilp8 

act on the same pathway to promote developmental stability by coupling imaginal disc growth to 

developmental timing. 

To test the hypothesis that Lgr3 and Dilp8 are in the same pathway, we asked the question 

whether Lgr3 mutants show a similar defect as dilp8 mutants in the ability to delay the onset of 

metamorphosis in response to induced abnormal tissue growth (3, 4). We did this by inducing 

tissue damage in an Lgr3[ag1] background and carried out pupariation timing assays. Tissue 
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damage was induced by placing the proapoptotic gene reaper (rpr) under control of the wing-

pouch Beadex-Gal4 (Bx>) (3, 6), a combination that effectively caused a 66.7 ± 4.5-h (average ± 

SEM) delay in pupariation in control Lgr3[+/+] animals (Fig. 2A). Strikingly, this delay was reduced 

by 52.6 ± 3.8 h in Lgr3[ag1] mutants (~80%, p < 0.05 across all percentile comparisons, Tukey 

HSD test; Fig. 2A). This result demonstrates that Lgr3, like Dilp8, is critical to mediate the 

communication between abnormally growing imaginal discs and the prothoracic gland. In this 

same context, Dilp8 has been shown to control pupariation timing by acting upstream of the 

production of Prothoracicotropic hormone (PTTH) by the PTTH-producing neurons in the brain (3), 

which innervate the prothoracic gland and dictate the timing of ecdysone biosynthesis (1-4, 9, 10). 

Importantly, Lgr3[ag1] larvae pupariated at the same time as Lgr3[+/+] animals in control 

conditions without any induced tissue damage (Fig. 2A and fig S4C), suggesting that Lgr3, 

similarly to Dilp8 (3), does not control normal pupariation timing in the absence of growth 

aberrations. These results strongly indicate that Lgr3 and Dilp8 act on the same pathway. 

To test whether the Dilp8 activity is Lgr3 dependent, we tested if Lgr3 was necessary for 

the developmental delay produced by ectopic Dilp8 expression in the absence of tissue growth 

abnormalities (3, 4). Constitutive expression of a UAS-dilp8::3xFLAG (UAS-dilp8) transgene (3) 

under the control of a ubiquitous driver, tubulin-Gal4 (tub>) delays the onset of pupariation by 25.2 

± 2.5 h compared to controls (p < 0.05, Tukey-Kramer adjusted HSD test; Fig. 2B). In contrast, the 

Dilp8-dependent delay is completely suppressed when Lgr3 activity is reduced by concomitant 

RNAi knockdown (11) (Fig. 2B and fig. S5). We conclude that animals lacking the Drosophila 

relaxin receptor Lgr3 are insensitive to ectopically produced Dilp8. 

To gain insight into the tissue and cellular expression pattern of Lgr3 at the protein level, 

we used CRISPR/Cas9 mediated homologous repair (12, 13) to tag the endogenous Lgr3 protein 

at its Amino-terminus with superfolder green fluorescent protein (sfGFP; 14; Fig. 3A-B and fig. S6). 

We obtained one allele, Lgr3[ag5], hereafter named sfGFP::Lgr3, which contained an intact Lgr3 

coding sequence downstream of the sfGFP insertion (fig. S6). sfGFP::Lgr3 labels ~180 CNS cell 

bodies, consisting of ~40 cell bodies in the brain proper and ~140 in the ventral nerve cord (VNC) 

of 3rd instar larvae CNS (Fig. 3C). No other larval tissue apart from the CNS had detectable 

fluorescence or anti-GFP staining. This rules out the possibility that Lgr3 cell-autonomously 

controls ecdysone biosynthesis in the prothoracic gland downstream of Dilp8. The effectiveness of 

sfGFP::Lgr3 as a protein translation reporter was further confirmed by analyzing alleles with 

premature termination codon-inducing (PTC+) indels in the Lgr3 coding region following the 

inserted sfGFP sequence (fig. S6). The PTCs effectively reduced sfGFP::Lgr3 expression to 

undetectable levels (Fig. 3C, bottom panel), demonstrating the reliability of the sfGFP::Lgr3 

endogenous protein reporter. Importantly, PTC+ alleles, but not the PTC- allele ag5, had a similar 

increase in the pupal length to width ratio as the deletion mutant ag1 (fig. S4A-D), and again did 
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not influence pupariation timing (fig. S4E) corroborating the phenotype observed in the Lgr3[ag1] 

allele. These results strongly suggest that the Lgr3 protein acts in a subpopulation of CNS 

neurons. 

Critically, we were also unable to detect sfGFP::Lgr3 expression in neurons directly 

innervating the ring gland (Fig. 3C), ruling out the possibility that Lgr3 neurons control 

developmental timing by direct cellular contact or synapsis with the ring gland, such as through 

PTTH-producing neurons (10), the insulin producing cells (IPCs) (15), or subesophageal 

serotonergic neurons (16), all of which have been shown to modulate developmental timing. This 

scenario suggests that the Lgr3-positive neurons represent a novel distinct cellular population that 

has not been previously linked to growth and developmental timing control. To gain further insight 

into how Lgr3 neurons transmit the Dilp8 signal to the prothoracic gland, we looked into the 

neuroanatomy of sfGFP::Lgr3 in more detail. Notably, sfGFP::Lgr3 expression was not 

homogeneous in the ~180 CNS cell bodies. It was most strongly expressed in a single dorso-

ventral pair of midline neurons located deep in the thoracic segment of the VNC (hereafter 

abbreviated to MIL neurons, for midline internal Lgr3 neurons), and in a pair of bilateral neurons 

localized in the anterior part of the pars intercerebralis (hereafter abbreviated to PIL neurons, for 

pars intercerebralis Lgr3 neurons) (Fig. 3C, arrows and 3D) and (Fig. 3C, arrows and 3E). Both 

MIL and PIL neurons express sfGFP::Lgr3 and present their characteristic neuroanatomy already 

at the L1 stage (fig. S7). MIL neurons project their neurites ventrally and then anteriorly towards 

the brain, branching close to the base of the brain (fig. 3D). PIL neurons extend a single neurite 

centripetally into the neuropil that branches dorsally into highly arborized termini and ventrally into 

a slightly less arborized projection with a yet undetermined terminal branch (Fig. 3E). We noticed 

that the proximal arborizations of PIL neurons project to a region of the pars intercerebralis known 

to harbor the IPCs and anterior neurites from Dilp7-producing dorsal medial (DMA1; 17) neurons 

projecting from the VNC. To verify this assumption, we co-stained sfGFP::Lgr3 brains with anti-

Dilp5 or anti-Dilp7 as markers for IPCs or DMA1 neurons, respectively. Our results show that PIL 

neuron proximal arborizations project towards the nearby IPC-bodies reaching them from 

immediately underneath, while the IPCs neurites extend through the PIL neuron arborization (Fig. 

3F). PIL neurons also show an intimate association with the axonal projections of the Dilp7-

producing DMA1 neurons (Fig. 3G), providing anatomical and possible functional context for an 

anterograde neuronal input for PIL neurons (considering that proximal branches are typically 

dendritic; 18). 

One way by which neurons interact with IPCs is by modulating insulin release. The close 

proximity between PIL neurons and IPCs prompted us to test whether Lgr3 could have a function 

regulating insulin release. To test this hypothesis we quantified the levels of the major IPC insulin 

Dilp2 (19) in Lgr3[ag1] and Lgr3[+/+] brains, yet found no statistically significant difference (fig. 
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S8A-B), suggesting that Lgr3 does not modulate insulin release in normal conditions. Consistent 

with this, Lgr3[ag1] animals achieved a similar weight as their controls (fig. S8C). The same results 

were found when comparing the CRISPR-generated PTC+ mutant allele [ag8] with its control (fig. 

S8D-F). Even though these results do not exclude the possibility that PIL neurons modulate IPC 

activity, the Lgr3 mutant results are coherent with our previous finding that dilp8 loss-of-function 

does not affect average body weight or size in the absence of imaginal disc damage (3), adding 

evidence towards a dedicated role for Lgr3 in the Dilp8 pathway . 

The expression pattern of the sfGFP::Lgr3 reporter suggests that disrupting receptor 

function exclusively in the CNS should be sufficient to suppress the Dilp8-dependent delay in the 

onset of metamorphosis. To test this, we crossed the Lgr3-IR-V22 RNAi line to the panneuronal 

CNS driver elav-Gal4 (elav>) (Fig. 4A). We then raised the larvae in the presence or absence of 

the genotoxic agent ethylmethanosulfonate (EMS), which induces apoptosis, tissue 

damage/regeneration, an imaginal-disc specific Dilp8 upregulation and consequentially a robust 

delay in the onset of metamorphosis (8). Reducing Lgr3 function with RNAi in the nervous system 

using elav> leads to complete suppression of the EMS-induced delay, as also observed with an 

ubiquitous knockdown [using armadillo-Gal4 (arm>)] (Fig. 4A). We conclude that Lgr3 is required in 

the CNS, likely in one or more of the ~180 Lgr3-positive cells described above, to convey the 

Dilp8-dependent developmental delay. 

According to heterologous studies in human cell lines in vitro (7), Lgr3 is a constitutively 

active receptor. Even though our loss-of-function studies do not rule out constitutive activity, they 

are more consistent with a scenario where Lgr3 is activated by Dilp8 or other downstream Dilp8-

dependent signals. We thus hypothesized increased Lgr3 levels would not lead to a delay. 

Alternatively, if Lgr3 were constitutively active, it would delay pupariation timing if ectopically 

expressed. To conduct this experiment, we constructed a UAS-Lgr3 transgene and expressed it 

ubiquitously under the control of arm>. We find that the pupariation time profile of arm>Lgr3 

animals is indistinguishable from controls (Fig. 4B). This result argues against a simple explanation 

where Lgr3 is constitutively active (7). Instead, it is in line with our findings that, in the absence of 

tissue growth aberrations or ectopic Dilp8 expression, Lgr3 activity is not required to control the 

timing of the onset of metamorphosis. These results are coherent with a model where Lgr3 is 

activated either directly or indirectly by the Dilp8 signal and hints towards the existence of a 

dedicated tissue stress sensing pathway in Drosophila. 

Different organs need to sense growth perturbations in distant tissues to coordinate their 

size and differentiation status during development (1). Here, we have determined that the sensing 

of peripheral growth perturbations requires a novel population of CNS neurons expressing the Lgr3 

relaxin receptor. Neuronal Lgr3 is required for the transmission of the peripheral growth aberration 

signal, Dilp8, to the prothoracic gland, which controls the onset of metamorphosis and thereby the 
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cessation of imaginal disc growth (1, 3, 4, 9, 20; Fig. 4C). This work reveals a new Dilp8-Lgr3 

pathway that is critical to ensure developmental stability in Drosophila. Our study opens many 

questions for further research, such as the determination of whether or not the interaction between 

Lgr3 and Dilp8 is direct, which of the Lgr3-positive neurons are activated during Dilp8 expression, 

and how these connect to the ring gland. 

The similarities between the neuroendocrine mechanisms controlling the larval to pupal 

transition in Drosophila and the hypothalamic-pituitary axis in vertebrates has been highlighted (2, 

21). The neurosecretory cell-rich pars intercerebralis, in which the Lgr3-expressing PIL neurons 

are located, has anatomical, developmental and functional analogies to the hypothalamus, the 

structure that integrates the vertebrate CNS to the endocrine system via the pituitary gland. 

Similarly, the Drosophila pars intercerebralis connects the CNS to the endocrine ring gland 

complex via neurosecretory cells (22) such as the IPCs (15, 22). Both systems have roles in 

stress-response, energy metabolism, growth, water retention, and reproduction (5, 21). Lgr3-

positive neurons, such as the PIL neurons described herein, are well positioned to modulate the 

activity of ring gland-innervating neurons during tissue stress events that trigger Dilp8 secretion 

from the periphery. As the timing of vertebrate developmental transitions, such as puberty, can 

also be altered by intrinsic and extrinsic factors affecting body growth, such as inflammatory 

disease and nutritional status (2), the exploration of the role of relaxin signaling in modulating the 

hypothalamic-pituitary axis is a promising area for research. This is highlighted by the fact that the 

hypothalamus expresses relaxin receptors, including the Lgr3-homologue, RXFP1, in mammals 

and fish (5, 23), suggesting that a central neuroendocrine role for relaxin receptors might have 

evolved before the vertebrate and invertebrate split. A candidate peptide to regulate hypothalamic-

pituitary stress-responses via relaxin receptors is the neuropeptide Relaxin-3 (RLN3), which has 

been traditionally viewed as being the ancestor ligand for all vertebrate relaxins (24, 25). RLN3 is 

strongly expressed in stress-responsive neurons from the nucleus incertus (NI) that directly 

innervate and modulate hypothalamic activity (5, 26-28). Our results therefore reveal an 

unexpected and striking similarity between the Dilp8-Lgr3 pathway and the vertebrate relaxin 

signaling pathway and hint to an ancient stress-responsive pathway coordinating animal growth 

and maturation timing. 
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Figure Legends 

Fig. 1. Mutation in the Drosophila relaxin receptor Lgr3 leads to increased fluctuating 

asymmetry. (A) A neuroendocrine pathway coupling growth and developmental timing (3, 4). 

Scheme adapted from (9). (B) Remobilization of Minus element MB06848 positioned between 

coding exons 6 and 7 of the Lgr3 locus on Chromosome III generated a 3.8-kb deletion, named 

Lgr3[ag1]. (C) Scheme of predicted protein structure of the wild-type Lgr3 protein and the 

truncated Lgr3[ag1] protein based on vertebrate relaxin receptor structure data (5). Major domains 

are depicted: Low-density lipoprotein receptor domain class A (LDLa), Leucine-rich repeat (LRR), 

and seven transmembrane (7TM). The first TM/signal peptide (SP) domain is not predicted to be 

cleaved. The approximate region where ag1 mutation truncates the Lgr3 protein is depicted. (D) 

Bar graphs of the FAi (3) of the area (left panel) and length (right panel) of the wing pairs of the 

genotypes indicated. Numbers (N) of the wing pairs scored. F-test p values are shown. 

 

Fig. 2. Lgr3 couples imaginal disc growth to developmental timing by acting in the Dilp8 

pathway. (A) Mutation of Lgr3 abrogates interorgan communication between regenerating discs 

and the neuroendocrine centers coordinating the onset of metamorphosis. Expression of the 

proapoptotic gene rpr in the imaginal disc wing pouch under the control of Bx> leads to 

regeneration-dependent 66.7-h-delay in pupariation timing. Heat map bar graphs showing 

pupariation time (percentiles of pupae +/- SEM) of 5 repeats of the depicted genotypes. (B) Lgr3 

acts in the Dilp8 pathway. Two different RNAi lines against Lgr3, UAS-Lgr3-IR[JF03217] and UAS-

Lgr3-IR[GL01056] [hereafter Lgr3-IR-V10 and Lgr3-IR-V22  (V10 and V22)], suppress the delay 

caused by expression of Dilp8 under the control of the ubiquitous tub> driver. Shown are 

percentiles of pupae +/- SEM of 4-6 repeats of the depicted genotypes. Asterisks indicate p<0.05 

against all other genotypes (ANOVA, Tukey-Kramer adjusted HSD test). 

 

Fig. 3. Lgr3 is expressed in a subpopulation of CNS neurons. (A) Strategy used to generate a 

Lgr3 protein reporter. CRISPR/Cas9 mediated homologous repair (13) was used to integrate 

sfGFP in frame with exon 1 of Lgr3. This generated the protein reporter allele ag5 (named as 

sfGFP::Lgr3), which does not contain indels in the exon 1 region, and alleles ag6-8 which contain 

PTC+ indels (fig. S6). Two thin black lines indicate the sites of the CRISPR gRNAs used. (B) Lgr3 

protein scheme depicting the approximate localization of the sfGFP insertion and the protein 

truncations caused by the PTC+ indel mutations (see also fig. S6). (C) Sum of confocal z-stack 

slices of the CNS of a 3rd instar larvae stained with anti-GFP (green) to show sfGFP::Lgr3 

expression (green) and with anti-nc82 (magenta) and DAPI (blue) counterstains to show the 

synapses (neuropil) and nuclei, respectively. Arrows point to two bilateral pairs of PIL neurons 

(top) and to the MIL neurons in the midline of the VNC (bottom). MIL neurons are oriented dorso-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 25, 2015. ; https://doi.org/10.1101/017053doi: bioRxiv preprint 

https://doi.org/10.1101/017053


Garelli et al. - Page 10  
Neuronal Lgr3 couples growth to developmental timing 

 

10 

ventrally. Arrowheads point to the proximal projections of the PIL neurons. sfGFP::Lgr3 is also 

expressed in ~170 other cell bodies, but at a lower level than in PIL and MIL neurons. No anti-GFP 

staining is detectable in the CNS of an animal carrying  a sfGFP::Lgr3 insertion with a PTC+ indel 

[ag7]. (D) MIL neuron cell bodies (cb) located deep in the VNC project ventrally and anteriorly (red 

arrowheads) for a short distance (red arrowheads). Adjacent anterior projections are depicted (blue 

arrows). (E) Rostral view of the pars intercerebralis depicting the PIL neurons stained with anti-

GFP [green (left) and black (right)] and counterstained with DAPI (magenta). Possible proximal 

dendritic arborizations are indicated with red arrows. Blue arrows indicate a ramification, likely 

axonic, with an undetermined terminus. Primary neurites (red arrowhead). (F) PIL neurons 

associate closely to IPCs. Z-stack projection of confocal stacks stained with anti-GFP (green) and 

anti-Dilp5 (magenta). (G) PIL neurons associate closely to Dilp7-producing DMA1 neurons in the 

pars intercerebralis. Z-stack projection and orthogonal view of confocal stacks stained with anti-

GFP (green) and anti-Dilp7 (magenta).  

 

Fig. 4. Lgr3 is required in a novel subpopulation of CNS neurons to receive and transmit the 

Dilp8 signal to the ring gland. (A) Heat map bar graphs showing pupariation time (percentiles of 

pupae +/- SEM) of 3 repeats of larvae of the depicted genotypes fed either PBS (control) or the 

DNA-damaging agent, EMS (3). arm> drives ubiquitous expression while elav> drives CNS-

specific expression. (B) Lgr3 overexpression is not sufficient to delay the onset of metamorphosis. 

Heat map bar graphs showing pupariation time (percentiles of pupae +/- SEM) of 6 repeats of the 

depicted genotypes. Two UAS-Lgr3 transgene insertions (a and b) were tested. p>0.05, ANOVA. 

(C) Cartoon depicting the Dilp8-Lgr3 abnormal tissue growth-sensing pathway. A yet 

uncharacterized neuronal circuitry acts likely upstream of the known PTTH and ring gland 

components to delay the larval to pupa transition. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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